31 research outputs found

    Towards a verified transformation from AADL to the formal component-based language FIACRE

    Get PDF
    International audienceDuring the last decade, aadl  is an emerging architecture description languages addressing the modeling of embedded systems. Several research projects have shown that aadl  concepts are well suited to the design of embedded systems. Moreover, aadl  has a precise execution model which has proved to be one key feature for effective early analysis. In this paper, we are concerned with the foundational aspects of the verification support for aadl. More precisely, we propose a verification toolchain for aadl  models through its transformation to the Fiacre language which is the pivot verification language of the TOPCASED project: high level models can be transformed to Fiacre  models and then model-checked. Then, we investigate how to prove the correctness of the transformation from AADL into Fiacre and present related elementary ingredients: the semantics of aadl  and Fiacre  subsets expressed in a common framework, namely timed transition systems. We also briefly discuss experimental validation of the work

    Formal VeriïŹcation of AADL models with Fiacre and Tina

    Get PDF
    9 pagesInternational audienceThis paper details works undertaken in the scope of the Spices project concerning the behavioral verification of AADL models. We give a high-level view of the tools involved and describe the successive transformations performed by our verification process. We also report on an experiment carried out in order to evaluate our framework and give the first experimental results obtained on real-size models. This demonstrator models a network protocol in charge of data communications between an airplane and ground stations. From this study we draw a set of conclusions about the integration of model-checking tools in an industrial development process

    Scheduling of a Cyber-Physical System Simulation

    Get PDF
    The work carried out in this Ph.D. thesis is part of a broader effort to automate industrial simulation systems. In the aeronautics industry, and more especially within Airbus, the historical application of simulation is pilot training. There are also more recent uses in the design of systems, as well as in the integration of these systems. These latter applications require a very high degree of representativeness, where historically the most important factor has been the pilot’s feeling. Systems are now divided into several subsystems that are designed, implemented and validated independently, in order to maintain their control despite the increase in their complexity, and the reduction in time-to-market. Airbus already has expertise in the simulation of these subsystems, as well as their integration into a simulation. This expertise is empirical; simulation specialists use the previous integrations schedulings and adapt it to a new integration. This is a process that can sometimes be time-consuming and can introduce errors. The current trends in the industry are towards flexible production methods, integration of logistics tools for tracking, use of simulation tools in production, as well as resources optimization. Products are increasingly iterations of older, improved products, and tests and simulations are increasingly integrated into their life cycles. Working empirically in an industry that requires flexibility is a constraint, and nowadays it is essential to facilitate the modification of simulations. The problem is, therefore, to set up methods and tools allowing a priori to generate representative simulation schedules. In order to solve this problem, we have developed a method to describe the elements of a simulation, as well as how this simulation can be executed, and functions to generate schedules. Subsequently, we implemented a tool to automate the scheduling search, based on heuristics. Finally, we tested and verified our method and tools in academic and industrial case studies

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners
    corecore