38,785 research outputs found

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    Visions, Values, and Videos: Revisiting Envisionings in Service of UbiComp Design for the Home

    Get PDF
    UbiComp has been envisioned to bring about a future dominated by calm computing technologies making our everyday lives ever more convenient. Yet the same vision has also attracted criticism for encouraging a solitary and passive lifestyle. The aim of this paper is to explore and elaborate these tensions further by examining the human values surrounding future domestic UbiComp solutions. Drawing on envisioning and contravisioning, we probe members of the public (N=28) through the presentation and focus group discussion of two contrasting animated video scenarios, where one is inspired by "calm" and the other by "engaging" visions of future UbiComp technology. By analysing the reasoning of our participants, we identify and elaborate a number of relevant values involved in balancing the two perspectives. In conclusion, we articulate practically applicable takeaways in the form of a set of key design questions and challenges.Comment: DIS'20, July 6-10, 2020, Eindhoven, Netherland

    Disability-aware adaptive and personalised learning for students with multiple disabilities

    Get PDF
    Purpose The purpose of this paper is to address how virtual learning environments (VLEs) can be designed to include the needs of learners with multiple disabilities. Specifically, it employs AI to show how specific learning materials from a huge repository of learning materials can be recommended to learners with various disabilities. This is made possible through employing semantic web technology to model the learner and their needs. Design/methodology/approach The paper reviews personalised learning for students with disabilities, revealing the shortcomings of existing e-learning environments with respect to students with multiple disabilities. It then proceeds to show how the needs of a student with multiple disabilities can be analysed and then simple logical operators and knowledge-based rules used to personalise learning materials in order to meet the needs of such students. Findings It has been acknowledged in literature that designing for cases of multiple disabilities is difficult. This paper shows that existing learning environments do not consider the needs of students with multiple disabilities. As they are not flexibly designed and hence not adaptable, they cannot meet the needs of such students. Nevertheless, it is possible to anticipate that students with multiple disabilities would use learning environments, and then design learning environments to meet their needs. Practical implications This paper, by presenting various combination rules to present specific learning materials to students with multiple disabilities, lays the foundation for the design and development of learning environments that are inclusive of all learners, regardless of their abilities or disabilities. This could potentially stimulate designers of such systems to produce such inclusive environments. Hopefully, future learning environments will be adaptive enough to meet the needs of learners with multiple disabilities. Social implications This paper, by proposing a solution towards developing inclusive learning environments, is a step towards inclusion of students with multiple disabilities in VLEs. When these students are able to access these environments with little or no barrier, they will be included in the learning community and also make valuable contributions. Originality/value So far, no study has proposed a solution to the difficulties faced by students with multiple disabilities in existing learning environments. This study is the first to raise this issue and propose a solution to designing for multiple disabilities. This will hopefully encourage other researchers to delve into researching the educational needs of students with multiple disabilities

    Diverse perceptions of smart spaces

    No full text
    This is the era of smart technology and of ‘smart’ as a meme, so we have run three workshops to examine the ‘smart’ meme and the exploitation of smart environments. The literature relating to smart spaces focuses primarily on technologies and their capabilities. Our three workshops demonstrated that we require a stronger user focus if we are advantageously to exploit spaces ascribed as smart: we examined the concept of smartness from a variety of perspectives, in collaboration with a broad range of contributors. We have prepared this monograph mainly to report on the third workshop, held at Bournemouth University in April 2012, but do also consider the lessons learned from all three. We conclude with a roadmap for a fourth (and final) workshop, which is intended to emphasise the overarching importance of the humans using the spac

    In response to 'Celebrate citation: flipping the pedagogy of plagiarism in Qatar'

    Get PDF
    In her article (http://uobrep.openrepository.com/uobrep/handle/10547/335947) Molly McHarg makes several points that I agree with, particularly that for the majority of students the plagiarism is not deliberate but is due to a lack of understanding of how to reference correctly

    An introduction to learning technology in tertiary education in the UK.

    No full text
    Contents: 1. The Learning Technology Arena 2. The Learning Technology Community 3. Learning Technology Tools 4. Key issues and developments in the Learning Technology Field 5. Implementing Learning Technologies 6. Further Resource

    What children on the autism spectrum have to ‘say’ about using high-tech voice output communication aids (VOCAs) in an educational setting

    Get PDF
    This paper focuses on accessing the experiences of three boys who are on the autism spectrum to identify what using a voice output communication aid (VOCA), within a classroom setting, means to them. The methods used to identify the boys' perspectives are described and evaluated. Establishing these through direct methods of engagement proved problematic but working with parents and school staff as ‘expert guides’ provided a rich insight into what using a VOCA appeared to mean to the boys. The findings suggest that using a computer-based VOCA can be viewed by children with autism as a pleasurable and motivating activity. This technology also seems to offer the potential for a much broader developmental impact for these children than that currently recognised within the research literature
    • 

    corecore