16 research outputs found

    Development of a flexible endoscopic robot with autonomous tracking control ability using machine vision and deep learning

    Get PDF
    A flexible endoscopic robot is designed to solve the problem that it is difficult for auxiliary doctors to maintain a stable visual field in traditional endoscopic surgery. Based on geometric derivation, a motion control method under the constraint of the remote center motion (RCM) of the robot system is established, and a set of circular trajectories are planned for it. The RCM error of the robot during operation and the actual trajectory of the robot end in three-dimensional space are obtained through the motion capture system. The end of the robot is controlled by the heterogeneous primary–secondary teleoperation control algorithm based on position increments. Finally, the RTMDet deep learning object detection algorithm was selected to identify and locate surgical instruments through comparative experiments, and the autonomous tracking control was completed based on visual guidance. In the process of autonomous tracking, the RCM error was less than 1 mm, which met the actual surgical requirements.</p

    CRANE: A Redundant, Multi-Degree-of-Freedom Computed Tomography Robot for Heightened Needle Dexterity within a Medical Imaging Bore

    Full text link
    Computed Tomography (CT) image guidance enables accurate and safe minimally invasive treatment of diseases, including cancer and chronic pain, with needle-like tools via a percutaneous approach. The physician incrementally inserts and adjusts the needle with intermediate images due to the accuracy limitation of free-hand adjustment and patient physiological motion. Scanning frequency is limited to minimize ionizing radiation exposure for the patient and physician. Robots can provide high positional accuracy and compensate for physiological motion with fewer scans. To accomplish this, the robots must operate within the confined imaging bore while retaining sufficient dexterity to insert and manipulate the needle. This paper presents CRANE: CT Robotic Arm and Needle Emplacer, a CT-compatible robot with a design focused on system dexterity that enables physicians to manipulate and insert needles within the scanner bore as naturally as they would be able to by hand. We define abstract and measurable clinically motivated metrics for in-bore dexterity applicable to general-purpose intra-bore image-guided needle placement robots, develop an automatic robot planning and control method for intra-bore needle manipulation and device setup, and demonstrate the redundant linkage design provides dexterity across various human morphology and meets the clinical requirements for target accuracy during an in-situ evaluation.Comment: 20 pages, 13 figures, Transactions on Robotic

    Design and realization of a master-slave system for reconstructive microsurgery

    Get PDF

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    Image guided robotic assistance for the diagnosis and treatment of tumor

    Get PDF
    The aim of this thesis is to demonstrate the feasibility and the potentiality of introduction of robotics and image guidance in the overall oncologic workflow, from the diagnosis to the treatment phase. The popularity of robotics in the operating room has grown in recent years. Currently the most popular systems is the da Vinci telemanipulator (Intuitive Surgical), it is based on a master-slave control, for minimally invasive surgery and it is used in several surgical fields such us urology, general, gynecology, cardiothoracic. An accurate study of this system, from a technological field of view, has been conducted addressing all drawbacks and advantages of this system. The da Vinci System creates an immersive operating environment for the surgeon by providing both high quality stereo visualization and a human-machine interface that directly connects the surgeon’s hands to the motion of the surgical tool tips inside the patient’s body. It has undoubted advantages for the surgeon work and for the patient health, at least for some interventions, while its very high costs leaves many doubts on its price benefit ratio. In the robotic surgery field many researchers are working on the optimization and miniaturization robots mechanic, while others are trying to obtain smart functionalities to realize robotic systems, that, “knowing” the patient anatomy from radiological images, can assists the surgeon in an active way. Regarding the second point, image guided systems can be useful to plan and to control medical robots motion and to provide the surgeon pre-operative and intra-operative images with augmented reality visualization to enhance his/her perceptual capacities and, as a consequence, to improve the quality of treatments. To demonstrate this thesis some prototypes has been designed, implemented and tested. The development of image guided medical devices, comprehensive of augmented reality, virtual navigation and robotic surgical features, requires to address several problems. The first ones are the choosing of the robotic platform and of the image source to employ. An industrial anthropomorphic arm has been used as testing platform. The idea of integrating industrial robot components in the clinical workflow has been supported by the da Vinci technical analysis. The algorithms and methods developed, regarding in particular robot calibration, based on literature theories and on an easily integration in the clinical scenario, can be adapted to each anthropomorphic arm. In this way this work can be integrated with light-weight robots, for industrial or clinical use, able to work in close contact to humans, which will become numerous in the early future. Regarding the medical image source, it has been decided to work with ultrasound imaging. Two-dimensional ultrasound imaging is widely used in clinical practice because is not dangerous for the patient, inexpensive, compact and it is a highly flexible imaging that allows users to study many anatomic structures. It is routinely used for diagnosis and as guidance in percutaneous treatments. However the use of 2D ultrasound imaging presents some disadvantages that require great ability of the user: it requires that the clinician mentally integrates many images to reconstruct a complete idea of the anatomy in 3D. Furthermore the freehand control of the probe make it difficult to individuate anatomic positions and orientations and probe repositioning to reach a particular location. To overcome these problems it has been developed an image guided system that fuse 2D US real time images with routinely CT or MRI 3D images, previously acquired from the patient, to enhance clinician orientation and probe guidance. The implemented algorithms for robot calibration and US image guidance has been used to realize two applications responding to specific clinical needs. The first one to speed up the execution of routinely and very recurrently procedures like percutaneous biopsy or ablation. The second one to improve a new completely non invasive type of treatment for solid tumors, the HIFU (High Intensity Focused Ultrasound). An ultrasound guided robotic system has been developed to assist the clinician to execute complicated biopsies, or percutaneous ablations, in particular for deep abdominal organs. It was developed an integrated system that provides the clinician two types of assistance: a mixed reality visualization allows accurate and easy planning of needle trajectory and target reaching verification; the robot arm equipped with a six-degree-of-freedom force sensor allows the precise positioning of the needle holder and allows the clinician to adjust, by means of a cooperative control, the planned trajectory to overcome needle deflection and target motion. The second application consists in an augmented reality navigation system for HIFU treatment. HIFU represents a completely non invasive method for treatment of solid tumors, hemostasis and other vascular features in human tissues. The technology for HIFU treatments is still evolving and the systems available on the market have some limitations and drawbacks. A disadvantage resulting from our experience with the machinery available in our hospital (JC200 therapeutic system Haifu (HIFU) by Tech Co., Ltd, Chongqing), which is similar to other analogous machines, is the long time required to perform the procedure due to the difficulty to find the target, using the remote motion of an ultrasound probe under the patient. This problem has been addressed developing an augmented reality navigation system to enhance US guidance during HIFU treatments allowing an easy target localization. The system was implemented using an additional free hand ultrasound probe coupled with a localizer and CT fused imaging. It offers a simple and an economic solution to an easy HIFU target localization. This thesis demonstrates the utility and usability of robots for diagnosis and treatment of the tumor, in particular the combination of automatic positioning and cooperative control allows the surgeon and the robot to work in synergy. Further the work demonstrates the feasibility and the potentiality of the use of a mixed reality navigation system to facilitate the target localization and consequently to reduce the times of sittings, to increase the number of possible diagnosis/treatments and to decrease the risk of potential errors. The proposed solutions for the integration of robotics and image guidance in the overall oncologic workflow, take into account current available technologies, traditional clinical procedures and cost minimization

    Endoscopic and magnetic actuation for miniature lifesaving devices

    Get PDF

    Design and Development of a Reusable Component-based Architecture for Surgical Robotics

    Get PDF
    Robotics is a growing field that is reaching a wide variety of application areas. The employment of robots for the implementation of a task is not anymore a prerogative of certain branches of the industry. In fact, more and more frequently robots are utilized to support humans during the execution of an assignment and this requires a flexible system, able to adapt to the environment. Moreover, given the number of contexts in which robots are used, there is an increasing need for modular and reusable tools for the description of tasks. The robotic applications considered in this work are mainly related to robotic surgery, since minimally invasive surgery is a challenging field in which the employment of robots has enabled significant improvements in terms of quality of the procedures. This study provides a set of patterns aimed to the design and the development of a component-based software architecture for the description of a complex robotic task. The best practices illustrated in this work are built on the concept of separation of concerns and have been defined to promote the creation of a reusable framework of components for the robotics. The proposed patterns are first introduced and then applied to different case studies to demonstrate their adaptability to describe a complex robotics task in different application domains

    Magnetic Medical Capsule Robots

    Get PDF

    State-based Safety of Component-based Medical and Surgical Robot Systems

    Get PDF
    Safety has not received sufficient attention in the medical robotics community despite a consensus of its paramount importance and the pioneering work in the early 90s. Partly because of its emergent and non-functional characteristics, it is challenging to capture and represent the design of safety features in a consistent, structured manner. In addition, significant engineering efforts are required in practice when designing and developing medical robot systems with safety. Still, academic researchers in medical robotics have to deal with safety to perform clinical studies. This dissertation presents the concept, model and architecture to reformulate safety as a visible, reusable, and verifiable property, rather than an embedded, hard-to-reuse, and hard-to-test property that is tightly coupled with the system. The concept enables reuse and structured understanding of the design of safety features, and the model allows the system designers to explicitly define and capture the run-time status of component-based systems with support for error propagation. The architecture leverages the benefits of the concept and the model by decomposing safety features into reusable mechanisms and configurable specifications. We show the concept and feasibility of the proposed methods by building an open source framework that aims to facilitate research and development of safety systems of medical robots. Using the cisst component-based framework, we empirically evaluate the proposed methods by applying the developed framework to two research systems -- one based on a commercial robot system for orthopedic surgery and another robot soon to be clinically applied for manipulation of flexible endoscopes
    corecore