334 research outputs found

    Developing a Robust Acquisition System for Fringe Projection Profilometry

    Get PDF
    Since Fringe Projection Profilometry (FPP) is an intensity-based coding strategy, it is prone to improper optical setup arrangement, surface texture and reflectance, uneven illumination distribution, among others. These conditions introduce errors in phase retrieval which lead to an inaccurate 3-D reconstruction. In this paper, we describe a dynamic approach toward a robust FPP acquisition in challenging scenes and objects. Our aim is to acquire the best possible fringe pattern image by adjusting the object closer to an ideal system-object setup. We describe the software implementation of our method and the interface design using LabVIEW. Experimental results demonstrate that the proposed method greatly reduces sources of error in 3-D reconstruction. © Published under licence by IOP Publishing Ltd.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 538871552485 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASThis work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. Authors thank Dirección de Investigaciones, Universidad Tecnológica de Bolívar for the support. J. Pineda thanks Universidad Tecnológica de Bolívar for a Masters degree scholarship

    An INSPECT Measurement System for Moving Objects

    Get PDF
    published_or_final_versio

    Toward superfast three-dimensional optical metrology with digital micromirror device platforms

    Get PDF
    Decade-long research efforts toward superfast three-dimensional (3-D) shape measurement leveraging the digital micromirror device (DMD) platforms are summarized. Specifically, we will present the following technologies: (1) high-resolution real-time 3-D shape measurement technology that achieves 30 Hz simultaneous 3-D shape acquisition, reconstruction, and display with more than 300,000 points per frame; (2) superfast 3-D optical metrology technology that achieves 3-D measurement at a rate of tens of kilohertz utilizing the binary defocusing method we invented; and (3) the improvement of the binary defocusing technology for superfast and high-accuracy 3-D optical metrology using the DMD platforms. Both principles and experimental results are presented

    Real Time Structured Light and Applications

    Get PDF

    An illumination-invariant phase-shifting algorithm for three-dimensional profilometry

    Get PDF
    Image Processing: Machine Vision Applications V, Burlingame, California, USA, 22 January, 2012Uneven illumination is a common problem in real optical systems for machine vision applications, and it contributes significant errors when using phase-shifting algorithms (PSA) to reconstruct the surface of a moving object. Here, we propose an illumination-reflectivity-focus (IRF) model to characterize this uneven illumination effect on phase-measuring profilometry. With this model, we separate the illumination factor effectively, and then formulate the phase reconstruction as an optimization problem. To simplify the optimization process, we calibrate the uneven illumination distribution beforehand, and then use the calibrated illumination information during surface profilometry. After calibration, the degrees of freedom are reduced. Accordingly, we develop a novel illumination-invariant phase-shifting algorithm (II-PSA) to reconstruct the surface of a moving object under an uneven illumination environment. Experimental results show that the proposed algorithm can improve the reconstruction quality both visually and numerically. Therefore, using this IRF model and the corresponding II-PSA, not only can we handle uneven illumination in a real optical system with a large field of view (FOV), but we also develop a robust and efficient method for reconstructing the surface of a moving object. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).link_to_subscribed_fulltextpublished_or_final_versio

    Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction

    Get PDF
    Advanced electronic manufacturing requires the 3-D inspection of very small surfaces like the solder bumps on wafers for direct die-to-die bonding. Yet the microscopic size and highly specular and textureless nature of the surfaces make the task difficult. It is also demanded that the size of the entire inspection system be small so as to minimize restraint on the operation of the various moving parts involved in the manufacturing process. In this paper, we describe a new 3-D reconstruction mechanism for the task. The mechanism is based upon the well-known concept of structured-light projection, but adapted to a new configuration that owns a particularly small system size and operates in a different manner. Unlike the traditional mechanisms which involve an array of light sources that occupy a rather extended physical space, the proposed mechanism consists of only a single light source plus a binary grating for projecting binary pattern. To allow the projection at each position of the inspected surface to vary and form distinct binary code, the binary grating is shifted in space. In every shift, a separate image of the illuminated surface is taken. With the use of pattern projection, and of discrete coding instead of analog coding in the projection, issues like texture-absence, image saturation, and image noise of the inspected surfaces are much lessened. Experimental results on a variety of objects are presented to illustrate the effectiveness of this mechanism. © 2008 IEEE.published_or_final_versio

    State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]

    Get PDF
    This paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.Purdue Universit

    Fringe quality map for fringe projection profilometry in LabVIEW

    Get PDF
    The phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have been developed to handle phase unwrapping errors in two-dimensional regions. The presence of error-prone areas can be visualized during the acquisition stage avoiding the use of image processing strategies and sophisticated phase unwrapping algorithms, which in many cases represent high computational costs and long execution times. To help overcome these problems, we propose a Fringe Quality Map based on a phase residue analysis to estimate error-prone areas during acquisition. The software was fully implemented in LabVIEW, and we provide the software as supplementary material. Experimental results demonstrate that the proposed method estimates areas with poor contrast, which lead to unwrapping errors, as well as phase errors in a more complex 3D shape. © Sociedad Española de Óptica

    ALGORITHMS FOR THE DIGITAL PRESERVATION OF THE MORPHOLOGY OF SEMI FOSSILIZED PIECES THROUGH NON DESTRUCTIVE OPTICAL TECHNIQUES

    Get PDF
    "In this thesis, several eight-frame algorithms for their use in phase shifting profilometry and their application for the analysis of semi fossilized materials are presented. All algorithms are obtained from a set of two-frame algorithms and designed to compensate common errors such as phase shift detuning and bias errors. The processed images make it possible to obtain the distribution of height (topography) of the object, with the advantage that this type of structured light is ideal for retaining the intrinsic biological properties of fossils (this property could be especially useful in cases where it is crucial to obtain high quality images from biological samples that include sensitive molecules, as is the case with ancient DNA). In addition, because the availability of fossil samples is limited (fossilization is a rare phenomenon, thought to preserve only 1 to 5% of total biodiversity) and fossils preserve key biological information, it is essential to conserve as many morphological features as possible (e.g., teeth and mandibles for rodents). This work provides the tools to create a 3D database for the study of morphology of semi-fossilized specimens using an optical nondestructive testing technique. The implementation of protocols and computational algorithms developed in this study in conjunction with various optical methods can be used in studies of systematics, evolution, ecology, genetics and geographical distribution for various biological groups.
    corecore