1 research outputs found

    Étude des mĂ©canismes de dĂ©gradation de la mobilitĂ© sur les architectures FDSOI pour les noeuds technologiques avancĂ©s (<20nm)

    Get PDF
    To improve the MOSFET performances, it is necessary to understand the physical phenomena contributing to the apparent mobility of electrons and holes crossing the channel, and limiting the improvement obtained by reducing the channel length. Therefore, a precise study of transport using Monte Carlo simulations was performed. This semi-classical simulation method allows for solving the Boltzmann transport equation, taking into account the quasi-ballistic regime, phonon and Coulomb scattering, surface roughness, as well as the quantum confinement, by randomly generating electrons and their scattering events described by the laws of quantum mechanics.A simple mobility model has been established and validated by the simulations. It is based upon three important parameters: the long channel mobility, the access resistance, and ballistic resistance. This mobility model proved compatible with experimental results, suggesting that the access resistance is determining in the apparent mobility reduction.By the way, the ballistic transport contribution in the mobility was calculated by taking into account the quantum confinement accurately and the distribution functions of the different subbands, allowing for an improvement of Shur’s apparent mobility model, which underestimates (of about 50 Ω.”m) the ballistic resistance. The latter is lower than the access resistance but it could have an incidence on the ultimate devices.Keywords: MOSFET, FDSOI, mobility degradation, analytical model, contact resistance, ballistic, multi-subband Monte Carlo, simulation.Pour augmenter les performances des MOSFET, il est indispensable de comprendre les diffĂ©rents phĂ©nomĂšnes physiques qui dĂ©gradent la mobilitĂ© apparente des Ă©lectrons et trous traversant le canal et qui limitent l’amĂ©lioration obtenue par rĂ©duction de sa longueur. Pour cela, une Ă©tude prĂ©cise du transport par des simulations Monte-Carlo a Ă©tĂ© effectuĂ©e. Cette mĂ©thode de simulation semi-classique permet de rĂ©soudre l’équation de transport de Boltzmann en prenant en compte Ă  la fois le rĂ©gime quasi-balistique, les interactions avec les phonons, les impuretĂ©s ionisĂ©es, la rugositĂ© de surface, et le confinement quantique, par gĂ©nĂ©ration alĂ©atoire des Ă©lectrons et de leurs interactions, dĂ©crites selon les lois de la mĂ©canique quantique.Un modĂšle simple de mobilitĂ© a alors pu ĂȘtre Ă©tabli et validĂ© par les simulations. Il est basĂ© sur trois paramĂštres importants : la mobilitĂ© Ă  canal long, la rĂ©sistance d’accĂšs et la rĂ©sistance balistique. Ce modĂšle de mobilitĂ© s’est avĂ©rĂ© compatible avec des rĂ©sultats expĂ©rimentaux, ce qui suggĂšre que la rĂ©sistance d’accĂšs est dĂ©terminante dans la rĂ©duction de mobilitĂ© apparente.Par ailleurs, la contribution du transport balistique dans la mobilitĂ© a Ă©tĂ© calculĂ©e en tenant compte prĂ©cisĂ©ment du confinement quantique et des fonctions de distribution des diffĂ©rentes sous-bandes, ce qui a ainsi permis d’amĂ©liorer le modĂšle de mobilitĂ© apparente de Shur qui sous-estime (d’environ 50 Ω.”m) la rĂ©sistance balistique. Cette rĂ©sistance balistique est infĂ©rieure Ă  la rĂ©sistance d’accĂšs mais elle pourrait avoir une incidence sur les dispositifs ultimes
    corecore