759 research outputs found

    Developing an application based on OpenFlow to enhance mobile IP networks

    Full text link
    Mobile Internet Protocol (IP) has been developed to maintain permanent IP addresses for mobile users while they are moving from one point to another where the Mobile Terminal (MT) device will have two IP addresses: a static home address and a care-of address which will be changed and re-attached at each point of the movement of the MT. However, a location update message is required to be sent to the home agent for each new connection. This will potentially increase the handoff latency and leads to high load on the global Internet. This paper presents the concepts and the challenges of Mobile IP networks and then proposes the use of OpenFlow approach as an alternate transport mechanism to perform routing and to provide network connectivity for Mobile IP networks. The proposed application determines calculations and reroutes the subsequent packets. OpenFlow aims to optimize routing path and handoff performance by using controller's application and exchanges controllers' information. © 2013 IEEE

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Optimization of the OpenFlow Controller in Wireless Environments for Enhancing Mobility

    Full text link
    OpenRoads or OpenFlow Wireless is an open-source platform for deploying an innovative and realistic strategy for different services in wireless networks. It provides a wireless extension for OpenFlow. It is developed to support existing Wireless Local Area Networks (WLANs) and Worldwide Interoperability for Microwave Access (WiMAX) networks. It can provide several mobility managers and run them concurrently in the network including hard handover, informed handover, n-casting and Hoolock. However, the provided mobility support for flow-based routing, where flows of one source taking different paths through multiple wireless access points or base stations, is not simple and hard to be deployed in the traditional routing algorithms. This paper proposes an intelligent mobility enhancement control and then develops an algorithm to decide which neighbor switches need to be selected for the installation of new flow entries and to allocate the appropriate idle-timeout for the selected switches. The proposed approach provides a simple solution to solve the user mobility problem in wireless OpenFlow environments which can handle the fast migration of user addresses (e.g. IP addresses) between several wireless access points and base stations. This approach leads to improvement in the end users' experience

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    corecore