946 research outputs found

    Fast algorithms for computing with integer matrices: normal forms and applications

    Get PDF
    The focus of this thesis is on fundamental computational problems in exact integer linear algebra. Specifically, for a nonsingular integer input matrix A of dimension n, we consider problems such as linear system solving and computing integer matrix normal forms. Our goal is to design algorithms that have complexity about the same as the cost of multiplying together two integer matrices of the same dimension and size of entries as the input matrix A. If 2 ≤ ω ≤ 3 is a valid exponent for matrix multiplication, that is, if two n × n matrices can be multiplied in O(n^ω) basic operations from the domain of entries, then our target complexity is O(n^ω log ||A||) bit operations, up to some missing log n and loglog ||A|| factors. Here ||A|| denotes the largest entry in A in absolute value. The first contribution is solving the problem of computing the Smith normal form S of a nonsingular matrix A along with computing unimodular matrices U, V such that AV = US within our target cost. The algorithm we give is a Las Vegas probabilistic algorithm which means that we are able to verify the correctness of its output. The second contribution of the thesis is with respect to linear system solving. We present a deterministic reduction to matrix multiplication for the problem of linear system solving: given as input a nonsingular A and a vector b, solve the system Ax = b. The system solution x is computed within our target complexity

    Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix

    Get PDF
    Given a nonsingular n×nn \times n matrix of univariate polynomials over a field K\mathbb{K}, we give fast and deterministic algorithms to compute its determinant and its Hermite normal form. Our algorithms use O~(nω⌈s⌉)\widetilde{\mathcal{O}}(n^\omega \lceil s \rceil) operations in K\mathbb{K}, where ss is bounded from above by both the average of the degrees of the rows and that of the columns of the matrix and ω\omega is the exponent of matrix multiplication. The soft-OO notation indicates that logarithmic factors in the big-OO are omitted while the ceiling function indicates that the cost is O~(nω)\widetilde{\mathcal{O}}(n^\omega) when s=o(1)s = o(1). Our algorithms are based on a fast and deterministic triangularization method for computing the diagonal entries of the Hermite form of a nonsingular matrix.Comment: 34 pages, 3 algorithm

    Deterministic Polynomial Time Algorithms for Matrix Completion Problems

    Get PDF
    We present new deterministic algorithms for several cases of the maximum rank matrix completion problem (for short matrix completion), i.e. the problem of assigning values to the variables in a given symbolic matrix as to maximize the resulting matrix rank. Matrix completion belongs to the fundamental problems in computational complexity with numerous important algorithmic applications, among others, in computing dynamic transitive closures or multicast network codings (Harvey et al SODA 2005, Harvey et al SODA 2006). We design efficient deterministic algorithms for common generalizations of the results of Lovasz and Geelen on this problem by allowing linear functions in the entries of the input matrix such that the submatrices corresponding to each variable have rank one. We present also a deterministic polynomial time algorithm for finding the minimal number of generators of a given module structure given by matrices. We establish further several hardness results related to matrix algebras and modules. As a result we connect the classical problem of polynomial identity testing with checking surjectivity (or injectivity) between two given modules. One of the elements of our algorithm is a construction of a greedy algorithm for finding a maximum rank element in the more general setting of the problem. The proof methods used in this paper could be also of independent interest.Comment: 14 pages, preliminar

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    Fast Quantum Algorithm for Solving Multivariate Quadratic Equations

    Get PDF
    In August 2015 the cryptographic world was shaken by a sudden and surprising announcement by the US National Security Agency NSA concerning plans to transition to post-quantum algorithms. Since this announcement post-quantum cryptography has become a topic of primary interest for several standardization bodies. The transition from the currently deployed public-key algorithms to post-quantum algorithms has been found to be challenging in many aspects. In particular the problem of evaluating the quantum-bit security of such post-quantum cryptosystems remains vastly open. Of course this question is of primarily concern in the process of standardizing the post-quantum cryptosystems. In this paper we consider the quantum security of the problem of solving a system of {\it mm Boolean multivariate quadratic equations in nn variables} (\MQb); a central problem in post-quantum cryptography. When n=mn=m, under a natural algebraic assumption, we present a Las-Vegas quantum algorithm solving \MQb{} that requires the evaluation of, on average, O(20.462n)O(2^{0.462n}) quantum gates. To our knowledge this is the fastest algorithm for solving \MQb{}
    • …
    corecore