2 research outputs found

    Systematic review of features for co‐simulating security incidents in Cyber‐Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS) and Internet-of-Things (IoT) plus energy are the enabling technology of modern power systems also known as the Smart Grid (SG). A SG may consist of thousands of interconnected components communicating and exchanging data across layers that stretch beyond technical capabilities, for instance, markets and customer interactions. Cyber-physical security is a major source of concern due to the high reliance of the SG on Information and Communication Technologies (ICT) and their widespread use. Addressing security requires developing modeling and simulation tools that approximate and replicate adversarial behavior in the SG. These tools have in fact two simulators, one handling continuous power flows and another for capturing the discrete behavior when communicating across CPS or IoT components. The technique of composing two models of computation in a global simulation of these coupled systems is called co-simulation. Although there are many frameworks and tools for co-simulation, the set of features for modeling cyber-physical security incidents in the SG lacks thorough understanding. We present a systematic review of features and tools for co-simulating these concerns in CPS. We also highlight and discuss research gaps with respect to the most used tools in industry and academia and comment on their relevant features

    Developing Cyber-Physical Experimental Capabilities for the Security Analysis of the Future Smart Grid

    No full text
    Abstract—During the evolution of today’s power grid to a Smart Grid it is expected that IP-based communication protocols including Supervisory Control And Data Acquisition (SCADA) systems, will form the basis of communications architecture for substation and distribution automation, advanced metering and home area networking applications. However, this will lead to many Smart Grid security challenges- a forecast that is supported by the vulnerability of current SCADA systems. In this paper we examine how our experimental framework that has been developed for the modeling and simulation of local power plants can be extended and efficiently used for the study of complex wide area environments such as the future Smart Grid. We show that our framework is flexible enough to be easily extended with components for satisfying the requirements of a complex environment as the future Smart Grid. The main contribution of the paper is that it proposes a framework for experimenting with the Smart Grid that can be used by researchers to recreate an experimentation environment for measuring and understanding the consequences of cyber attacks on the Smart Grid. The paper also presents the study of a cyber attack involving compromised control hardware and the IEEE 9-bus system. The results confirm that we can experimentally recreate and study oscillations in the power grid caused by adversaries that attack the system through its IP-based control subsystem. Index Terms—Cyber-physical, security, experimentation, framework, Smart Grid
    corecore