51 research outputs found

    Deterministic, Strategyproof, and Fair Cake Cutting

    Full text link
    We study the classic cake cutting problem from a mechanism design perspective, in particular focusing on deterministic mechanisms that are strategyproof and fair. We begin by looking at mechanisms that are non-wasteful and primarily show that for even the restricted class of piecewise constant valuations there exists no direct-revelation mechanism that is strategyproof and even approximately proportional. Subsequently, we remove the non-wasteful constraint and show another impossibility result stating that there is no strategyproof and approximately proportional direct-revelation mechanism that outputs contiguous allocations, again, for even the restricted class of piecewise constant valuations. In addition to the above results, we also present some negative results when considering an approximate notion of strategyproofness, show a connection between direct-revelation mechanisms and mechanisms in the Robertson-Webb model when agents have piecewise constant valuations, and finally also present a (minor) modification to the well-known Even-Paz algorithm that has better incentive-compatible properties for the cases when there are two or three agents.Comment: A shorter version of this paper will appear at IJCAI 201

    Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations

    Full text link
    Cake cutting is one of the most fundamental settings in fair division and mechanism design without money. In this paper, we consider different levels of three fundamental goals in cake cutting: fairness, Pareto optimality, and strategyproofness. In particular, we present robust versions of envy-freeness and proportionality that are not only stronger than their standard counter-parts but also have less information requirements. We then focus on cake cutting with piecewise constant valuations and present three desirable algorithms: CCEA (Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship). CCEA is polynomial-time, robust envy-free, and non-wasteful. It relies on parametric network flows and recent generalizations of the probabilistic serial algorithm. For the subdomain of piecewise uniform valuations, we show that it is also group-strategyproof. Then, we show that there exists an algorithm (MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal. MEA is based on computing a market-based equilibrium via a convex program and relies on the results of Reijnierse and Potters [24] and Devanur et al. [15]. Moreover, we show that MEA and CCEA are equivalent to mechanism 1 of Chen et. al. [12] for piecewise uniform valuations. We then present an algorithm CSD and a way to implement it via randomization that satisfies strategyproofness in expectation, robust proportionality, and unanimity for piecewise constant valuations. For the case of two agents, it is robust envy-free, robust proportional, strategyproof, and polynomial-time. Many of our results extend to more general settings in cake cutting that allow for variable claims and initial endowments. We also show a few impossibility results to complement our algorithms.Comment: 39 page

    The Incentive Guarantees Behind Nash Welfare in Divisible Resources Allocation

    Full text link
    We study the problem of allocating divisible resources among nn agents, hopefully in a fair and efficient manner. With the presence of strategic agents, additional incentive guarantees are also necessary, and the problem of designing fair and efficient mechanisms becomes much less tractable. While the maximum Nash welfare (MNW) mechanism has been proven to be prominent by providing desirable fairness and efficiency guarantees as well as other intuitive properties, no incentive property is known for it. We show a surprising result that, when agents have piecewise constant value density functions, the incentive ratio of the MNW mechanism is 22 for cake cutting, where the incentive ratio of a mechanism is defined as the ratio between the largest possible utility that an agent can gain by manipulation and his utility in honest behavior. Remarkably, this result holds even without the free disposal assumption, which is hard to get rid of in the design of truthful cake cutting mechanisms. We also show that the MNW mechanism is group strategyproof when agents have piecewise uniform value density functions. Moreover, we show that, for cake cutting, the Partial Allocation (PA) mechanism proposed by Cole et al., which is truthful and 1/e1/e-MNW for homogeneous divisible items, has an incentive ratio between [e1/e,e][e^{1 / e}, e] and when randomization is allowed, can be turned to be truthful in expectation. Given two alternatives for a trade-off between incentive ratio and Nash welfare provided by the MNW and PA mechanisms, we establish an interpolation between them for both cake cutting and homogeneous divisible items. Finally, we study the existence of fair mechanisms with a low incentive ratio in the connected pieces setting. We show that any envy-free cake cutting mechanism with the connected pieces constraint has an incentive ratio of at least Ω(n)\Omega(n)

    Chore Cutting: Envy and Truth

    Full text link
    We study the fair division of divisible bad resources with strategic agents who can manipulate their private information to get a better allocation. Within certain constraints, we are particularly interested in whether truthful envy-free mechanisms exist over piecewise-constant valuations. We demonstrate that no deterministic truthful envy-free mechanism can exist in the connected-piece scenario, and the same impossibility result occurs for hungry agents. We also show that no deterministic, truthful dictatorship mechanism can satisfy the envy-free criterion, and the same result remains true for non-wasteful constraints rather than dictatorship. We further address several related problems and directions.Comment: arXiv admin note: text overlap with arXiv:2104.07387 by other author

    Multi-type Resource Allocation with Partial Preferences

    Full text link
    We propose multi-type probabilistic serial (MPS) and multi-type random priority (MRP) as extensions of the well known PS and RP mechanisms to the multi-type resource allocation problem (MTRA) with partial preferences. In our setting, there are multiple types of divisible items, and a group of agents who have partial order preferences over bundles consisting of one item of each type. We show that for the unrestricted domain of partial order preferences, no mechanism satisfies both sd-efficiency and sd-envy-freeness. Notwithstanding this impossibility result, our main message is positive: When agents' preferences are represented by acyclic CP-nets, MPS satisfies sd-efficiency, sd-envy-freeness, ordinal fairness, and upper invariance, while MRP satisfies ex-post-efficiency, sd-strategy-proofness, and upper invariance, recovering the properties of PS and RP
    • …
    corecore