4,692 research outputs found

    Variational Downscaling, Fusion and Assimilation of Hydrometeorological States via Regularized Estimation

    Full text link
    Improved estimation of hydrometeorological states from down-sampled observations and background model forecasts in a noisy environment, has been a subject of growing research in the past decades. Here, we introduce a unified framework that ties together the problems of downscaling, data fusion and data assimilation as ill-posed inverse problems. This framework seeks solutions beyond the classic least squares estimation paradigms by imposing proper regularization, which are constraints consistent with the degree of smoothness and probabilistic structure of the underlying state. We review relevant regularization methods in derivative space and extend classic formulations of the aforementioned problems with particular emphasis on hydrologic and atmospheric applications. Informed by the statistical characteristics of the state variable of interest, the central results of the paper suggest that proper regularization can lead to a more accurate and stable recovery of the true state and hence more skillful forecasts. In particular, using the Tikhonov and Huber regularization in the derivative space, the promise of the proposed framework is demonstrated in static downscaling and fusion of synthetic multi-sensor precipitation data, while a data assimilation numerical experiment is presented using the heat equation in a variational setting

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Convergence rates of Kernel Conjugate Gradient for random design regression

    Full text link
    We prove statistical rates of convergence for kernel-based least squares regression from i.i.d. data using a conjugate gradient algorithm, where regularization against overfitting is obtained by early stopping. This method is related to Kernel Partial Least Squares, a regression method that combines supervised dimensionality reduction with least squares projection. Following the setting introduced in earlier related literature, we study so-called "fast convergence rates" depending on the regularity of the target regression function (measured by a source condition in terms of the kernel integral operator) and on the effective dimensionality of the data mapped into the kernel space. We obtain upper bounds, essentially matching known minimax lower bounds, for the L2\mathcal{L}^2 (prediction) norm as well as for the stronger Hilbert norm, if the true regression function belongs to the reproducing kernel Hilbert space. If the latter assumption is not fulfilled, we obtain similar convergence rates for appropriate norms, provided additional unlabeled data are available

    Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces

    Get PDF
    In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral-regularized algorithms, including ridge regression, principal component analysis, and gradient methods. We prove optimal, high-probability convergence results in terms of variants of norms for the studied algorithms, considering a capacity assumption on the hypothesis space and a general source condition on the target function. Consequently, we obtain almost sure convergence results with optimal rates. Our results improve and generalize previous results, filling a theoretical gap for the non-attainable cases

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Sharp analysis of low-rank kernel matrix approximations

    Get PDF
    We consider supervised learning problems within the positive-definite kernel framework, such as kernel ridge regression, kernel logistic regression or the support vector machine. With kernels leading to infinite-dimensional feature spaces, a common practical limiting difficulty is the necessity of computing the kernel matrix, which most frequently leads to algorithms with running time at least quadratic in the number of observations n, i.e., O(n^2). Low-rank approximations of the kernel matrix are often considered as they allow the reduction of running time complexities to O(p^2 n), where p is the rank of the approximation. The practicality of such methods thus depends on the required rank p. In this paper, we show that in the context of kernel ridge regression, for approximations based on a random subset of columns of the original kernel matrix, the rank p may be chosen to be linear in the degrees of freedom associated with the problem, a quantity which is classically used in the statistical analysis of such methods, and is often seen as the implicit number of parameters of non-parametric estimators. This result enables simple algorithms that have sub-quadratic running time complexity, but provably exhibit the same predictive performance than existing algorithms, for any given problem instance, and not only for worst-case situations

    Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations

    Full text link
    In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantification of the random incompressible two-phase Navier-Stokes equations. Our approach is non-intrusive and we use the existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase Navier-Stokes equation for each given realization. We are able to empirically show that the resulting kernel-based stochastic collocation is highly competitive in this setting and even outperforms some other standard methods
    • 

    corecore