197,811 research outputs found

    Developing Computational Biology

    Get PDF

    MACBenAbim: A Multi-platform Mobile Application for searching keyterms in Computational Biology and Bioinformatics

    Get PDF
    Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world. However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context

    Chaste: a test-driven approach to software development for biological modelling

    Get PDF
    Chaste (‘Cancer, heart and soft-tissue environment’) is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.\ud \ud Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling

    Development and validation of computational models of cellular interaction

    Get PDF
    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues

    An approach to evolving cell signaling networks in silico

    Get PDF
    Cell Signaling Networks(CSN) are complex bio-chemical networks which, through evolution, have become highly efficient for governing critical control processes such as immunological responses, cell cycle control or homeostasis. From a computational point of view, modeling Artificial Cell Signaling Networks (ACSNs) in silico may provide new ways to design computer systems which may have specialized application areas. To investigate these new opportunities, we review the key issues of modeling ACSNs identified as follows. We first present an analogy between analog and molecular computation. We discuss the application of evolutionary techniques to evolve biochemical networks for computational purposes. The potential roles of crosstalk in CSNs are then examined. Finally we present how artificial CSNs can be used to build robust real-time control systems. The research we are currently involved in is part of the multi disciplinary EU funded project, ESIGNET, with the central question of the study of the computational properties of CSNs by evolving them using methods from evolutionary computation, and to re-apply this understanding in developing new ways to model and predict real CSNs. This also complements the present requirements of Computational Systems Biology by providing new insights in micro-biology research

    Computational Biology

    Get PDF
    Computational biology is an interdisciplinary field that applies the techniques of computer science, applied mathematics, and statistics to address biological questions. OR is also interdisciplinary and applies the same mathematical and computational sciences, but to decision-making problems. Both focus on developing mathematical models and designing algorithms to solve them. Models in computational biology vary in their biological domain and can range from the interactions of genes and proteins to the relationships among organisms and species

    Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks

    Get PDF
    Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states
    corecore