139,036 research outputs found

    A Process Framework for Semantics-aware Tourism Information Systems

    Get PDF
    The growing sophistication of user requirements in tourism due to the advent of new technologies such as the Semantic Web and mobile computing has imposed new possibilities for improved intelligence in Tourism Information Systems (TIS). Traditional software engineering and web engineering approaches cannot suffice, hence the need to find new product development approaches that would sufficiently enable the next generation of TIS. The next generation of TIS are expected among other things to: enable semantics-based information processing, exhibit natural language capabilities, facilitate inter-organization exchange of information in a seamless way, and evolve proactively in tandem with dynamic user requirements. In this paper, a product development approach called Product Line for Ontology-based Semantics-Aware Tourism Information Systems (PLOSATIS) which is a novel hybridization of software product line engineering, and Semantic Web engineering concepts is proposed. PLOSATIS is presented as potentially effective, predictable and amenable to software process improvement initiatives

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities

    A compiler extension for parallelizing arrays automatically on the cell heterogeneous processor

    Get PDF
    This paper describes the approaches taken to extend an array programming language compiler using a Virtual SIMD Machine (VSM) model for parallelizing array operations on Cell Broadband Engine heterogeneous machine. This development is part of ongoing work at the University of Glasgow for developing array compilers that are beneficial for applications in many areas such as graphics, multimedia, image processing and scientific computation. Our extended compiler, which is built upon the VSM interface, eases the parallelization processes by allowing automatic parallelisation without the need for any annotations or process directives. The preliminary results demonstrate significant improvement especially on data-intensive applications

    Computer-Aided System for Wind Turbine Data Analysis

    Get PDF
    Context: The current work on wind turbine failure detection focuses on researching suitable signal processing algorithms and developing efficient diagnosis algorithms. The laboratory research would involve large and complex data, and it can be a daunting task. Aims: To develop a Computer-Aided system for assisting experts to conduct an efficient laboratory research on wind turbine data analysis. System is expected to provide data visualization, data manipulation, massive data processing and wind turbine failure detection. Method: 50G off-line SCADA data and 4 confident diagnosis algorithms were used in this project. Apart from the instructions from supervisor, this project also gained help from two experts from Engineering Department. Java and Microsoft SQL database were used to develop the system. Results: Data visualization provided 6 different charting solutions and together with robust user interactions. 4 failure diagnosis solutions and data manipulations were provided in the system. In addition, dedicated database server and Matlab API with Java RMI were used to resolve the massive data processing problem. Conclusions: Almost all of the deliverables were completed. Friendly GUI and useful functionalities make user feel more comfortable. The final product does enable experts to conduct an efficient laboratory research. The end of this project also gave some potential extensions of the system

    A NASA family of minicomputer systems, Appendix A

    Get PDF
    This investigation was undertaken to establish sufficient specifications, or standards, for minicomputer hardware and software to provide NASA with realizable economics in quantity purchases, interchangeability of minicomputers, software, storage and peripherals, and a uniformly high quality. The standards will define minicomputer system component types, each specialized to its intended NASA application, in as many levels of capacity as required

    IMAGINE Final Report

    No full text

    Modular digital holographic fringe data processing system

    Get PDF
    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented
    corecore