1,310 research outputs found

    Towards a complexity theory for the congested clique

    Full text link
    The congested clique model of distributed computing has been receiving attention as a model for densely connected distributed systems. While there has been significant progress on the side of upper bounds, we have very little in terms of lower bounds for the congested clique; indeed, it is now know that proving explicit congested clique lower bounds is as difficult as proving circuit lower bounds. In this work, we use various more traditional complexity-theoretic tools to build a clearer picture of the complexity landscape of the congested clique: -- Nondeterminism and beyond: We introduce the nondeterministic congested clique model (analogous to NP) and show that there is a natural canonical problem family that captures all problems solvable in constant time with nondeterministic algorithms. We further generalise these notions by introducing the constant-round decision hierarchy (analogous to the polynomial hierarchy). -- Non-constructive lower bounds: We lift the prior non-uniform counting arguments to a general technique for proving non-constructive uniform lower bounds for the congested clique. In particular, we prove a time hierarchy theorem for the congested clique, showing that there are decision problems of essentially all complexities, both in the deterministic and nondeterministic settings. -- Fine-grained complexity: We map out relationships between various natural problems in the congested clique model, arguing that a reduction-based complexity theory currently gives us a fairly good picture of the complexity landscape of the congested clique

    Max flow vitality in general and stst-planar graphs

    Full text link
    The \emph{vitality} of an arc/node of a graph with respect to the maximum flow between two fixed nodes ss and tt is defined as the reduction of the maximum flow caused by the removal of that arc/node. In this paper we address the issue of determining the vitality of arcs and/or nodes for the maximum flow problem. We show how to compute the vitality of all arcs in a general undirected graph by solving only 2(n−1)2(n-1) max flow instances and, In stst-planar graphs (directed or undirected) we show how to compute the vitality of all arcs and all nodes in O(n)O(n) worst-case time. Moreover, after determining the vitality of arcs and/or nodes, and given a planar embedding of the graph, we can determine the vitality of a `contiguous' set of arcs/nodes in time proportional to the size of the set.Comment: 12 pages, 3 figure

    A class of pairwise models for epidemic dynamics on weighted networks

    Get PDF
    In this paper, we study the SISSIS (susceptible-infected-susceptible) and SIRSIR (susceptible-infected-removed) epidemic models on undirected, weighted networks by deriving pairwise-type approximate models coupled with individual-based network simulation. Two different types of theoretical/synthetic weighted network models are considered. Both models start from non-weighted networks with fixed topology followed by the allocation of link weights in either (i) random or (ii) fixed/deterministic way. The pairwise models are formulated for a general discrete distribution of weights, and these models are then used in conjunction with network simulation to evaluate the impact of different weight distributions on epidemic threshold and dynamics in general. For the SIRSIR dynamics, the basic reproductive ratio R0R_0 is computed, and we show that (i) for both network models R0R_{0} is maximised if all weights are equal, and (ii) when the two models are equally matched, the networks with a random weight distribution give rise to a higher R0R_0 value. The models are also used to explore the agreement between the pairwise and simulation models for different parameter combinations

    Cooperation through social influence

    Get PDF
    We consider a simple and altruistic multiagent system in which the agents are eager to perform a collective task but where their real engagement depends on the willingness to perform the task of other influential agents. We model this scenario by an influence game, a cooperative simple game in which a team (or coalition) of players succeeds if it is able to convince enough agents to participate in the task (to vote in favor of a decision). We take the linear threshold model as the influence model. We show first the expressiveness of influence games showing that they capture the class of simple games. Then we characterize the computational complexity of various problems on influence games, including measures (length and width), values (Shapley-Shubik and Banzhaf) and properties (of teams and players). Finally, we analyze those problems for some particular extremal cases, with respect to the propagation of influence, showing tighter complexity characterizations.Peer ReviewedPostprint (author’s final draft
    • …
    corecore