244 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied

    Performance analysis of a threshold-based dynamic TXOP scheme for intra-AC QoS in wireless LANs

    Get PDF
    PublishedJournal ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has been proposed for provisioning of differentiated Quality-of-Service (QoS) between various Access Categories (ACs), i.e., inter-AC QoS, in Wireless Local Area Networks (WLANs). However, the EDCA lacks the support of the intra-AC QoS provisioning, which is indispensable in practical WLANs since the network loads are always asymmetric between traffic flows of ACs with the same priority. To address the intra-AC QoS issue, this paper proposes a Threshold-Based Dynamic Transmission Opportunity (TBD-TXOP) scheme which sets the TXOP limits adaptive to the current status of the transmission queue based on the pre-setting threshold. An analytical model is further developed to evaluate the QoS performance of this scheme in terms of throughput, end-to-end delay, and frame loss probability. NS-2 simulation experiments validate the accuracy of the proposed analytical model. The performance results demonstrate the efficacy of TBD-TXOP for the intra-AC QoS differentiation. © 2013 Elsevier B.V. All rights reserved

    A fair access mechanism based on TXOP in IEEE 802.11e wireless networks

    Get PDF
    IEEE 802.11e is an extension of IEEE 802.11 that provides Quality of Service (QoS) for the applications with different service requirements. This standard makes use of several parameters such as contention window; inter frame space time and transmission opportunity to create service differentiation in the network. Transmission opportunity (TXOP), that is the focus point of this paper, is the time interval, during which a station is allowed to transmit packets without any contention. As the fixed amounts of TXOPs are allocated to different stations, unfairness appears in the network. And when users with different data rates exist, IEEE 802.11e WLANs face the lack of fairness in the network. Because the higher data rate stations transfer more data than the lower rate ones. Several mechanisms have been proposed to solve this problem by generating new TXOPs adaptive to the network's traffic condition. In this paper, some proposed mechanisms are evaluated and according to their evaluated strengths and weaknesses, a new mechanism is proposed for TXOP determination in IEEE 802.11e wireless networks. Our new algorithm considers data rate, channel error rate and data packet lengths to calculate adaptive TXOPs for the stations. The simulation results show that the proposed algorithm leads to better fairness and also higher throughput and lower delays in the network.
    • …
    corecore