2,441 research outputs found

    The application of active controls technology to a generic hypersonic aircraft configuration

    Get PDF
    Analytical methods are described for the prediction of aerothermoelastic stability of hypersonic aircraft including active control systems. Thermal loads due to aerodynamic heating were applied to the finite element model of the aircraft structure and the thermal effects on flutter were determined. An iterative static aeroelastic trim analysis procedure was developed including thermal effects. And active control technology was assessed for flutter suppression, ride quality improvement, and gust load alleviation to overcome any potential adverse aeroelastic stability or response problems due to aerodynamic heating. A generic hypersonic aircraft configuration was selected which incorporates wing flaps, ailerons, and all moveable fins to be used for active control purposes. The active control system would use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces for improved structural dynamic response as the aircraft encounters atmospheric turbulence

    Development of an Aeroservoelastic Model for Gust Load Alleviation of the NASA Common Research Model Wind Tunnel Experiment

    Get PDF
    As aircraft move to using composite materials as their primary structure they become lighter and more flexible as well. This presents some significant challenges in association with gust load alleviation. In this paper we develop an aeroservoelastic model for use in developing controllers that utilize distributed control surfaces for active gust load alleviation in a set of wind tunnel experiments. The model is based on an preexisting aeroelastic wing tunnel model and compares the baseline functionality to it. We also provide simple full state feedback simulations for the model

    Applications of structural optimization methods to fixed-wing aircraft and spacecraft in the 1980s

    Get PDF
    This report is the summary of a technical survey on the applications of structural optimization in the U.S. aerospace industry through the 1980s. Since applications to rotary wing aircraft will be covered by other literature, applications to fixed-wing aircraft and spacecraft were considered. It became clear that very significant progress has been made during this decade, indicating this technology is about to become one of the practical tools in computer aided structural design

    Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    Get PDF
    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface

    Loads and Aeroelasticity Division research and technology accomplishments for FY 1984 and plans for FY 1985

    Get PDF
    The loads and aeroelasticity divisions research accomplishments are presented. The work under each branch or technical area, described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest

    Optimal design of an aeroelastic wing structure with seamless control surfaces

    Get PDF
    This article presents an investigation into the concept and optimal design of a lightweight seamless aeroelastic wing (SAW) structure for small air vehicles. Attention has been first focused on the design of a hingeless flexible trailing edge (TE) control surface. Two innovative design features have been created in the SAW TE section: an open sliding TE and a curved beam and disc actuation mechanism. This type of actuated TE section allows for the SAW having a camber change in a desirable shape and minimum control power demand. This design concept has been simulated numerically and demonstrated by a test model. For a small air vehicle of large sweep back wing, it is noted that significant structural weight saving can be achieved. However, further weight saving is mainly restricted by the aeroelastic stability and minimum number of carbon/epoxy plies in a symmetric layup rather than the structural strength. Therefore, subsequent effort was made to optimize the primary wing box structure. The results show that an initial structural weight can be reduced significantly under the strength criterion. The resulting reduction of the wing box stiffness and aeroelastic stability and control effectiveness can be improved by applying the aeroelastic tailoring. Because of the large swept angle and resulting lightweight and highly flexible SAW, geometrical non-linearity and large bending-torsion aeroelastic coupling have been considered in the analysis

    Passive Aeroelastic Tailoring

    Get PDF
    The Passive Aeroelastic Tailoring (PAT) project was tasked with investigating novel methods to achieve passive aeroelastic tailoring on high aspect ratio wings. The goal of the project was to identify structural designs or topologies that can improve performance and/or reduce structural weight for high-aspect ratio wings. This project considered two unique approaches, which were pursued in parallel: through-thickness topology optimization and composite tow-steering

    Multi-Objective Flight Control for Ride Quality Improvement for Flexible Aircraft

    Get PDF
    This paper describes a multi-objective flight control system design for ride quality improvement for flexible aircraft using multi-functional distributed flight control surfaces. A multi-objective optimal control design is developed to provide an acceleration suppression capability in conjunction with a gust load alleviation in order to provide ride quality improvement. A gust estimation is developed to estimate the gust load using a recursive least-squares algorithm. A ride quality assessment study is conducted using a flexible wing generic transport model. Six different flight control designs are implemented. The study shows that ride quality can be significantly improved with the acceleration suppression control

    Static and dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration

    Get PDF
    This work-in-progress presentation describes an ongoing research activity at the NASA Langley Research Center to develop analytical methods for the prediction of aerothermoelastic stability of hypersonic aircraft including active control systems. The objectives of this research include application of aerothermal loads to the structural finite element model, determination of the thermal effects on flutter, and assessment of active controls technology applied to overcome any potential adverse aeroelastic stability or response problems due to aerodynamic heating- namely flutter suppression and ride quality improvement. For this study, a generic hypersonic aircraft configuration was selected which incorporates wing flaps, ailerons and all-moveable fins to be used for active control purposes. The active control systems would use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces for improved structural dynamic response as the aircraft encounters atmospheric turbulence
    corecore