1,092 research outputs found

    PlayeRank: data-driven performance evaluation and player ranking in soccer via a machine learning approach

    Full text link
    The problem of evaluating the performance of soccer players is attracting the interest of many companies and the scientific community, thanks to the availability of massive data capturing all the events generated during a match (e.g., tackles, passes, shots, etc.). Unfortunately, there is no consolidated and widely accepted metric for measuring performance quality in all of its facets. In this paper, we design and implement PlayeRank, a data-driven framework that offers a principled multi-dimensional and role-aware evaluation of the performance of soccer players. We build our framework by deploying a massive dataset of soccer-logs and consisting of millions of match events pertaining to four seasons of 18 prominent soccer competitions. By comparing PlayeRank to known algorithms for performance evaluation in soccer, and by exploiting a dataset of players' evaluations made by professional soccer scouts, we show that PlayeRank significantly outperforms the competitors. We also explore the ratings produced by {\sf PlayeRank} and discover interesting patterns about the nature of excellent performances and what distinguishes the top players from the others. At the end, we explore some applications of PlayeRank -- i.e. searching players and player versatility --- showing its flexibility and efficiency, which makes it worth to be used in the design of a scalable platform for soccer analytics

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Data-driven action-value functions for evaluating players in professional team sports

    Get PDF
    As more and larger event stream datasets for professional sports become available, there is growing interest in modeling the complex play dynamics to evaluate player performance. Among these models, a common player evaluation method is assigning values to player actions. Traditional action-values metrics, however, consider very limited game context and player information. Furthermore, they provide directly related to goals (e.g., shots), not all actions. Recent work has shown that reinforcement learning provided powerful methods for addressing quantifying the value of player actions in sports. This dissertation develops deep reinforcement learning (DRL) methods for estimating action values in sports. We make several contributions to DRL for sports. First, we develop neural network architectures that learn an action-value Q-function from sports events logs to estimate each team\u27s expected success given the current match context. Specifically, our architecture models the game history with a recurrent network and predicts the probability that a team scores the next goal. From the learned Q-values, we derive a Goal Impact Metric (GIM) for evaluating a player\u27s performance over a game season. We show that the resulting player rankings are consistent with standard player metrics and temporally consistent within and across seasons. Second, we address the interpretability of the learned Q-values. While neural networks provided accurate estimates, the black-box structure prohibits understanding the influence of different game features on the action values. To interpret the Q-function and understand the influence of game features on action values, we design an interpretable mimic learning framework for the DRL. The framework is based on a Linear Model U-Tree (LMUT) as a transparent mimic model, which facilitates extracting the function rules and computing the feature importance for action values. Third, we incorporate information about specific players into the action values, by introducing a deep player representation framework. In this framework, each player is assigned a latent feature vector called an embedding, with the property that statistically similar players are mapped to nearby embeddings. To compute embeddings that summarize the statistical information about players, we implement a Variational Recurrent Ladder Agent Encoder (VaRLAE) to learn a contextualized representation for when and how players are likely to act. We learn and evaluate deep Q-functions from event data for both ice hockey and soccer. These are challenging continuous-flow games where game context and medium-term consequences are crucial for properly assessing the impact of a player\u27s actions

    Integration of Forecasting, Scheduling, Machine Learning, and Efficiency Improvement Methods into the Sport Management Industry

    Get PDF
    Sport management is a complicated and economically impactful industry and involves many crucial decisions: such as which players to retain or release, how many concession vendors to add, how many fans to expect, what teams to schedule, and many others are made each offseason and changed frequently. The task of making such decisions effectively is difficult, but the process can be made easier using methods of industrial and systems engineering (ISE). Integrating methods such as forecasting, scheduling, machine learning, and efficiency improvement from ISE can be revolutionary in helping sports organizations and franchises be consistently successful. Research shows areas including player evaluation, analytics, fan attendance, stadium design, accurate scheduling, play prediction, player development, prevention of cheating, and others can be improved when ISE methods are used to target inefficient or wasteful areas
    corecore