72 research outputs found

    The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    Get PDF
    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success

    Autoplot: A browser for scientific data on the web

    Full text link
    Autoplot is software developed for the Virtual Observatories in Heliophysics to provide intelligent and automated plotting capabilities for many typical data products that are stored in a variety of file formats or databases. Autoplot has proven to be a flexible tool for exploring, accessing, and viewing data resources as typically found on the web, usually in the form of a directory containing data files with multiple parameters contained in each file. Data from a data source is abstracted into a common internal data model called QDataSet. Autoplot is built from individually useful components, and can be extended and reused to create specialized data handling and analysis applications and is being used in a variety of science visualization and analysis applications. Although originally developed for viewing heliophysics-related time series and spectrograms, its flexible and generic data representation model makes it potentially useful for the Earth sciences.Comment: 16 page

    From Science to e-Science to Semantic e-Science: A Heliosphysics Case Study

    Get PDF
    The past few years have witnessed unparalleled efforts to make scientific data web accessible. The Semantic Web has proven invaluable in this effort; however, much of the literature is devoted to system design, ontology creation, and trials and tribulations of current technologies. In order to fully develop the nascent field of Semantic e-Science we must also evaluate systems in real-world settings. We describe a case study within the field of Heliophysics and provide a comparison of the evolutionary stages of data discovery, from manual to semantically enable. We describe the socio-technical implications of moving toward automated and intelligent data discovery. In doing so, we highlight how this process enhances what is currently being done manually in various scientific disciplines. Our case study illustrates that Semantic e-Science is more than just semantic search. The integration of search with web services, relational databases, and other cyberinfrastructure is a central tenet of our case study and one that we believe has applicability as a generalized research area within Semantic e-Science. This case study illustrates a specific example of the benefits, and limitations, of semantically replicating data discovery. We show examples of significant reductions in time and effort enable by Semantic e-Science; yet, we argue that a "complete" solution requires integrating semantic search with other research areas such as data provenance and web services

    High-level Understanding of Visual Content in Learning Materials through Graph Neural Networks

    Get PDF

    The space physics environment data analysis system (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.Published versio

    Final report of design workshop : (10.-15.7.2000)

    Get PDF
    This document is the final report of the first design workshop of the NeXus research group of the University of Stuttgart, held from 10th to 15th July 2000. It contains a basic description of the Nexus platform, which is an open, global infrastructure for mobile, spatially aware applications

    eScience and Informatics for international science programs

    Get PDF
    corecore