
On the Trade-offs between Modeling Power and
Algorithmic Complexity

Chun Ye

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016



c©2016

Chun Ye

All Rights Reserved



ABSTRACT

On the Trade-offs between Modeling Power and
Algorithmic Complexity

Chun Ye

Mathematical modeling is a central component of operations research. Most of the academic research in

our field focuses on developing algorithmic tools for solving various mathematical problems arising from

our models. However, our procedure for selecting the best model to use in any particular application

is ad hoc. This dissertation seeks to rigorously quantify the trade-offs between various design criteria

in model construction through a series of case studies. The hope is that a better understanding of the

pros and cons of different models (for the same application) can guide and improve the model selection

process.

In this dissertation, we focus on two broad types of trade-offs. The first type arises naturally in

mechanism or market design, a discipline that focuses on developing optimization models for complex

multi-agent systems. Such systems may require satisfying multiple objectives that are potentially

in conflict with one another. Hence, finding a solution that simultaneously satisfies several design

requirements is challenging. The second type addresses the dynamics between model complexity and

computational tractability in the context of approximation algorithms for some discrete optimization

problems. The need to study this type of trade-offs is motivated by certain industry problems where

the goal is to obtain the best solution within a reasonable time frame. Hence, being able to quantify

and compare the degree of sub-optimality of the solution obtained under different models is helpful.

Chapters 2-5 of the dissertation focus on trade-offs of the first type and Chapters 6-7 the second type.



Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Trade-offs in Multi-Agent Optimization Models . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model Predictive Power versus Computational Tractability Trade-offs . . . . . . . . . . 8

2 A Note on the Assignment Problem with Uniform

Preferences 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Model and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 The Extended Probabilistic Serial Mechanism . . . . . . . . . . . . . . . . . . . . 17

2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Non-uniqueness of Ordinally Efficient and Envy Free Assignments . . . . . . . . 18

2.3.2 Impossibility Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valua-

tions 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Properties of Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Properties of Cake Cutting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Relationship between the Properties . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.5 The Free Disposal Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.6 The (Random) Assignment Problem and its Relationship to Cake Cutting . . . . 35

3.3 CCEA — Controlled Cake Eating Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 CCEA for Piecewise Uniform Valuations . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 MEA — Market Equilibrium Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 MEA for Piecewise Uniform Valuations . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 MCSD — Mixed Constrained Serial Dictatorship Algorithm . . . . . . . . . . . . . . . . 46

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 A Generalization of the Probabilistic Serial Mechanism and its Relationship to the

Leximin Allocation 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.4 The Generalized Leximin Allocation Vector . . . . . . . . . . . . . . . . . . . . . 60

4.2 Computing a Generalized Leximin Allocation . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 The Equivalence between the Generalized Probablistic Serial (GPS) Mechanism and the

Generalized Leximin Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Dichotomous Preference Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Full Preference Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Properties of the Generalized Leximin Mechanism . . . . . . . . . . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Approximately Optimal Mechanisms for Strategyproof Facility Location: Minimiz-

ing Lp Norm of Costs 76

ii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 The Median Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Randomized Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Mixing Dictatorships and Generalized Medians with the Optimal Location . . . 86

5.4.2 Optimality of the LRM Mechanism for 2 Agents . . . . . . . . . . . . . . . . . . 89

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Approximation Algorithms for the Incremental Knapsack Problem 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Scheduling Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Hardness Results for DIK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 A Constant Factor Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Improving the Approximation Guarantee . . . . . . . . . . . . . . . . . . . . . . 106

6.4 A PTAS for DIIK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Continuous Knapsack with Linear Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 Incremental Subset Sum with Linear Capacity . . . . . . . . . . . . . . . . . . . 115

6.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Piecewise Linear Capacity function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Capacity Constrained Assortment Optimization under the Markov Chain based

Choice Model 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.2 The Markov Chain Model and Notations . . . . . . . . . . . . . . . . . . . . . . 123

7.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

iii



7.2.1 APX-hardness for Cardinality Constraint with Uniform Prices . . . . . . . . . . 124

7.2.2 Totally-Unimodular Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Special Case: Uniform Price Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.1 Constant Factor Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Bad Examples for Arbitrary Prices . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Local Ratio based Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.1 High-Level Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.2 Instance Update in Local Ratio Algorithm . . . . . . . . . . . . . . . . . . . . . . 132

7.4.3 Structural Properties of the Updates . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4.4 Warm-up: Exact algorithm for the Unconstrained Problem . . . . . . . . . . . . 135

7.5 Cardinality Constrained Assortment Optimization for General Case . . . . . . . . . . . 137

7.5.1 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5.2 Analysis of the Local-Ratio Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 141

7.6 Capacity Constrained Assortment Optimization for General Case . . . . . . . . . . . . . 143

7.6.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.7 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.7.1 A Mixed-Integer Programming Formulation . . . . . . . . . . . . . . . . . . . . . 148

7.7.2 Settings Tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

I Bibliography 154

Bibliography 155

II Appendices 167

A Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valua-

tions 168

iv



B Approximately Optimal Mechanisms for Strategyproof Facility Location: Minimiz-

ing Lp Norm of Costs 177

B.1 An Alternative Definition of Individual Cost . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Omitted Proofs from Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.3 Alternative Assumptions in Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C Approximation Algorithms for the Incremental Knapsack Problem 185

C.1 Proof of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.2 Proof of Lemma C.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.3 Proof of Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.4 Proof of Proposition 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D Capacity Constrained Assortment Optimization under the Markov Chain based

Choice Model 191

D.1 Proofs of Theorems 7.1 and 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

D.2 Proof of Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D.3 Proof of Lemma 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D.4 Proof of Lemma 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.5 Application of Algorithm 7.3 to MNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.6 Algorithm 7.5 with Varying Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

v



List of Figures

3.1 Example of a cake cutting problem with piecewise constant value density functions. The

area with vertical lines is under the value density function of agent 1 and the area with

horizontal lines is under the value density function of agent 2. The valuation functions

of agent 1 are ordinally equivalent in the two subfigures above. . . . . . . . . . . . . . . 31

7.1 A bad example for Algorithm 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 A bad example for Algorithm 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Instance update in local-ratio algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 A tight example for Algorithm 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5 A tight example for Algorithm 7.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.1 Sketch of our construction for an instance on 4 items, where L1 = (1 � 2 � 3 � 4),

L2 = (1 � 3 � 4), L3 = (2 � 3), and L4 = (1 � 2 � 4). Note, for example, that the

state (2, 2) corresponds to the second item of L2, but actually corresponds to item 3. . . 194

vi



List of Tables

4.1 abbreviations: EF = envy-freeness, prop = proportionality, PE = Pareto efficiency, OE

= ordinal efficiency, GSP = group strategyproofness. . . . . . . . . . . . . . . . . . . . . 58

7.1 Performance of Algorithm 7.5 for Cardinality-Assort. . . . . . . . . . . . . . . . . . . . . . 150

7.2 Running time of Algorithm 7.5 and the MIP for setting 2. ** Denotes the cases when

we set a time limit of 2 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3 Comparison of Algorithm 7.5 with the best MIP solution when we allow the solver the

same time limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vii



Acknowledgments

We are nothing without the work of others our predecessors, others our

teachers, others our contemporaries. Even when, in the measure of our

inadequacy and our fullness, new insight and new order are created, we are

still nothing without others. Yet we are more.

J. Robert Oppenheimer

The past five years of graduate school at Columbia has been an incredible journey, one where I

was given (virtually) unlimited freedom to pursue my research interests, to read and evaluate other

scholarly works through a critical lens, and to craft and polish my own works of art. I am extremely

grateful for the countless intellectually simulating discussions I have had with, and the numerous sound

advice that I have received from my mentors and peers of the IEOR department. I would not have

gotten to where I am today without their inputs.

First and foremost, I would like to thank my advisor Prof. Jay Sethuraman. I often compare doing

research to waking up amid a cave, surrounded by darkness. The task is to learn our surroundings and

find our way out of the cave. The journey inside the cave is simultaneously exciting and intimidating.

On one hand, we get to explore realms of the unknown. On the other hand, the rugged path that we

choose to explore often leads us back to where we started. A great advisor, by analogy, serves as a

constant source of light, guiding our way through the unknown. In that regard, I am blessed to have

Jay as my advisor. I learned so much from the insightful discussions that we had over the past five

years. He taught me to sort through the seemingly chaotic darkness of the cave and see the clarity

within. His phenomenal ability to distill certain fundamental insights from complicated arguments in

order to make a proof simpler is an exemplary trait that I seek to develop as a researcher. His taste

for interesting problems made research a hobby rather than a chore for me. Beyond research, I also

benefited tremendously from Jay’s professional and personal advice. Jay is incredibly down-to-earth,

viii



kind, caring and encouraging. It is always a pleasure to watch and learn from his interactions with

other students and colleagues. Thank you, Jay, for being that source of light guiding me through

research and beyond.

Next, I would like to thank Prof. Daniel Bienstock and Prof. Vineet Goyal, whom I have worked

with extensively. Chapters 6 and 7 of this dissertation would not have existed without their mentorship.

Both Dan and Vineet took many hours out of their busy schedule to meet with me. I benefited

tremendously from their vast breadth of knowledge and learned a great deal from their phenomenal

work ethics. I would like to thank Dr. Haris Aziz for collaborating with me on the cake cutting

project, which became Chapter 4 of the dissertation. Despite the inconvenience of not being able to

work in person, Haris was always extremely quick and patient in responding to my emails, answering

my various questions, and sharing with me his thoughts and ideas. Moreover, I am indebted to Haris

for graciously agreeing to serve on my dissertation committee and for coming a long way to attend my

defense.

I am also grateful for the opportunity to learn from many wonderful instructors, including Prof.

Cliff Stein, Prof. Garud Iyengar, Prof. Adam Elmachtoub, Prof. Ciamac Moallemi, Prof. Assaf Zeevi,

Prof. Rocco Servedio, and Prof. Mihalis Yannakakis. They taught with extreme clarity and often

complemented the routine course material with their novel personal insights and perspective. More

importantly, they conveyed their excitement for their research areas through teaching.

My sincere gratitude also goes to the IEOR departmental staff, who worked relentlessly behind

the scenes to make our PhD experience seamless. In particular, I’d like to give big shout outs to

Jenny, Adina, Darbi, Krupa, Carmen, Jaya, Shi Yee, Liz, Mindi and Simon, for patiently answering

my questions, responding to my requests, and for giving their endless support to numerous student

seminars and CU INFORMS events.

My PhD life would not have been the same without the fellow students of IEOR. From the countless

white board discussions, to the random hallway chats, the planned and unplanned food excursions and

fun trips, to those embarrassing times at office hours and recitations when I could not answer a question,

to the delight on my students’ face when they finally get it, I cherish every moment. Duncan Watts, a

sociologist known for his work on small-world networks, once said that graduate school “can be a means

to an end... But it can also be an end in itself.” Thank you all for making the means matter so much

more important than the end! In particular, thank you Antoine Désir, for your positive attitude and

ix



your perseverance. Thank you Itai Feigenbaum, for your sense of humor and meticulousness. I had a

great time working with the both of you and learned many valuable lessons through our collaboration.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Mathematical modeling is a central component in the field of operations research. A model allows

us to capture the essence of a real world problem and map it to a mathematical framework. Once

such a framework is established, we then adapt the existing tools or develop new ones to tackle the

mathematical problem at hand. It is perhaps not an exaggeration to say that much of the academic

research in our field focuses on developing algorithmic tools for solving various mathematical problems

induced by our models. Consequently, we have established sophisticated methods and benchmarks

for evaluating the performance of our solution given a model. On the other hand, our procedure for

selecting the best model to use is more ad hoc. Models that are more powerful and accurate tend to

be more complex, making analysis more difficult. As a result, the standard approach is to circumvent

the intractability of a complex model by making some simplifying assumptions:

1. the simplified model still captures the essence of the problem, and

2. the assumptions made significantly simplify our analysis; it is often the case that an optimal

solution can be computed efficiently for the simplified model.

Unfortunately, these justifications are more philosophical than scientific, as we lack rigorous analysis

for comparing and contrasting the pros and cons of various models in order to determine which model

will yield the best solution in practice. It may well be the case that a suboptimal solution of a complex

model outperforms an optimal solution of a simple model in practice. This dissertation by no means

proposes a general methodology for model selection. Rather, it seeks to rigorously quantify the trade-

offs between various design criteria in model construction through a series of case studies, in order to
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better understand the pros and cons of different models and help guide the model selection process. Our

case studies include problems from fair division and resource allocation, facility location, knapsack, and

assortment optimization. In each case, we find the best computationally tractable algorithm between

a pair of simple and more sophisticated models, compare the quality of the solution with respect to a

given benchmark in each case. Since the given benchmark often becomes more demanding as model

complexity increases, we seek to quantify trade-offs by measuring the degree of “optimality loss” against

the benchmark when we go from a simple model to a more complex model.

With the abundance of data in the modern information age, the empirical performance of algo-

rithms constructed under different models can be evaluated and compared. Nonetheless, a rigorous

framework for model selection is not as well developed as finding a good solution to a given model.

Understanding the trade-offs across different models will help guide the model selection process. More-

over, establishing a rigorous framework for model selection will help discourage the common academic

practice of overloading a model with stylized assumptions so as to be able to obtain an optimal solution.

The trade-offs across various models that will be addressed in this dissertation fall into two cate-

gories. The first type of trade-offs arises naturally in mechanism or market design, a discipline that

focuses on developing optimization models for complex multi-agent systems. Such systems may re-

quire optimizing multiple objectives that are potentially in conflict with one another. Hence, finding

a solution that simultaneously satisfies several design requirements is challenging. The second type

of trade-offs addresses the dynamics between model complexity and computational tractability in the

context of approximation algorithms for some discrete optimization problems. The need to study this

type of trade-offs is motivated by certain industry problems where the goal is to obtain the best solu-

tion within a reasonable time frame, rather than computing the optimal solution. Hence, being able

to quantify and compare the degree of sub-optimality of our solution obtained under different models

is crucial for decision making. Chapters 2-5 of the dissertation focus on trade-offs of the first type and

Chapters 6-7 the second type.

1.1 Trade-offs in Multi-Agent Optimization Models

Nowadays, many models of consumer purchase behavior, competition or cooperation among different

firms, and algorithms for resource allocation inherently involve human actors. The nature of such
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problems often gives rise to multiple objectives: not only should we optimize the system performance

at the aggregate level, but we would also like to treat all participants of the system fairly. The

multi-objective algorithmic challenge is further complicated by the need to elicit valuable private

information from the participants of the system and use this information as inputs to our algorithm.

Eliciting truthful inputs is not straightforward when the participants’ objectives are not aligned with

the objective of the designer. Whenever potential incentive issues are not recognized and dealt with

by the designer, unintended consequences may arise.

Hence, the algorithmic challenge in these problems is the delicate balance between the need for

truthful input acquisition and optimization, where optimization means finding an efficient and fair allo-

cation. In such settings, the model complexity, in addition to operational constraints, is often captured

by preferential inputs. While a richer model allows for more modeling power, attempting to satisfy a

given set of efficiency, fairness, and truthfulness criteria simultaneously in such a model becomes more

challenging if not impossible. Any good algorithm aims to satisfy strong equity and efficiency proper-

ties must cater to agent preferences closely, making it in turn vulnerable to manipulation. One way

to avoid this impossibility is to assume an environment in which agents (and the designer) can make

or receive payments; allowing for payments introduces an extra lever that the designer can exploit.

There are many settings, however, in which such monetary compensations are either not possible or

are undesirable. For instance, selling one’s kidney is forbidden by law in many parts of the world,

which motivates the need for a kidney exchange program. Consequently, Chapters 2 through 4 of the

dissertation explore the boundary between what can and cannot be achieved by a mechanism without

the using of monetary transfers. Moreover, we also consider a quantitative measure of how far our

solution is from the ideal benchmark in Chapter 5.

One application of mechanism design without money is the division and allocation of common/shared

resource(s). From rent splitting between housemates, to property disputes between property owners,

work sharing between co-workers, fair division problems arise naturally in every day life. The goal of

the designer here is to create an allocation protocol that treats all parties fairly, achieves an efficient

outcome, and discourages agents from falsifying their preference in order to game the protocol. The

typical fairness notion that we will consider is called envy-freeness, which means that every agent

weakly prefers her allocation to every other agent’s allocation. For efficiency, we will consider Pareto

optimality and it variants. An allocation is Pareto optimal if one cannot improve the allocation for one
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agent without hurting another agent. Finally, in order to discourage agents from misreporting their

preference, we require our mechanism to be strategyproof : it should be a dominant strategy for every

agent to report her preference truthfully.

A well known problem in the resource allocation mechanism design literature is the assignment

problem. In this problem, we have a set of agents and a set of resources. Each agent has some demand

requirement and each resource has a capacity limit. Moreover, each agent expresses some form of

preference over the resources.1 In a simple model, the preference can be dichotomous: either the agent

finds a resource acceptable or not. On the other hand, a richer model allows an agent to specify a

utility for each resource or a preference ordering over the resources. In the standard model, each agent

is assumed to have a unit demand and each resource a unit capacity (however, we will consider a

general model with arbitrary demand and capacity quantities in Chapters 3 and 4). The resources in

consideration can either be divisible or indivisible. For each indivisible resource, we view a fractional

allocation as the probability that a given resource is allocated to a given agent.

In Chapter 2,2 we consider a special case of the assignment problem where agents have a uniform

preference over the resources,3 which are indivisible. This problem is motivated by a single machine

scheduling problem where every job has a unit processing time. Every job would like to be scheduled as

early as possible and has a deadline that it needs to be scheduled by. We would like to find an algorithm

that outputs an efficient allocation while treating all jobs fairly. Furthermore, since the deadline of

each job is private information, we would like the algorithm to be truthful so that no job can game

the allocation made by the algorithm. This problem can be used to model a patient scheduling system

where agents are patients and objects are appointment time slots. In such a setting, all patients would

like be to treated as early as possible. Moreover, each patient has a deadline by which she needs to

receive treatment before her condition gets worse.

When preferences are strict, Bogomolnaia and Moulin [30] characterized the probabilistic serial

(PS) mechanism as the only mechanism satisfying some nice equity (equal treatment of equals), effi-

ciency (ordinal efficiency), and truthfulness (strategyproofness) properties. Nonetheless, agents may

1We assume that each agent has a homogeneous preference within each resource.

2Chapter 2 is based on the paper [111].

3An uniform preference domain is one in which agents rank order their acceptable resources in the same fashion,

modulo indifferences.
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express indifference over resources in many realistic settings. Failure to incorporate indifference into

the model would allow us to forgo a potentially more efficient allocation in reality. Therefore, we aim

to understand whether an extension of the PS mechanism to the weak preference domain, one in which

agents are allowed to express indifference over objects, can still maintain the properties that it satisfies

for the strict preference domain. We show that, in the weak preference domain, not only does the PS

mechanism fails strategyproofness, but so does every other mechanism that is ordinally efficient and

treats equals equally. If envy-free assignments are required, then any mechanism that guarantees an

ex post efficient outcome must fail even a weak form of strategyproofness. Our impossibility results

suggest that allowing agents to express their preferences more explicitly comes at a price: a mechanism

with good performance could be gamed by the agents in some cases.

In Chapter 3,4 we study the fair allocation of a single divisible good to multiple agents with

heterogeneous preferences, also known as cake cutting in the literature. Cake cutting is often used to

model the fair division of a common resource. It is particularly applicable to the allocation of server

time, as the advent of cloud computing for example, has increased the need for allocation policies in

environments with heterogeneous user demands. In the most general model for cake cutting, a cake is

often represented by the unit interval. There is a set of agents who are the cake recipients. Every agent

has an integrable valuation function over the cake. For computational reasons, we consider a restricted

domain where each agent has a privately known piecewise constant valuation function (PCV) over the

cake. This special domain already has enough richness to capture many applications.

The main goal of the chapter is to identify and understand the trade-offs between various desirable

properties attainable by a cake cutting algorithm when agents report PCV. These properties fall into

three categories: efficiency (Pareto optimality and non-wastefulness), fairness ((robust) envy-freeness

and proportionality), and truthfulness (group strategyproofness, strategyproofness, and strategyproof-

ness in expectation). For a special case of PCV called piecewise uniform valuations (PUV), Chen et al.

[44] proposed an algorithm that jointly satisfies the strongest property within each category. We ex-

amine different extensions of this algorithm to the PCV setting and prove that while these algorithmic

extensions maintain strong efficiency and fairness guarantees, they do not satisfy strategyproofness.

Specifically, we present two algorithms: the Controlled Cake Eating Algorithm (CCEA) and the Mar-

ket Equilibrium Algorithm (MEA). CCEA is inspired by the probabilistic serial mechanism of [29] and

4Chapter 3 is based on the paper [13].
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its extension due to [76]. It is non-wasteful and robust envy-free. The Market Equilibrium Algorithm

(MEA) is based on the Eisenberg-Gale convex program for computing a market equilibrium. It is

Pareto optimal and envy free. To demonstrate that our algorithmic results are the best achievable,

we show that no strategyproof algorithm can jointly satisfy the properties satisfied by our algorithmic

extensions. Finally, if we allow for randomization and only required strategyproofness to be satisfied

in expectation, then we are able to obtain an algorithm (MCSD) inspired by a constrained version of

random serial dictatorship that is robust proportional and strictly dominates the uniform allocation.5

Just as in Chapter 2, we notice here that ensuring truthfulness in conjunction with strong equity and

efficiency guarantees becomes more difficult as the agent preference domain becomes more expressive.

In Chapter 4,6 we consider a model of resource allocation with arbitrary demand and supply

quantities. Moreover, each agent’s demand can only be satisfied in its entirety by one single resource

whose capacity quantity can accommodate the demand. This problem is a generalization of the setting

of Chapter 2, where each agent has an unit demand and each resource a unit supply. It is also different

from the the cake cutting problem,7 as an agent’s demand here cannot be satisfied partially nor can

it be split up by multiple resources in this setting. Kurokawa et al. [81] first considered the problem

in the context of classroom assignment for charter schools. They modeled the agent’s preference as

dichotomous, and designed a mechanism that satisfies many nice properties, including: proportionality,

envy-freeness, Pareto optimality, and strategyproofness. Their mechanism always computes a leximin

allocation: one that maximizes the lowest probability of any school having its demand satisfied in an

acceptable facility; subject to this constraint, it maximizes the second lowest probability; and so on.

In Chapter 4, we seek to understand whether the leximin mechanism still satisfies the aforementioned

properties that Kurokawa et al. showed for the dichotomous setting in the general preference domain.

It is known from [29] that even for the unit demand and unit supply setting, the leximin mechanism

fails to be strategyproof. We show in the chapter that it fails envy-freeness as well. Nonetheless,

the mechanism remains Pareto optimal and we conjecture it to be proportional as well. In terms of

computing a leximin allocation for this setting, Bogomolnaia [27] gave an alternative definition of the

5The uniform allocation is one in which every agent is indifferent between her allocation and any other agent’s

allocation.

6This chapter is based on the working paper [112].

7A cake cutting problem with PCV to a corresponding instance of the assignment problem with divisible resources.
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probabilistic serial mechanism in the unit supply and unit demand setting by showing that mechanism

always computes a generalized leximin allocation. We propose a generalization of the probabilistic

serial mechanism to the classroom setting and show that our generalization also always computes a

generalized leximin allocation.

In Chapters 2-4, we quantified the trade-offs among desirable properties in a binary fashion. We

can also measure the efficiency loss when we impose truthfulness as a constraint. One standard method

for measuring efficiency loss is to compare the ratio of optimal values with and without the incentive

constraint. We apply this method in Chapter 5 to study a facility location problem on a line where

the designer needs to elicit preferences from a set of agents in order to locate a facility.8 Each agent

incurs a cost equal to her distance to the facility whereas the designer wishes to minimize the Lp norm

of the vector of agent costs. Note that the Lp social cost function serves as a way to trade-off between

efficiency and fairness, as minimizing the L1 norm optimizes the aggregate individual cost, whereas

minimizing the L∞ norm reduces the cost of the agent(s) who is worst off. Since an agent’s objective

function does not perfectly align with that of the designer, locating the facility at an optimizer of the

social cost function is not strategyproof. Instead, our goal is to design a strategyproof mechanism

that approximates the optimal cost well. The design of a strategyproof mechanism is important in

certain applications of the problem such as peer valuation/rating, where it is crucial for no participant

to purposely exaggerate or shade her rating in order to make the aggregate rating closer towards her

own. Our main result shows that the mechanism that always locates the facility at the median of

agents’ reports provides a 21−1/p approximation ratio, and that this is the optimal approximation

ratio among all deterministic strategyproof mechanisms. Moreover, the approximation ratio provided

by the median mechanism is also optimal over a large class of randomized mechanisms. This class

of randomized mechanisms subsumes many existing mechanisms proposed in the literature, see e.g.

[4, 60, 98]. We also exhibit an optimal randomized mechanism for two agents. By identifying a family

of approximate optimal strategyproof mechanisms (AOSM), we observe that a Lp norm objective for p

large (which corresponds to objectives that puts more emphasis on fairness than on efficiency) is more

vulnerable to manipulation by the agents, resulting in a worse approximation ratio.

8Chapter 5 is based on the paper [57].
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1.2 Model Predictive Power versus Computational Tractability Trade-

offs

The remaining chapters address how model complexity affects its computational tractability. We often

work with stylized models because they lead to elegant mathematical results and are often computa-

tionally tractable. However, many problems of interest to practitioners are often much more complex,

and key elements of such problems cannot be captured in a stylized model. As a consequence, practi-

tioners tend to favor more accurate but less computationally tractable models. Fast heuristics are then

developed to solve the associated optimization problems approximately. With the information revolu-

tion and data explosion, there is an increasing need for a rigorous understanding of the tractability of

more accurate and complex models that fit the data or match the real world problem description well.

For instance, the knapsack problem is a fundamental problem that can be used to model many

applications related to resource allocation. It captures any situation where the decision maker seeks

to identify an optimal set of projects to invest in. Each project incurs a cost and results in a profit.

Due to a budget limitation, the decision maker must select a subset of projects to invest in that

maximizes profit without violating the budget constraint. The simplicity of the knapsack problem

fails to capture applications where investment decisions can be made over a time horizon and the

decision maker receives additional budget in each time period to invest in additional projects. To

model these applications, we consider a knapsack problem whose capacity grows with time in Chapter

6.9 The increment in knapsack capacity from period to period represents the additional budget that

the decision maker receives in each time period (which can be either discrete or continuous). We are

given a set of items with weight and values at the beginning of the time horizon and need to decide

the subset of items to pack into the knapsack in each time period such that:

1. the sum of weights of items packed in the knapsack does not exceed its capacity in each time

period.

2. an item packed into the knapsack can never be removed from the knapsack later on.

3. the discounted sum of item values in the knapsack over time is maximized.

9Chapter 6 is based on the working paper [23].
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We refer to this problem as the incremental knapsack problem (IK for short). A natural question

emerges: how much computational tractability do we give up for implementing a richer model in the

context of knapsack? By formally studying its computational complexity in Chapter 6, we show that

the discrete version of IK with no discounting is strongly NP-hard, whereas the regular knapsack is

only weakly NP-hard. The distinction in complexity classes between regular knapsack and incremental

knapsack can be attributed to two things. First, the time horizon T introduces a curse of dimensionality

on computations, as an adaptation of the standard dynamic programming approach for the knapsack

problem has an exponential dependence on T . Second, there is a fundamental trade-off between

packing the best subset now given the available budget versus saving up some unused budget for

future investment, which is not present in the standard knapsack problem and introduces additional

complexity. Our algorithmic results for the discrete IK problem are two folds:

1. We give a constant factor approximation algorithm relying on a novel reduction to a well studied

problem known as generalized assignment.

2. We give a PTAS (with worse running time than the constant factor approximation algorithm)

by combining linear programming and enumeration based methods.

The above approximation results holds whenever the discounting factor is non-decreasing with respect

to time.

For the continuous case, we focus on the special case when the knapsack capacity grows linearly

with time. We show that for a special case of discounting functions that we refer to as order inducing, it

suffices to determine the subset of items that we will pack by the time horizon. With this observation,

we develop a FPTAS to determine a near optimal subset of items to pack. We partially complement

our algorithmic result with an NP-hardness result for a piecewise linear capacity function with two

pieces.

Similarly, understanding the interplay between model complexity and tractability allows us to

effectively quantify the trade-offs among different models of consumer purchase behavior in operations

management. One key challenge in any assortment planning problem is to find the “right” choice model

that can simultaneously capture the purchase behavior of customers based on historical sales data and

allow a firm to decide on what products to offer to maximize revenue. Since the complexity of a choice

model generally increases with its modeling power, it is critical to choose a model that strikes a balance
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between predictability and tractability. Many existing random-utility based choice models proposed in

the literature are limited by distributional assumptions. The Markov chain model is a distribution-free

model introduced by Blanchet et al. [25] to combat the model selection errors that many existing choice

models tend to suffer from. In this model, each item (including the no-purchase option) corresponds to

a state, and consumer substitution behavior is modeled by transitions in the Markov chain. Whenever

the retailer offers an item, the corresponding state becomes absorbing. A random customer arrives

to her favorite item according to an initial probability distribution and continue to transition through

the Markov chain until she reaches an absorbing state, which corresponds to purchasing an item (or

leaving the system if the no-purchase state is reached). The authors showed the Markov chain model

is rich enough to subsume the Multinomial Logit Model (MNL), arguably one of the most popular

models used in practice; it also approximates many other parametric choice models well.

In Chapter 7,10 we study the tractability of the assortment optimization problem under the Markov

chain choice model. In particular, we focus on scenarios where the retailer is faced with additional

operational constraints such as budget, and shelf-space limitations. Mathematically, the problem

correspond to modifying a given Marko chain by selecting a subset of its states absorbing in order to

maximize revenue. In the capacity constrained problem, there is a cost of selecting a state and the

total cost of our solution cannot exceed a given budget. We show that even though the Markov chain

model is not as tractable as the MNL model, we can still find a good approximate solution efficiently.

Unlike the MNL model, (where cardinality and TU constrained assortment optimization problem can

be solved in polynomial time) we show that the same problem is APX-hard (and independent set hard

respectively) under the Markov chain choice model. We then proceed to give a 1/2-approximation

algorithm for the cardinality constrained problem and a 1/3-approximation algorithm for the capacity

constrained problem. Our algorithm increments the assortment one at a time from a consideration

set. Subsequently, prices of all remaining items are adjusted to account for their incremental revenue

contribution. The price updates allow us to “linearize” a non-linear revenue function, which enables

us to provide theoretical worst case guarantees on the performance of our algorithm. Moreover, we

demonstrate empirically that the algorithm often returns a near optimal solution and scales gracefully

as the problem size grows. Finally, our solution approach is intuitive and offers operational insights

into the substitution behavior of customers captured by the Markov chain choice model.

10Chapter 7 is based on the paper [53].
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Chapter 2

A Note on the Assignment Problem

with Uniform

Preferences

2.1 Introduction

We study the assignment problem, which is concerned with allocating objects to agents, each of whom

wishes to receive at most one object. Agents have preferences over the objects, and the goal is to

allocate the objects to the agents in a fair and efficient manner. Further, as each agent’s preference

ordering over the objects is private information, we require the mechanism to be strategyproof: it

should be a dominant strategy for the agents to report their preference ordering truthfully. If the

objects are divisible, we can think of a fractional assignment in which an object may be allocated in

varying amounts to multiple agents so that the total amount allocated of any object is at most 1, and so

that each agent receives at most one unit in all. If the objects are indivisible, one can think of a lottery

over assignments, which again results in a fractional assignment matrix in which entry (i, a) represents

the probability that agent i receives object a. These two views are equivalent for our purposes; while in

the rest of the chapter we assume that the objects are indivisible, all of our results extend to the case

of divisible objects with the obvious change in interpretation. There is now a rich literature on such

models with applications to many real-life allocation problems including allocating students to schools
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in various cities, the design of kidney exchanges, etc. [1, 2, 39, 103]. The two prominent mechanisms

that have emerged from this literature are the Random Serial Dictatorship (RSD) mechanism and

the Probabilistic Serial (PS) mechanism. The PS mechanism is stronger in terms of its efficiency

and equity properties, but it is only weakly strategyproof in the strict preference domain and not

strategyproof in the full preference domain; whereas the RSD mechanism is strategyproof, but satisfies

only a weaker version of efficiency and envy-freeness. Furthermore, Bogomolnaia and Moulin [29] show

that no strategyproof mechanism can satisfy the stronger form of efficiency and equity that the PS

mechanism satisfies.

This chapter is inspired by the paper of Bogomolnaia and Moulin [30], which characterizes the PS

mechanism on a restricted preference domain. The PS mechanism was introduced in an earlier paper of

Crés and Moulin [49] that was motivated by the problem of scheduling unit-length jobs with deadlines.

Suppose there are n jobs, each requiring a unit processing time, and all jobs are available at time

zero. As the jobs all have unit-length, one could think of the scheduling problem as one of assigning

time-slots 1, 2, . . . , n to the jobs, so that slot k represents the interval (k − 1, k], and a job assigned to

slot k finishes at time k. Jobs have deadlines and earn a non-negative utility if they complete before

their deadline. Specifically, if the deadline of job j is dj , then the utility of assigning j to slot k is

monotonically decreasing in k until the deadline, after which it drops to zero. That is, if uj,k denotes

the utility of assigning job j to slot k, then

uj,1 > uj,2 . . . > uj,dj > 0 = uj,dj+1 = uj,dj+2, . . . , uj,n.

The goal is to use a mechanism to schedule the jobs in a fair and efficient manner based on their reported

utility information without the usage of money. Crés and Moulin [49] proposed the PS mechanism

and showed that it finds an ordinally efficient and envy-free allocation (all definitions appear in the

next section); furthermore, they showed that the PS mechanism is strategyproof on this domain: in

the event each job/agent need only report their deadline, they show that it is a weakly dominant

strategy for each job to report its deadline truthfully. Bogomolnaia and Moulin [30] characterize the

PS mechanism on this restricted domain in two different ways: first, they show that ordinal efficiency

and envy-freeness characterize the PS outcome on this restricted domain; and second, they show that

it is the only strategyproof mechanism that is ordinally efficient and treats equals equally. Taken

together, their result shows that the PS mechanism is perhaps the only compelling mechanism on this

restricted preference domain. (Crés and Moulin [49] showed that the PS mechanism is in fact group
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strategyproof, although this stronger property is not needed in their characterization result of PS.)

In this chapter we consider a slightly more general domain, again inspired by the problem of schedul-

ing unit-length jobs. For simplicity, assume there are n agents and n objects, and suppose the objects

are arranged in the order (1, 2, . . . , n) by all the agents. Each agent’s preference ranking, however, is

determined by a weakly decreasing utility function over the objects, in contrast to a strictly decreasing

utility function over the objects till a deadline. (A good way to visualize this preference domain is to

have each agent separate the sequence of objects into indifference classes, without disturbing the com-

mon order on the objects.) This domain is quite natural in the scheduling context, where completing

a job early is always (weakly) better, but jobs may be insensitive to completion times within a certain

time interval, and these intervals may change from job to job. The domain considered in the earlier

papers is a special case in which, for each agent, all but the final indifference class has a single object.

It is then natural to ask if the two characterizations of PS extend to this domain. It turns out that the

answer is negative in each case. We show that the PS outcome (actually, a correspondence) is no longer

the only outcome that is ordinally efficient and envy-free, nor is the PS mechanism strategyproof on

this domain. Somewhat surprisingly, we show that:

• No weakly strategyproof mechanism can satisfy both ex post efficiency and envy freeness on this

domain, when there are three or more agents; and

• No strategyproof mechanism can satisfy both ordinal efficiency and equal treatment of equals on

this domain, when there are four or more agents.

2.1.1 Related Literature

The literature on random assignment problems focuses on simultaneously satisfying various notions

of fairness, efficiency, and strategyproofness, and several impossibility results have been established

over the last two decades [10, 29, 41, 75, 76, 131]. Our two main impossibility results are strength-

ened versions of similar results in the literature in which preferences are drawn from richer domains.

Specifically, versions of the two impossibility results have been obtained by [76] on the full preference

domain (where any weak ordering of the objects is permissible), and by [29] on the strict preference

domain (where any strict ordering of the objects is permissible). Thus the surprising element in our

result is that these difficulties persist even in domains in which the preferences are severely restricted.
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Our work contributes to the rich and growing literature on matching and allocation problems in

which monetary transfers are not permitted. The PS mechanism and the Random Serial Dictatorship

mechanisms are central mechanisms for such allocationproblems and have been studied extensively

from several points of view, see the recent survey [116] for an overview. This has also inspired other

characterizations and extensions of the PS mechanism [8, 10, 28, 72, 77, 78]. There is an equally exten-

sive literature on models where monetary transfers are allowed to restore fairness or strategyproofness

in a queueing or scheduling setting [55, 87, 88, 93, 120], and we refer the reader to the survey [73] for

a comprehensive overview.

2.2 Preliminaries

2.2.1 Model and Definitions

An assignment problem is given by a triple (N,O,%), where N = {1, . . . , n} is the set of agents,

O = {o1, . . . on} is the set of objects, and the preference profile %= (%1, . . . ,%n) specifies each agent’s

preference ordering over the objects. If the number of agents is not the same as the number of

objects, one can always balance such a problem by adding dummy agents or dummy objects. We will

assume that the preference relation of each agent is complete (every pair of objects is comparable) and

transitive. By a %i b, we mean that agent i weakly prefers object a to object b. We write a �i b if i

strictly prefers a to b, i.e. a %i b but b 6%i a; and we use a ∼i b when i is indifferent between a and

b, i.e. a %i b and b %i a. Note that the indifference relation is also transitive. Thus each agent has a

most-preferred subset of objects (and the agent is indifferent between all the objects within this set),

followed by a most-preferred subset of objects among the remaining ones, etc.

In this chapter, we shall consider the uniform preference domain in which o1 %i o2 %i . . . %i on for

every agent i ∈ N . Agents differ in their preference ordering only in their strict preference relation �i
(and hence their indifference relation ∼i). In the rest of the chapter, we use the following notation for

the preference ordering of the agents: all the objects within an indifference class for an agent appear

within braces in that agent’s preference list, and these maximal indifference classes are separated by

a comma; objects are always written in subscript order; and the braces are omitted for singleton

indifference classes. Thus, the preference ordering

o1 �i o2 ∼i o3 ∼i o4 �i o5



CHAPTER 2. A NOTE ON THE ASSIGNMENT PROBLEM WITH UNIFORM
PREFERENCES 15

for agent i is written as

i : o1, {o2 o3 o4}, o5.

By a mechanism, we mean a mapping from the set of all preference profiles (within this restricted

domain) to a doubly stochastic matrix, which we call the assignment matrix for that profile. The

assignment matrix is deterministic if its entries are {0, 1} (and so the outcome is a matching of the agents

and objects); otherwise, it is probabilistic. When the matrix is deterministic, the ij-th entry indicates

whether agent i receives object j. When the matrix is probabilistic, then its ij-th entry represents the

probability that agent i receives object j. If a mechanism maps each preference profile to a deterministic

matrix, the mechanism is deterministic; otherwise the mechanism is probabilistic. (Alternatively, we

could have defined a probabilistic mechanism as a lottery over deterministic mechanisms. In this view,

different lotteries are regarded as different mechanisms, even if they result in the same assignment

matrix for each preference profile.) As a consequence of the Birkhoff-von Neumann theorem [24], the

outcome of a probabilistic mechanism can be implemented as a lottery over deterministic assignments.

Given two probabilistic assignments P and Q, we say that agent i prefers P to Q if Pi, the i-th

row of P stochastically dominates Qi according to i’s preferences. Formally,

Pi %i Qi ⇐⇒
∑
k:k%ij

pik ≥
∑
k:k%ij

qik, ∀j ∈ O.

We say that i strictly prefers P to Q, denoted by Pi �i Qi, if at least one of the inequalities in the

above definition is strict. Note that this definition is only a partial order, as an agent may not be able

to compare two probabilistic allocations. Finally, we say that P stochastically dominates Q, denoted

by P % Q, if Pi %i Qi for all i ∈ N , with Pi �i Qi for some i ∈ N . Again, this notion of stochastic

dominance defines a partial order on the set of doubly stochastic matrices.

2.2.2 Desirable Properties

We define some desirable properties of mechanisms that play an important role in the rest of the

chapter.

Ordinal Efficiency An assignment matrix P is ordinally efficient if it is not stochastically dominated

by any other random assignment matrix Q such that Q % P . It is well known that any ordinally efficient
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matrix can be implemented as a lottery over deterministic Pareto efficient assignments. Furthermore,

checking whether or not a given assignment matrix is ordinally efficient is computationally easy [29, 76].

Ex post Efficiency A weaker notion of efficiency that we will consider is ex post efficiency. A bi-

stochastic matrix P is ex post efficient if it can be written as a convex combination of Pareto efficient

assignments.

Envy-Freeness An assignment matrix P is envy free if the probabilistic assignment of every agent

i stochastically dominates the probabilistic assignment of every other agent with respect to agent i’s

preference ordering. Let Pi denote the probabilistic assignment of agent i in the matrix P . Then, P is

envy-free if Pi %i Pi′ for all i, i′ ∈ N .

Equal Treatment of Equals An assignment matrix P satisfies equal treatment of equals if agents

with identical preferences get equivalent allocations. Formally, P satisfies equal treatment of equals if

for all i, i′ ∈ N such that %i=%i′=%, we have

∑
k:k%j

pik =
∑
k:k%j

pi′k, ∀j ∈ O.

Strategyproofness The properties defined so far pertain to the outcome on a single profile. Strate-

gyproofness, however, is a property of the mechanism, in particular, on how the mechanism behaves on

pairs of profiles in which all but one of the agents report the same preference ordering. A mechanism is

strategyproof if it is a weakly dominant strategy for each agent to report her true preference ordering.

Let Pi(%) be the allocation matrix when the reported preference profile is %. Formally, a mechanism

is strategyproof if

Pi(%i,%−i) %i Pi(%
′
i,%−i),

for all agents i ∈ N , and for all preference profiles %−i of the other agents, and for every pair of

preferences %i,%′i that i could report. A random assignment mechanism is weakly strategyproof if for

each i ∈ N , and for each preference profile %−i of the other agents, there does not exist preference

ordering %′i such that Pi(%′i,%−i) �i Pi(%i,%−i). In a strategyproof mechanism, the assignment

under truthful reporting stochastically dominates the assignment under any other report; in a weakly

strategyproof mechanism, however, reporting her preference ordering truthfully will not result in an
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assignment that is stochastically dominated by the assignment under any other report. It is clear from

the definitions that strategyproofness implies weak strategyproofness, but not vice-versa.

2.2.3 The Extended Probabilistic Serial Mechanism

We end this section with a very brief description of the EPS mechanism [76]. The EPS mechanism,

like the PS mechanism, can be described as a “cake-eating” mechanism in which agents consume their

best object(s) at unit rate. Roughly, each agent simultaneously consumes her “best set” of available

objects at a unit rate at each point in time. If all the preferences are strict, this determines a unique

allocation for the agents; when agents have indifferences, this mechanism is not well-defined as each

agent has a choice on how her unit rate is apportioned across the objects in her best set of objects.

For instance, if agent i strictly prefers a to b, whereas agent i′ is indifferent between a and b, letting

both agents consume a initially will result in each agent getting 1/2 of a and 1/2 of b, which is clearly

inefficient in the ordinal sense; if i′ consumes b at rate 1, however, the outcome is ordinally efficient.

To address this issue, Katta and Sethuraman [76] proposed the EPS mechanism that:

1. Identifies a subset S? of agents with the least collective claim over the union of their best objects

C(S?) (in terms of average claim per agent within the subset); (We will refer to S? as the

bottleneck set.)

2. Assigns each agent in S? an amount of |C(S?)|
|S?| of their favorite object(s);

3. Promises the rest of the agents an amount of at least |C(S?)|
|S?| of their favorite object(s); and

4. Removes the allocated objects, and recurses on the subproblem (agents in S? now start consuming

their favorite objects(s) out of the remaining objects.)

The authors showed that the bottleneck sets can be identified by solving a sequence of parametric max

flow problems. We refer the reader to their paper for a complete description of the algorithm.

Note that in the full preference domain, an agent is insensitive to different probabilistic allocations

of objects within the same indifference class as long as the allocations sum up to the same quantity for

every indifference class. This motivates the following equivalence relation over the set of assignment

matrices. Given a preference profile %, let Ii be the collection of indifference classes of objects for

agent i. For every I ∈ Ii, let piI =
∑

oj∈I pij . We say that two random assignment matrices P and Q
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are equivalent if and only if

piI = qiI ∀i ∈ N, I ∈ Ii.

One can check that this defines an equivalence relation on the set of assignment matrices. An assign-

ment matrix is an EPS assignment if it is equivalent to the random assignment found by the EPS

mechanism.

2.3 Main Results

Bogomolnaia and Moulin [30] showed that if the preference domain is further restricted so that the

acceptable set of objects for each agent i is the set {o1, o2 . . . , oki}, and if the agents have strict (and

uniform) preferences over their acceptable objects, then the PS outcome is characterized by ordinal

efficiency and envy-freeness, and that it is the only strategyproof mechanism that guarantees ordinal

efficiency and equal treatment of equals. We show that neither one of these results holds when the

agents have weak preferences.

2.3.1 Non-uniqueness of Ordinally Efficient and Envy Free Assignments

The EPS mechanism finds an equivalence class of ordinally efficient and envy free assignments for each

preference profile. However, there are other assignments with these properties. For the preference

profile below the following assignment is ordinally efficient and envy free.

1: o1, {o2 o3}, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
4 0 1

2
1
4

2: 1
4 0 1

2
1
4

3: 1
4

1
2 0 1

4

4: 1
4

1
2 0 1

4

However, the EPS mechanism will not compute the above assignment since agents 1 and 2 strictly

prefer o1 to o2 whereas agents 3 and 4 are indifferent between o1 and o2. Thus, in the EPS mechanism,

agents 3 and 4 consume o2 first so as to not compete with agents 1 and 2 for their unique best object.
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Consequently, EPS finds the following assignment

o1 o2 o3 o4

1: 1
2 0 1

4
1
4

2: 1
2 0 1

4
1
4

3: 0 1
2

1
4

1
4

4: 0 1
2

1
4

1
4

Clearly the two assignments do not belong to the same equivalence class: agents 1 and 2 strictly prefer

the latter, whereas agents 3 and 4 strictly prefer the former.

2.3.2 Impossibility Results

Theorem 2.1. For n ≥ 3, any mechanism that is both ex-post efficient and envy-free is not weakly

strategyproof in the uniform preference domain.

Proof. We first show the impossibility result for n = 3. Consider Profile 1 (below). Clearly, the set of

envy-free (EF) assignments at this profile is as described for some 0 ≤ y ≤ 1/6.

Profile 1

1: o1, o2, o3

2: o1, {o2 o3}
3: o1, o2, o3

o1 o2 o3

1: 1
3

1
2 − y 1

6 + y

2: 1
3 2y 2

3 − 2y

3: 1
3

1
2 − y 1

6 + y

By the structure of the preferences in Profile 1, agent 2 cannot receive object o2 in any Pareto

efficient assignment, as there is always a Pareto improvement with the agent who is assigned o3 in the

same assignment. Thus y = 0 in any ex-post efficient (EPE) assignment.

Similarly, in Profile 2 below, the set of envy-free assignments is as described for some 0 ≤ w ≤ 1
6

and 0 ≤ z ≤ 1
12 .

Profile 2

1: o1, o2, o3

2: o1, {o2 o3}
3: {o1 o2}, o3

o1 o2 o3

1: 1
2 − w 1

4 + w − z 1
4 + z

2: 1
2 − w w + 2z 1

2 − 2z

3: 2w 3
4 − 2w − z 1

4 + z

Again, agent 2 cannot be assigned o2 in any Pareto efficient assignment, as there is always a Pareto

improvement with the agent assigned o3 in the same assignment. Hence, w = z = 0 in any ex-post

efficient assignment.
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Observe that the properties of ex-post efficiency and envy-freeness determine a unique assignment

in both Profile 1 and Profile 2. Furthermore, agents 1 and 2 have the same preferences in both profiles,

but agent 3’s allocation in Profile 1 stochastically dominates his allocation in Profile 2, implying a

failure of weak strategyproofness.

For n ≥ 4, extend each of the profiles as follows: the first 3 agents have exactly the same preference

ordering over the first 3 objects; and they have strict preferences over the objects o4, o5, . . . , on; finally,

agent i (for i ≥ 4) is indifferent between the first i objects, after which he has strict preferences over

the others. That is, i’s preference ordering is

i : {o1 . . . oi}, oi+1, . . . , on.

It is straightforward to check that agent i receives object oi in every Pareto efficient assignment, and

so the first 3 agents must be allocated the first 3 objects, leading to the same two profiles analyzed

earlier.

As the EPS mechanism is ordinally efficient (and so ex-post efficient as well) and envy-free, an

immediate consequence is that the EPS mechanism is not weakly strategyproof on the uniform domain.

The Random Serial Dictatorship (RSD) mechanism, which orders the agents uniform at random,

and lets them successively choose a favorite object in that order, can be adapted to the setting of

indifferences. RSD is both strategyproof and ex-post efficient [1, 102, 121], and so fails envy-freeness

on the uniform domain. For the domain considered by Bogomolnaia and Moulin, neither of these

results hold, as the PS mechanism is strategyproof and the RSD mechanism is envy-free.

Next, we show that if we relax envy freeness to equal treatment of equals, but strengthen weak strat-

egyproofness and ex-post efficiency to strategyproofness and ordinal efficiency respectively, a similar

impossibility result holds for the uniform preference domain.

Theorem 2.2. For n ≥ 4, any mechanism that satisfies ordinal efficiency and equal treatment of

equals is not strategyproof in the uniform preference domain.

Proof. We first show the result for n = 4. We will consider eight different profiles and show that in

Profile 8 there is no probabilistic assignment that simultaneously satisfies ordinal efficiency (OE), equal

treatment of equals (ETE), and strategyproofness (SP) in relation to the first seven profiles.

First, we compute the probability assignment for Profile 1. Notice that the only assignment that

satisfies ETE is as follows:
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Profile 1

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: o1, o2, o3, o4

4: o1, o2, o3, o4

o1 o2 o3 o4

1: 1
4

1
4

1
4

1
4

2: 1
4

1
4

1
4

1
4

3: 1
4

1
4

1
4

1
4

4: 1
4

1
4

1
4

1
4

Consider Profile 2. Let pij be the probability that agent i is assigned the object oj . By ordinal

efficiency, p41 = 0. For otherwise p42 < 1, which means that at least one of p12, p22, p32 is strictly

positive; this agent can exchange a small amount of o2 for an equal amount of o1 from agent 4, without

altering any of the other allocations, to obtain a new allocation matrix that stochastically dominates

the current one, which violates ordinal efficiency.

By strategyproofness, we must have that p41 + p42 = 1
2 , because if it were not the case, then there

is a profitable deviation of agent 4 either from Profile 1 to Profile 2 or vice versa. Thus, we get p42 = 1
2

since p41 = 0. Similarly, by strategyproofness, we have p41 + p42 + p43 = 3
4 , which implies p43 = 1

4 and

p44 = 1
4 .

Finally by ETE, we know the probability assignment of the first three agents must be identical, thus

we get the following assignment:

Profile 2

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: o1, o2, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
3

1
6

1
4

1
4

2: 1
3

1
6

1
4

1
4

3: 1
3

1
6

1
4

1
4

4: 0 1
2

1
4

1
4

Consider Profile 3. By SP in relation to Profile 2, we must have p31 + p32 = 1
2 , p33 = 1

4 , and

p34 = 1
4 . By ETE, the assignment for agent 4 satisfies the same constraints as that of agent 3.

By OE, p31 = p41 = 0, because either p31 > 0 or p41 > 0 would imply that p32 + p42 < 1 (as

p31 + p32 + p41 + p42 = 1) or equivalently that p12 + p22 > 0. Then again we have a situation where

agent 1 or 2 can exchange a small amount of o2 for an equal amount of o1 from agent 3 or 4, which

leads to a new assignment matrix that stochastically dominates the current one, violating OE. Thus,

OE and SP together determine the probabilistic assignment for agents 3 and 4. Now, we can fill in the
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assignments for agents 1 and 2 using ETE to get:

Profile 3

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
2 0 1

4
1
4

2: 1
2 0 1

4
1
4

3: 0 1
2

1
4

1
4

4: 0 1
2

1
4

1
4

Consider Profile 4. By SP in relation to Profile 3 and ETE, we must have p11 + p12 = p31 + p32 =

p41 + p42 = 1
2 , p13 = p33 = p43 = 1

4 , and p14 = p34 = p44 = 1
4 . Since p12+ p32 + p42 ≤ 1, in order

to satisfy the unit demand for agents 1, 3, and 4, we must have that at least one of p11, p31, p41 is

strictly positive. Thus by OE, we must have p22 = 0 and p21 = 1
2 . Although we cannot pin down a

single assignment for this profile, any feasible assignment must be of the form:

Profile 4

1:{o1, o2}, o3, o4
2: o1, o2, o3, o4

3: {o1 o2}, o3, o4
4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: x 1
2 − x 1

4
1
4

2: 1
2 0 1

4
1
4

3: y 1
2 − y 1

4
1
4

4: 1
2 − x− y x+ y 1

4
1
4

for some x, y ≥ 0 and x+ y ≤ 1
2 .

Consider Profile 5. Applying the same argument of ordinal efficiency for agent 4 in Profile 2 to

agent 2 in Profile 5, we get p22 = 0. By strategyproofness in relation to Profile 1, we must have p21 = 1
4

and p21 + p22 + p23 = 3
4 . These imply p23 = 1

2 and p24 = 1
4 . Finally by ETE, we know the probability

assignment of the agents 1, 2 and 4 must be identical, resulting in the following assignment:

Profile 5

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: o1, o2, o3, o4

4: o1, o2, o3, o4

o1 o2 o3 o4

1: 1
4

1
3

1
6

1
4

2: 1
4 0 1

2
1
4

3: 1
4

1
3

1
6

1
4

4: 1
4

1
3

1
6

1
4

Consider Profile 6. By SP in relation to Profile 2, we must have p21 = 1
3 , p22 + p23 = 5

12 , and

p24 = 1
4 . By OE, we must have p22 = 0, which implies p23 = 5

12 . By SP in relation to Profile 5, we
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must have p41 + p42 = 7
12 , p43 = 1

6 , p44 = 1
4 . Again, by OE, we must have p41 = 0, which implies

p42 = 7
12 . Subsequently, we can fill in the assignment for agents 1 and 3 using ETE to get:

Profile 6

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: o1, o2, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
3

5
24

5
24

1
4

2: 1
3 0 5

12
1
4

3: 1
3

5
24

5
24

1
4

4: 0 7
12

1
6

1
4

Consider Profile 7. By SP in relation to Profile 3, we must have p21 = 1
2 , p22 + p23 = 1

4 , and

p24 = 1
4 . By OE, we must have p22 = 0, which implies p23 = 1

4 . By SP in relation to Profile 6, we have

p31+p32 = 13
24 , p33 = 5

24 and p34 = 1
4 . By ETE, agent 4 gets an equivalent assignment as agent 3. Notice

that in this case, we must have p31 > 0 and p41 > 0 as p32 +p42 ≤ 1 and p31 +p32 +p41 +p42 = 13
12 > 1,

so either p31 or p41 is strictly positive. This implies p12 = p22 = 0 in order to satisfy OE. Thus, we get

an assignment of the following form:

Profile 7

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4
3: {o1 o2}, o3, o4
4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 5
12 0 1

3
1
4

2: 1
2 0 1

4
1
4

3: z 13
24 − z 5

24
1
4

4: 1
12 − z 11

24 + z 5
24

1
4

Finally, consider Profile 8. By SP in relation to Profile 4, we have p21 = 1
2 , p22 + p23 = 1

4 , p24 = 1
4 .

By OE, we have p22 = 0, which implies p23 = 1
4 . By SP in relation to Profile 7 and ETE, we must

have p11 + p12 = p31 + x32 = x41 + x42 = 5
12 , p13 = p33 = p43 = 1

3 , p14 = p34 = p44 = 1
4 . Now consider

the partially filled assignment below:

Profile 8

1: {o1 o2}, o3, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: ? ? 1
3

1
4

2: 1
2 0 1

4
1
4

3: ? ? 1
3

1
4

4: ? ? 1
3

1
4

Note that this assignment allocates more than one unit of object 3. Since we used the necessary

conditions induced by SP, OE, ETE to pin down all possible assignments for each of the Profiles 1-7,
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and none of these leads to a valid allocation for Profile 8, it is impossible to write down a random

assignment for Profile 8 that simultaneously satisfies ETE, OE, and SP in relation to the other 7

profiles.

For general n ≥ 5, we extend each of the 8 profiles as follows: agents 1 through 4 have the same

preference for objects o1 through o4; moreover, these agents have a strict preference ordering for the

rest of the objects. For every j = 5, . . . , n, agent j is indifferent amongst objects o1 through oj and has

strict preference for the rest of the objects. Similar to the argument made for general n in Theorem

2.1, we see that by OE, every agent j = 5, . . . , n receives object oj with probability 1. Consequently,

the first 4 agents must be allocated the first 4 objects, leading to the same 8 profiles analyzed earlier.
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Chapter 3

Cake Cutting Algorithms for Piecewise

Constant and Piecewise Uniform

Valuations

3.1 Introduction

Cake cutting is a fundamental problem that is concerned with the fair division of resources among

competing agents, see e.g. [34, 101, 97]. This basic problem comes up in many applications including

the division of rent among housemates, disputed land between land-owners, and work among co-

workers. The framework is general enough to encapsulate the important problem of allocating a

heterogeneous divisible good among multiple agents with different preferences: for example, scheduling

the use of a valuable divisible resource such as server time [67].

We approach the cake cutting problem from a mechanism design perspective. The cake is modeled

by the interval [0, 1]; and each cake recipient—who we will refer to as an agent— has a private value

density function over the cake that is piecewise constant. We consider three of the most enduring goals

in mechanism design and fair division: fairness, Pareto efficiency, and strategyproofness. Since many

fair division algorithms may need to be deployed on a large scale, we will also aim for algorithms that

are computationally efficient. The main research question in this chapter is as follows: among the

various definitions of fairness, Pareto efficiency, strategyproofness, and efficient computability, what
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are the maximal sets of properties that can be satisfied simultaneously? Our main contribution is a

detailed study of this question and include the design of a number of desirable cake cutting algorithms

satisfying many of the properties. Our algorithms rely on transforming the cake-cutting problem to

an equivalent problem of allocating objects to agents where each agent has a homogeneous preference

for each object, similar to the classical assignment model. The transformation is done by pre-cutting

the cake into subintervals using the union of discontinuity points of the agents’ valuation functions.

This transformation allows us to adapt some well-known results in the random assignment and market

equilibrium literatures to the cake-cutting problem.

Drawing on the connection between cake cutting and random assignment, we present CCEA (Con-

trolled Cake Eating Algorithm) for piecewise constant valuations. CCEA is a polynomial-time algorithm

and satisfies robust envy-freeness and robust proportionality, which are stronger than the notions of

fairness that have been considered in the traditional cake cutting literature. (Formal definitions of

these properties appear in Section 3.2.1.) Informally, an allocation is robust envy-free if it remains

envy-free even if an agent re-adjusts or perturbs his value density function, as long as the ordinal

information of the function is unchanged.11 CCEA uses generalizations [76, 8] of the PS (probabilistic

serial) algorithm introduced by [29] for the random assignment problem.12

While CCEA satisfies some appealing properties, the allocation it finds may not be Pareto efficient.

Motivated by this shortcoming of CCEA, we design an alternative algorithm called the MEA (Market

Equilibrium Algorithm), which relies on the solution to an Eisenberg-Gale convex programming for-

mulation for market equilibrium. MEA is a deterministic, polynomial-time algorithm that is Pareto

efficient, envy-free, and proportional for piecewise constant valuations. The algorithm developed for

solving the convex program often relies on solving a sequence of max flow subroutines. The original

algorithm is due to [100], who also used it for finding an α-envy-free allocation for general cake cut-

ting valuations. Subsequently, Devanur et al. [54] developed a variant of the algorithm that runs in

polynomial time. Although similar ideas using linear programs have been used explicitly to compute

11Although full information is a standard assumption in cake cutting, it can be argued that it is unrealistic that agents

have exact Von Neumann-Morgenstern utilities for each segment of the cake. Even if they do report exact VNM utilities,

they may be uncertain about these reports.

12The CC algorithm of [8] is a generalization of the EPS algorithm [76] which in turn is a generalization of PS algorithm

of [29].
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envy-free allocations in cake-cutting (see e.g. [48, 32]), they do not necessarily return a Pareto efficient

allocation.

Although CCEA and MEA are desirable algorithms, they are not strategyproof for piecewise con-

stant valuations. This motivates us to consider two questions: first, are there special cases of valuations

for which these algorithms are strategyproof? And second, are there other algorithms that are strat-

egyproof and satisfy the properties that CCEA and MEA satisfy? To answer the first question, we

consider the case in which agent valuations are piecewise uniform—the special case of piecewise con-

stant valuations in which each agent’s value density function takes on at most one positive value. In

this case, CCEA and MEA are not only strategyproof, but also group strategyproof; furthermore,

these two algorithms coincide for the case of piecewise uniform valuations! Previously, Chen et al. [44]

presented a deterministic, strategyproof, polynomial-time, envy-free and Pareto efficient algorithm for

piecewise uniform valuations. We prove that for piecewise uniform valuations, CCEA and MEA are in

fact equivalent to their algorithm. In a recent paper, Tian [123] characterized a class of strategyproof

and Pareto efficient mechanisms for cake cutting when agents have piecewise uniform valuation func-

tions. The algorithm of Tian involves maximizing the sum of concave functions over the set of feasible

allocations. It is worth noting that MEA when restricted to the piecewise uniform valuation setting is

a member of this family of algorithms characterized by Tian. To answer the second question, we show

that no strategyproof algorithm satisfies the properties that CCEA or MEA satisfies when agent value

density functions are piecewise constant. Unlike the piecewise uniform valuation setting, where each

agent only cares about obtaining as much of their desired pieces of the cake as possible, an agent with

a piecewise constant valuation cares about the trade off in quantities of having pieces at different levels

of desirability. We lose strategyproofness when going from piecewise uniform to piecewise constant

valuation function because when the agents have more flexibility in expressing their preferences, they

are more likely to be able to manipulate an algorithm.

A key difficulty in obtaining a strategyproof algorithm via the transformation to an assignment

problem is that the discontinuity points of each agent’s valuation function is private information for the

agent. Consequently, the “objects” that we obtain (under the transformation) by pre-cutting the cake

can be potentially manipulated by the agents. Unlike allocating multiple homogeneous objects that

are well specified in a random assignment setting, a misreporting agent in the cake cutting problem

may actually have a heterogeneous preference over an “object” that he reports to have a homogeneous
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preference over. As a result, even though it is sufficient for a strategyproof algorithm in random

assignment to output just the fractional amount as opposed to the actual piece of each object that an

agent will receive, the conversion from fractions of intervals into an actual allocation is also a necessary

step in a cake cutting algorithm. Moreover, this step needs to be done properly in order to prevent

agent manipulations. To drive this point further, we describe an algorithm that is strategyproof in

the random assignment setting, but is no longer strategyproof if we implement the conversion process

from fractions of intervals to the union of subintervals in a deterministic fashion.

Our final algorithm, called MCSD (Mixed Constrained Serial Dictatorship), addresses this difficulty:

It is strategyproof in expectation, robust proportional, and satisfies unanimity. For the important case

of two agents,13 it is polynomial-time, and robust envy-free. To the best of our knowledge, it is the

first cake cutting algorithm for piecewise constant valuations that satisfies strategyproofness, (ex post)

proportionality, and (ex post) unanimity at the same time. MCSD requires some randomization to

achieve strategyproofness in expectation. However, MCSD gives the same utility guarantee (with

respect to the reported valuation functions) over all realizations of the random allocation. Although

MCSD uses some essential ideas of the well-known serial dictatorship rule for discrete allocation, it

is more involved. First, we constrain an agent’s allocation by requiring that each time a dictator is

chosen from a random ordering, the piece he takes has to be of maximum value 1/n length of the total

size of the cake. Next, MCSD derandomizes the allocation obtained from all n! different permutations

and aggregate them in a suitable manner.

Our main results are as follows.

Theorem 3.1. For piecewise constant valuations, there exists a deterministic polynomial time algo-

rithm (CCEA) that is robust envy-free and non-wasteful.

Theorem 3.2. For piecewise constant valuations, there exists a deterministic polynomial time algo-

rithm (MEA) that is Pareto efficient and envy-free.

Theorem 3.3. For piecewise uniform valuations, there exist deterministic polynomial time algorithms

(CCEA and MEA) that are group strategyproof, robust envy-free and Pareto efficient.

13Many fair division problems involve disputes between two parties.
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Theorem 3.4. For piecewise constant valuations, there exists a randomized algorithm (MCSD) that

is (ex post) robust proportional, (ex post) symmetric, and (ex post) unanimous and strategyproof in

expectation. For two agents, it is also polynomial-time and robust envy-free.

Our positive results are complemented by the following impossibility theorems. These impossibility

theorems show that the properties satisfied by CCEA and MEA are maximal subsets of properties that

can be satisfied by any algorithm.

Theorem 3.5. For piecewise constant valuation profiles with at least two agents, there exists no

algorithm that is strategyproof, robust proportional, and non-wasteful.

Theorem 3.6. For piecewise constant valuation profiles with at least two agents, there exists no

algorithm that is strategyproof, Pareto efficient, and proportional.

Theorem 3.7. For piecewise constant valuation profiles with at least two agents, there exists no

algorithm that is both Pareto efficient and robust proportional.

As a consequence of CCEA and MEA, we generalize the positive results on piecewise uniform

valuations in [44] to handle more general valuation functions, and the results in [48] for piecewise

constant valuations to achieve stronger fairness and efficiency guarantees.

3.1.1 Related Work

A mathematical analysis of cake cutting started with the work of Polish mathematicians Steinhaus,

Knaster, and Banach (see e.g. [117]). As applications of fair division have been identified in various

multiagent settings, a topic which was once considered a mathematical curiosity has developed into

a full-fledged sub-field of mathematical social sciences (see e.g. [91]). In particular, in the last few

decades, the literature of cake cutting has grown considerably (see e.g. [34, 101, 91, 96]).

The cake cutting literature has been concerned with designing algorithms to allocate a cake fairly.

The most important criteria of a fair allocation are envy-freeness and proportionality. In an envy-

free allocation, each agent considers his allocation at least as good as any other agent’s allocation.

Stromquist [118] and Su [119] showed that an envy-free allocation is guaranteed to exist . In a pro-

portional allocation, each agent gets at least 1/n of the value he assigns to the cake. Envy-freeness is
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generally a stronger notion than proportionality.14

Brams and Taylor [33] designed an envy-free cake cutting algorithm for an arbitrary number of

players. Although their algorithm is guaranteed to eventually terminate, its running time is unbounded.

Moreover, their algorithm can divide the cake into infinitely small segments, which may be unrealistic in

some applications. Since the result of [33], researchers have examined restricted value density functions

and proposed envy-free algorithms with efficient running time. In order to ascertain the running time

of a cake cutting algorithm, it is important to formally specify the computational model and input

to the problem. In some of the literature (e.g. [101]), it is assumed that the value an agent ascribes

to any segment of the cake can be queried or evaluated via an oracle. While the classical literature

uses this query model, recent work by computer scientists assumes agents report their value density

function over the entire cake, as is common in mechanism design. We follow this approach in our work

as well.

Strategyproofness has largely been ignored in cake-cutting barring a few recent exceptions [89, 84,

44, 123]. Alternative notions of strategyproofness abound in the literature on cake-cutting problems.

Our definition of strategyproofness requires truthful reporting of their value density function to be a

(weakly) dominant strategy for each agent. On the other hand, Bram [31] considered an algorithm to

be “strategyproof” if truth-telling is a maximin strategy (maximizes the minimum payoff that an agent

can get), which is a weaker notion than our requirement of dominant strategy incentive compatibility.

There is a literature that studies Nash equilibria of cake-cutting algorithms, see [95, 36].

The papers most directly relevant to our chapter are [48, 32, 44]. Chen et al. [44] presented a

deterministic, strategyproof, polynomial-time, envy-free and Pareto efficient algorithm for piecewise

uniform valuations. Our work addresses their open problem of generalizing their algorithm to the case

of piecewise constant valuations. Cohler et al. [48] and Bram et al. [32] formulated linear programs

to compute envy-free allocations for piecewise constant and piecewise linear valuations. However, the

algorithms are not Pareto efficient in general.

14Envy-freeness implies proportionality when every portion of the cake that is desired by at least one agent is allocated

to some agent. Otherwise, the empty allocation satisfies envy-freeness, but not proportionality.
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3.2 Preliminaries

3.2.1 Model

We consider the problem of dividing a “cake”, represented by the interval [0, 1], among the set of

agents N = {1, 2, . . . , n}. Agent i’s value for different parts of the cake is represented by a value

density function vi : [0, 1]→ [0,∞) that is piecewise constant with a finite number of pieces. In other

words, each agent can partition the cake into a finite number of intervals such that vi is constant

over each interval. We will also consider a special case of a piecewise constant function called piecewise

uniform function v, where the constant is kv or 0 (the constant may be different for different functions),

for some kv ≥ 0. Occasionally we shall consider a family of value density functions rather than a

single one. To that end, we say that two value density functions v and v′ are ordinally equivalent if

v(x) ≥ v(y) ⇐⇒ v′(x) ≥ v′(y) ∀x, y ∈ [0, 1]. For example, the valuation functions of each of the

agents in two subfigures in Figure 3.1 are ordinally equivalent.

Figure 3.1: Example of a cake cutting problem with piecewise constant value density functions. The

area with vertical lines is under the value density function of agent 1 and the area with horizontal

lines is under the value density function of agent 2. The valuation functions of agent 1 are ordinally

equivalent in the two subfigures above.

It is easily verified that the notion of ordinal equivalence partitions the class of value density

functions into equivalence classes. Let V̂ denote the class of value density functions ordinally equivalent

to a given value density function v.

An allocation is a partition of the interval [0, 1] into a set A = {X1, . . . , Xn,W}, where each Xi is

a finite union of disjoint subintervals of [0, 1], and is the portion of the cake allocated to agent i; and
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W is the part of the cake that is wasted, i.e. not allocated to anyone. The value of Xi to agent i is

Vi(Xi) =
∫
Xi
vi(x)dx =

∑
I∈Xi

∫
I vi(x)dx, which can be expressed as a finite sum, as each Xi is a finite

union of intervals, and agent i has a piecewise constant valuation function. Note that valuations are

non-atomic (Vi([x, x]) = 0) and additive: Vi(X ∪ Y ) = Vi(X) + Vi(Y ) where X and Y are disjoint15.

The set of agentsN and the profile of valuation functions {v1, . . . , vn} completely specify an instance

of the cake-cutting problem. The goal is to find an allocation to the agents satisfying some appealing

properties.

3.2.2 Properties of Allocations

The standard efficiency criterion is that of Pareto efficiency. An allocation is Pareto efficient if no

agent i can get a higher value via a different allocation without some other agent j getting a lower

value in that allocation. Formally, (X1, X2, . . . , Xn,W ) is Pareto efficient if there does not exist another

allocation (Y1, Y2, . . . , Yn,W
′) such that Vi(Yi) ≥ Vi(Xi) for all i ∈ N and Vi(Yi) > Vi(Xi) for some

i ∈ N . Occasionally, we shall weaken the efficiency requirement to Non-wastefulness: An allocation is

non-wasteful if every portion of the cake desired by at least one agent is allocated to some agent who

desires it. Formally, let Zi represent the subintervals of [0, 1] for which agent i has zero value, and define

Z =
⋂
i∈N Zi. Then, an allocation (X1, X2, . . . , Xn,W ) is non-wasteful if and only if Xi ∩Zi ⊆ Z for

all i and W ⊆ Z.

The two most important and commonly used criteria for an allocation to be fair are envy-freeness

and proportionality. An allocation is envy-free, if Vi(Xi) ≥ Vi(Xj) for every pair of agents i and j,

that is every agent considers his allocation to be at least as good as any other agent’s allocation. In a

proportional allocation, Vi(Xi) ≥ 1
nVi([0, 1]) for every agent i, that is, each agent gets at least 1/n of

the value he has for the entire cake. Envy-freeness implies proportionality provided that every desirable

part of the cake is allocated.

We can strengthen the fairness requirement by demanding envy-freeness or proportionality for

every value density function ordinally equivalent to vi, for each agent i. This gives rise to robust

notions of these properties that we term, respectively, robust envy-freeness and robust proportionality.

An allocation satisfies robust proportionality if for each agent i and for all v′i ∈ V̂i,
∫
Xi
v′i(x)dx ≥

1/n
∫ 1
0 v
′
i(x)dx. (Recall that V̂i contains all value density functions ordinally equivalent to vi.) An

15Some papers in the literature assume Vi[0, 1] = 1 for each agent i, but we do not make this normalization assumption.
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allocation satisfies robust envy-freeness if for all i, j ∈ N and for all v′i ∈ V̂i,
∫
Xi
v′i(x)dx ≥

∫
Xj
v′i(x)dx.

The motivation behind these requirements is clear: even if an agent re-adjusts or perturbs his value

density function, the allocation remains envy-free or proportional as long as these perturbations do

not change the relative desirability of the various parts of the cake. Thus, an agent does not have to

worry too much about learning or reporting his utility accurately for various parts of the cake16.

3.2.3 Properties of Cake Cutting Algorithms

A deterministic cake cutting algorithm maps each valuation profile to an allocation. A randomized

cake cutting algorithm maps each valuation profile to a probability distribution over allocations. An

algorithm (either deterministic or randomized) satisfies one of the aforementioned properties (e.g.

Pareto efficiency) if it returns an allocation that satisfies the property for every valuation profile.

We assume that each agent’s valuation function is private information for the agent that is not

known to the algorithm designer. Therefore, the designer first asks the agents to report their value

density function and then runs the algorithm on the reported input to find an allocation. As we

consider piecewise constant value density functions, each agent need only report 2k+ 1 numbers if his

valuation function has k breakpoints: the location of the k breakpoints, and the (constant) value rate

he has for each of his k + 1 pieces. To incentivize the agents to report their valuations truthfully, the

designer must employ a strategyproof algorithm, defined next.

A deterministic algorithm is strategyproof if no agent ever has an incentive to misreport in order

to get a better allocation. Formally, let Xi(vi, v−i) be the allocation returned by an algorithm when

agent i reports vi and the other agents report v−i. Then we say that an algorithm is strategyproof if

vi(Xi(vi, v−i)) ≥ vi(Xi(v
′
i, v−i)), ∀i, vi, v′i, v−i.

Similarly, a deterministic algorithm is group-strategyproof if it is not possible for any subset S ⊆ N

of agents to misreport their preferences such that each of them weakly prefers his allocation under

the misreport, and such that at least one of them strictly prefers his allocation under the misreport.

A deterministic algorithm is weakly group-strategyproof if it is not possible for any subset S ⊆ N of

16Let us say that a cake is part chocolate and part vanilla. An agent may easily state that chocolate is more preferable

than vanilla but would require much more effort to say that if the vanilla piece is exactly 1.372 times bigger than the

chocolate piece then he would prefer both pieces equally.
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agents to misreport their preferences such that each of them strictly prefers his allocation under the

misreport.

The definitions of strategyproofness and group-strategyproofness can be extended to randomized

algorithms in different ways. In a randomized algorithm, the allocation of each agent is probabilistic,

and so the definition of strategyproofness will require us to compare an agent’s probabilistic allocation

under his true report to his probabilistic allocation when he misreports. A natural way to compare is to

compare his expected utility under the two allocations. This leads us to the definition of strategyproof-

ness in expectation: a randomized algorithm is strategyproof in expectation if the expected utility to

an agent from reporting truthfully is greater than or equal to his expected utility from any misreport,

regardless of the reports of the other agents.

Finally, consider a special class of valuation profiles in which any part of the cake desirable to one

agent is undesirable to every other agent, and in which each agent has a positive valuation for at most

1/n fraction of the cake. A cake cutting algorithm satisfies unanimity, if for any such valuation profile

each agent is allocated all the intervals for which he has a positive valuation.

3.2.4 Relationship between the Properties

We record some important relationships among the various properties we have discussed so far. Specif-

ically, for the cake-cutting problem:

• robust proportionality =⇒ proportionality.

• robust envy-freeness =⇒ envy-freeness.

• (robust) envy-freeness and non-wastefulness =⇒ (robust) proportionality.

• group strategyproofness =⇒ weak group strategyproofness =⇒ strategyproofness.

• Pareto efficiency =⇒ non-wastefulness =⇒ unanimity.

• (robust) proportionality =⇒ (robust) envy-freeness when there are two agents (see [44]).

3.2.5 The Free Disposal Assumption

We may assume without lost of generality that every part of the cake is desired by at least one agent.

If that is not the case, we can discard the parts that are desired by no one and rescale what is
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left so that we get a [0, 1] interval representation of the cake. Notice that this procedure preserves

the aforementioned properties of fairness and efficiency. We will make use of this assumption in our

description of CCEA and MEA.

3.2.6 The (Random) Assignment Problem and its Relationship to Cake Cutting

An assignment problem is specified by a triple (N,O,%, cap(·)), where N = {1, . . . , n} is the set of

agents, and O = {o1, . . . om} is the set of objects. Each object j has a consumption capacity cap(j).

The preference profile %= (%1, . . . ,%n) specifies each agent’s preference ordering over the objects. We

will assume that the preference relation of each agent is complete (every pair of objects is comparable)

and transitive. By a %i b, we mean that agent i weakly prefers object a to object b. We write a �i b
if i strictly prefers a to b, i.e. a %i b but b 6%i a; and we use a ∼i b when i is indifferent between a and

b, i.e. a %i b and b %i a. We assume that the indifference relation is also transitive. Thus each agent

has a most-preferred subset of objects (and the agent is indifferent between all the objects within this

set), followed by a most-preferred subset of objects among the remaining ones, etc. An agent may find

some of the objects unacceptable, and each agent is allocated only objects that he finds acceptable.

We will let Ai denote the set of acceptable objects to agent i. In the (random) assignment literature,

it is also further assumed that the number of objects equals the number of agents, every object has a

unit capacity, and every agent is allowed to obtain at most one unit of object(s) in total. We make no

such assumptions here.

Given an instance of the cake cutting problem, we can obtain a corresponding instance of the as-

signment problem as follows. First, we identify the union of breakpoints of the agents’ value density

functions, and divide the cake up into disjoint intervals each of whose endpoints are consecutive break-

points. We refer to these intervals as intervals by the breakpoints, which play the role of objects in

our assignment problem. The preferences of the agents over the objects are naturally induced by their

values for the corresponding subintervals. The objects that an agent finds unacceptable correspond to

intervals where his value density function is zero. Moreover, the capacity of an object is exactly the

length of the corresponding interval. From now on, we will refer to this transformation as the canonical

transformation. Below is the pseudocode for the canonical transformation.

The output to an assignment problem is often captured by an allocation matrix p. If the objects are

divisible, then pioj denotes the amount of object oj allocated to agent i. If the objects are indivisible,
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Algorithm 3.1 Canonical Tranformation

Input: Cake-cutting problem with piecewise constant valuations (v1, . . . , vn).

Output: An assignment instance (N,O,%, cap(·)).
1: Identify the union of breakpoints of agents’ value density functions. Let J = {J1, . . . , Jm} be the set of intervals of

[0, 1] formed by the breakpoints.

2: Consider (N,O,%, cap(·)) where

• O = {o1, . . . , om} where oi = Ji for all i ∈ {1, . . . ,m} with cap(i) = len(Ji).

• % is defined as follows: o %i o′ if and only if vi(x) ≥ vi(y) for x ∈ o and y ∈ o′;

•

3: Discard the objects that give every agent an utility of zero from O.

then one may view
pioj

cap(oj)
as the probability that object oj is allocated to agent i. The objects

in the assignment problem obtained from the canonical transformation are assumed to be divisible.

Given a cake cutting instance, let (o1, o2, . . . , om) be objects in the corresponding assignment problem

obtained from the canonical transformation. Let pi be the i-th row of the allocation matrix p. We

say that the allocation matrix p is stochastically envy-free if for every pair of i and i′, and for every

object oj that agent i finds acceptable, we have
∑

ok%ioj
piok ≥

∑
ok%ioj

pi′ok . Similarly, we say that the

allocation matrix p is stochastically proportional if for every i, and for every object oj that agent i finds

acceptable, we have
∑

ok%ioj
piok ≥ 1/n

∑
ok%ioj

cap(ok). In other words, an allocation is stochastically

proportional if it stochastically dominates the uniform allocation. The following two propositions

show that robust envy-freeness/proportionality in a cake cutting instance is equivalent to stochastic

envy-freeness/proportionality in the corresponding assignment instance.

Proposition 3.1. For a given allocation A = {X1, . . . , Xn} in a cake cutting instance, let p be the

allocation matrix in the corresponding assignment problem. Then

• A is robustly envy-free if and only if p is stochastically envy-free.

• A is robustly proportional if and only if p is stochastically proportional.

Both propositions follow from basic properties of first-order stochastic dominance (see [9]). Note

that, as a corollary, we see that both robust envy-freeness and robust proportionality require each

agent to get a piece of cake of the same length if every agent desires the entire cake.
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3.3 CCEA — Controlled Cake Eating Algorithm

Given an instance of the cake cutting problem, CCEA first applies the canonical transformation to

obtain a corresponding instance of the assignment problem and then applies the EPS algorithm of [76]

to that instance. The EPS algorithm can be described as a “cake-eating” algorithm in which agents

consume their best object(s) at unit rate. Roughly, each agent simultaneously consumes her “best set”

of available objects at a unit rate at each point in time. If all the preferences are strict, this algorithm

reduces to the original Probablistic Serial (PS) algorithm of [29], which determines a unique allocation

for the agents. Please see Section 2.2.3 for a description of the EPS algorithm. Note that although

Katta and Sethuraman considered the standard assignment problem in which each agent has unit

demand and each object has unit capacity, the algorithm can be easily extended to the case in which

objects have different capacities and there is no constraint on the total size of an agent’s allocation.17

It is straightforward to compute the corresponding division of the cake from the solution given by the

EPS algorithm: If an agent i is given pj units of object oj , then in the cake allocation agent i receives

a subinterval of length pj from the interval Jj .

Algorithm 3.2 CCEA (Controlled Cake Eating Algorithm).

Input: Cake-cutting problem with piecewise constant valuations (v1, . . . , vn).

Output: Robust proportional, robust envy-free, and non-wasteful allocation.

1: Apply the canonical transformation to obtain (N,O,%, cap(·)).

2: p←− EPS(N,O′,%, cap(·))

3: For interval Jj be the interval correspond to object oj , agent i is an allocated subinterval of Jj , denoted by J ij , which

is of length pioj . For example, if Jj = [aj , bj ], then J ij = [aj +
∑i−1
n=1 pioj , aj +

∑i
n=1 pioj ].

4: Xi ←−
⋃m
j=1 J

i
j for all i ∈ N return X = (X1, . . . , Xn)

Example 3.1 (Illustration of CCEA). We examine how CCEA runs on the cake cutting problem in

Figure 3.1. Firstly, the set J = {J1, . . . , J4} of subintervals of [0, 1], formed by the consecutive points of

discontinuity of the agent valuation functions, are identified: J1 = [0, 0.1], J2 = [0.1, 0.3], J3 = [0.3, 0.5],

and J4 = [0.5, 1]. The interval J2 is discarded because it is desired by no agent. The corresponding

assignment problem has three objects, {o1, o3, o4}, where object oj corresponds to subinterval Jj. The

17When there is an upper bound on how much an agent can consume, EPS stops the agent from consuming beyond

this limit.
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capacities of the objects are given by the lengths of the corresponding subintervals: thus, cap(o1) = 0.1,

cap(o3) = 0.2, and cap(o4) = 0.5. The preferences of the agents over O are inferred from their valuation

functions in the corresponding subintervals, so that o1 �1 o4 �1 o3 and o3 ∼2 o4 �2 o1. The assignment

found by the EPS algorithm on the associated assignment instance is: p1o1 = 0.1, p1o3 = 0, p1o4 = 0.3,

p2o1 = 0, p2o3 = 0.2, and p2o4 = 0.2. The object assignment p can be used to divide the subintervals

among the agents: X1 = [0, 0.1] ∪ [0.7, 1] and X2 = [0.3, 0.5] ∪ [0.5, 0.7].

The main result of this section is the following.

Theorem 3.1. For piecewise constant valuations, there exists a deterministic polynomial time algo-

rithm (CCEA) that is robust envy-free and non-wasteful.

Proof. Two simple observations establish that CCEA is non-wasteful: first, no agent is assigned a

part of the cake for which he has zero valuation; and second, the algorithm terminates only when

every portion of the cake that is desired by at least one agent is completely consumed by some agent

who desires it. By Proposition 3.1, showing robust envy-freeness of CCEA is equivalent to showing

stochastic envy-freeness of EPS under the canonical transformed assignment instance. This result is

similar to Theorem 4 of [76]. We give the proof here for the sake of completeness. Let M(i, o) be the

set of objects that agent i weakly prefers to o, i.e. M(i, o) = {o′ | o′ %i o} for every object o that agent

i finds acceptable. Let ti,o be the time at which all objects from M(i, o) are completely consumed

under EPS. Note that on the time interval [0, ti,o], agent i has been consuming only objects from the

set M(i, o) under EPS. Moreover, since all other agents consume at the same rate as agent i, agent j’s

total consumption from objects in the set M(i, o) is at most to. Putting it altogether, we get

∑
o′%o

pio′ = ti,o ≥
∑
o′%o

pjo′

for all i, j and objects o that agent i finds acceptable. This completes the proof.

Remark 3.1. CCEA is a polynomial time algorithm. The parametric network flow problem that EPS

relies on can be solved in time O(|V ||E| log(|V |2/|E|)) due to [64], where V and E are the vertex and

edge sets of the network respectively. Let b be the total number of breakpoints in the agents’ valuation

functions. Then |V | = O(n+ b). Moreover, the number of iterations of EPS is upper bounded by b, as

at least one object corresponding to some interval is completely consumed in every iteration.
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We showed that CCEA is robust envy-free and non-wasteful. Nonetheless, CCEA is not strate-

gyproof. We now show that this is not a flaw in our design rather the aforementioned properties are

not compatible with each other in the PCV domain.

Theorem 3.5. For piecewise constant valuation profiles with at least two agents, there exists no

algorithm that is strategyproof, robust proportional, and non-wasteful.

Proof. Consider the following three profiles:

Profile 1:

1 : v1(x) = a if x ∈ [0, 0.25], v1(x) = b if x ∈ (0.25, 0.5], v1(x) = 0 if x ∈ (0.5, 1]

2 : v2(x) = a if x ∈ [0, 0.25], v2(x) = b if x ∈ (0.25, 0.5], v2(x) = 0 if x ∈ (0.5, 1]

3 : vn(x) = 0 if x ∈ [0, 0.5], vn(x) = a if x ∈ (0.5, 1]

. . .

n : vn(x) = 0 if x ∈ [0, 0.5], vn(x) = a if x ∈ (0.5, 1]

for some a > b > 0.

Since the algorithm is robust proportional, it must be the case that agents 1 and 2 each receives

1/2 of [0, 0.25] and 1/2 of (0.25, 0.5]. Denote agent 1’s allocation by A ∪ B, where A ⊂ [0, 0.25] and

B ⊂ (0.25, 0.5]. Thus, agent 2 receives [0, 0.5]\(A ∪B) by non-wastefulness.

Now consider profile 2:

1 : v1(x) = a if x ∈ A, v1(x) = b if x ∈ B, v1(x) = 0 otherwise

2 : v2(x) = a if x ∈ [0, 0.25], v2(x) = b if x ∈ (0.25, 0.5], v2(x) = 0 if x ∈ (0.5, 1]

3 : vn(x) = 0 if x ∈ [0, 0.5], vn(x) = a if x ∈ (0.5, 1]

. . .

n : vn(x) = 0 if x ∈ [0, 0.5], vn(x) = a if x ∈ (0.5, 1]

By strategyproofness, agent 1 must again receive A∪B. If agent 1 receives anything less in profile

2, then he would deviate from profile 2 to profile 1. If agent 1 receives anything more in profile 2, then

he would deviate from profile 1 to profile 2. Thus, agent 2 receives [0, 0.5]\(A∪B) by non-wastefulness.
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Now consider profile 3:

1 : v1(x) = a if x ∈ A, v1(x) = b if x ∈ B, v1(x) = 0 otherwise

2 : v2(x) = a+ε if x ∈ A, v2(x) = a if x ∈ (0, 0.25]\A, v2(x) = b if x ∈ (0.25, 0.5], v2(x) = 0 if x ∈ (0.5, 1]

3 : vn(x) = 0 if x ∈ [0, 0.5], vn(x) = a if x ∈ (0.5, 1]

. . .

n : vn(x) = 0 if x ∈ [0, 0.5], vn(x) = a if x ∈ (0.5, 1]

By robust proportionality, both agent 1 and 2 must receive 1/2 of A. By non-wastefulness, agent 2

must receive [0, 0.5]\(A ∪ B), since the rest of the agents all have a utility of 0 on these intervals.

Hence, agent 2 in profile 2 would misreport so that he receives the allocation in profile 3, violating

strategyproofness.

3.3.1 CCEA for Piecewise Uniform Valuations

We now turn to the case in which all agents have piecewise uniform valuations. This obtains when each

agent partitions the cake into desirable and undesirable parts such that all desirable parts have equal

value density, and the undesirable parts have zero value density. Clearly, this is the special case of

piecewise constant valuations in which each agent i’s value density function assumes only two values:

a positive real number ki or zero.

The CCEA when restricted to piecewise uniform valuation functions profile is identical to Mecha-

nism 1 of [44]. (The one cosmetic difference is that the underlying bipartite network used for solving

the parametric network flow have the supply and demand nodes swapped and arc directions reversed.

Note that this change will not affect the final allocation.) We provide a description of this mechanism

below as it will be needed in the subsequent parts of the chapter.

Chen et al. [44] proved their mechanism is strategyproof for when agents have piecewise uniform

valuation functions.18 We now show that their mechanism is in fact group strategyproof.

18The free disposal assumption is necessary to ensure the algorithm of [44] to be strategyproof for piecewise uniform

valuations. Therefore, we also make use of the free disposal in the canonical transformation in the algorithmic description

for CCEA. The existence of a non-free disposal algorithm that satisfies all of the desirable properties in the piecewise

uniform setting remains an open question.
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Algorithm 3.3 CCEA for piecewise uniform valuations.

Input: Cake-cutting problem with piecewise uniform valuations.

Output: Robust proportional, robust envy-free, and Pareto optimal allocation.

1: Apply the canonical transformation to obtain (N,O,%, size(·)).

2: Run subroutine (N,O,%, cap(·)).

Subroutine (N ′, O′,%, cap(·)):
1: Let C(S,O′) be the total capacity of objects from O′ that at least one agent in S ⊆ N ′ finds acceptable. Compute

bottleneck set

B ∈ arg min
S

C(S,O′)

|S| ,

break ties according to any lexicographic ordering over the power-set of N .

2: Assign C(B,O′)
|B| units of acceptable object(s) to each agent in B in the form of subinterval(s).

3: Remove the allocated objects and the bottleneck agents. Run subroutine (N ′\B,O′\C(B,O′),%, cap(·)).

Proposition 3.2. For piecewise uniform value functions, CCEA is group strategyproof.

The proof is via induction on the bottleneck set. We give a proof outline here, the full proof can

be found in the Appendix A. We first show that no agent in the first bottleneck set can receive a

desired allocation larger in length than the one he receives when reporting truthfully. Next, we show

that there is no incentive for an agent to misreport in order to receive a piece of cake that he does not

desire but another agent in a subsequent bottleneck set desires.

3.4 MEA — Market Equilibrium Algorithm

In this section, we present another algorithm for cake-cutting called the Market Equilibrium Algorithm

(MEA). MEA first applies the canonical transformation to turn the cake cutting instance into an

assignment problem instance, and subsequently makes use of the Eisenberg-Gale convex programming

formulation for finding a (Fisher) market equilibrium of that instance. The convex program can be

solved in polynomial time due to recent algorithmic advances (see [54]). We show that MEA always

returns an allocation that is envy-free and Pareto efficient. Somewhat surprisingly, we also show that

MEA can be view as another extension of Mechanism 1 in [44]. A detailed description of the algorithm

can be found below.

The connection between a fair and efficient algorithm for cake cutting and computing market

equilibria was first made by [100]. Reijnierse and Potters presented an algorithm to compute an ap-
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Algorithm 3.4 The Market Equilibrium Algorithm to compute a Pareto optimal, envy-free, and

proportional allocation.

Input: Cake-cutting problem with piecewise constant valuations.

Output: A proportional, envy-free, and Pareto optimal allocation.

1: Let J = {J1, . . . , Jk} be the intervals induced by the break points of the agents’ valuation functions.

2: Discard all interval(s) for which every agent has zero valuation over.

3: Let xij be the length of any subinterval of Ji that is allocated to agent j.

4: Let li = len(Ji), vij = vi(x), x ∈ Ji.

5: Solve the following convex program.

max

n∑
j=1

log(uj)

s.t. uj =

k∑
i=1

vijxij ∀j = 1, . . . , n

n∑
j=1

xij ≤ li ∀i = 1, . . . , k

xij ≥ 0 ∀i, j.

6: Let u?j , x
?
ij be an optimal solution to the convex program. Partition every interval Ji = [ai, bi] into n subintervals

where the j-th subinterval Jji = [ai +
∑j−1
k=1 x

?
ik, ai +

∑j
k=1 x

?
ik].

7: Xj ←− ∪ki=1J
j
i be the allocation of each j = 1, . . . , n. return X = (X1, . . . , Xn).

proximately envy-free and Pareto optimal allocation for cake cutting with general valuations. However,

their algorithm is not polynomial-time even for piecewise constant valuations (see [132]). MEA requires

the machinery of convex programming. It remains open whether MEA can be implemented via lin-

ear programming. Cohler et al. [48] presented a linear-programming based algorithm to compute an

optimal envy-free allocation. The allocation they find is Pareto efficient within the class of envy-free

allocations, but need not be Pareto efficient in general.

Although MEA is not robust envy-free like CCEA, it is Pareto efficient.

Theorem 3.2. For piecewise constant valuations, there exists a deterministic polynomial time algo-

rithm (MEA) that is Pareto efficient and envy-free.

Proof. Notice that the feasible region of the math program contains all feasible allocations. Pareto

efficiency is immediately implied by the optimality of the solution. To see that the optimal solution of

the math program is also an envy free allocation, if we instead view xij as the fractional amount of Ji
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that is allocated to agent j, then scaling the vij ’s appropriately (i.e. setting v′ij = vijli), then solving

the math program in MEA is equivalent to solving the following math program.

max
n∑
j=1

log uj

s.t. uj =
k∑
i=1

v′ijxij ∀j = 1, . . . , n

n∑
j=1

xij ≤ 1 ∀i = 1, . . . , k

xij ≥ 0 ∀i, j.

Following Vazirani pages 105-107 of [126], consider a market setting of buyers (agents) and divisible

goods (intervals). Each good is assumed to be desired by at least one buyer (i.e. for every good i,

vij > 0 for some buyer j, which holds in our setting by the free disposal assumption). There is a unit

of each good and each buyer is given the same amount of money say 1 dollar, for which he uses to

purchases the good(s) that maximizes his utility subject to a set of given prices. The task is to find a set

of equilibrium prices such that the market clears (meaning all the demands are met and no part of any

good is leftover) when the buyers seek purchase good(s) to maximize their utility given the equilibrium

prices. Using duality theory, one can interpret the dual variable pi associated with the constraints∑n
j=1 xij ≤ 1 as the price of a unit of good i. By invoking the KKT conditions, Vazirani [126] showed

the prices given by the optimal dual solution is a unique set of equilibrium prices. Moreover, the primal

optimal solution for each buyer j is precisely the quantity of good(s) that the buyer ends up purchasing

that maximizes his utility given the equilibrium prices.

The optimal primal solution is an envy free allocation because given the equilibrium prices and

identical purchasing power, if a buyer strictly prefers another buyer’s allocation, he would instead use

his money to obtain the allocation of the buyer that he envies. This would result in some surplus and

deficit of goods, contradicting the fact that the given prices are equilibrium prices.

Even though MEA is envy-free and Pareto efficient, it is not strategyproof. We next observe that

no envy-free and Pareto efficient algorithm can be strategyproof when agents have piecewise constant

value density functions.
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Theorem 3.6. For piecewise constant valuation profiles with at least two agents, there exists no

algorithm that is strategyproof, Pareto efficient, and proportional.

Proof. For cake cutting with piecewise constant valuations and n ≥ 2, it follows from Theorem 3 of [108]

that the only type of strategyproof and Pareto optimal mechanisms are dictatorships. Consequently,

there exists no strategyproof and Pareto optimal mechanism that is also proportional.

Setting strategyproofness aside, we further show that the notion of robust fairness is incompatible

with Pareto efficiency. Hence, the properties satisfied by CCEA and MEA are maximal subsets of

properties that can be satisfied by any algorithm for PCV.

Theorem 3.7. For piecewise constant valuation profiles with at least two agents, there exists no

algorithm that is both Pareto efficient and robust proportional.

Consider the following n-agent profile.

1 : v1(x) = v11 for x ∈ [0, 0.25], v1(x) = v12 for x ∈ (0.25, 0.5], v1(x) = 0 for x ∈ (0.5, 1]

2 : v2(x) = v21 for x ∈ [0, 0.25], v2(x) = v22 for x ∈ (0.25, 0.5], v2(x) = 0 for x ∈ (0.5, 1]

3 : v3(x) = 0 for x ∈ [0, 0.5], v3(x) = 1 for x ∈ (0.5, 1]

. . .

n : vn(x) = 0 for x ∈ [0, 0.5], vn(x) = 1 for x ∈ (0.5, 1]

Choose v11, v
1
2, v

2
1, v

2
2 > 0 in such a way that v11 > v12 and v21 > v22 and

v11
v12
>

v21
v22

. Let xij be the length

of the subset of interval Ij allocated to agent i. By Pareto optimality, only agent 1 or 2 can receive

allocation from [0, 0.5]. By either robust proportionality, the mechanism must make an allocation

where x11 = x12 = x21 = x22 = 0.25. On the other hand, in order for the mechanism to be Pareto efficient,

the allocation vector must satisfy x12 = 0 or x21 = 0. Hence, we have reached an impossibility.

3.4.1 MEA for Piecewise Uniform Valuations

Next, we demonstrate the equivalence between MEA and Mechanism 1 of [44] for the uniform valuations

setting. By equivalence, we mean that MEA and Mechanism 1 will return two allocations that yield

the same utility for every agent given any valuation profile.
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Proposition 3.3. For piecewise uniform valuations, Mechanism 1 of [44] is equivalent to MEA.

Proof. Given an allocation of Mechanism 1, which corresponds to a feasible solution of the convex

program, we will find a set of prices corresponding to the allocation and show that the prices are

in fact the equilibrium prices. Moreover, this allocation would be an allocation that maximizes the

agents’ utility given the equilibrium prices.

Given a valuation profile, let N be the set of buyers or agents and G be the set of goods or intervals,

where each good has capacity equaling the length of the corresponding interval. Run Mechanism 1 on

the same profile. Let Bi be the i-th bottleneck set computed by Mechanism 1. Let Oi be the set of

remaining goods at the start of iteration i of Mechanism 1.

Let Gi be the set of goods that are distributed amongst the buyers in Bi. In the convex program,

since each buyer is endowed with 1 dollar and every buyer in Bi receives AV G(Bi, O
i) = C(Bi, O

i)/|Bi|
units of good(s), it is natural to define the price of a unit of each good k ∈ Gi to be

pk =
|Bi|

C(Bi, Oi)
.

Notice that the prices for each good is well defined. This follows from the following observations:

1. ∪Gi = G or every good has at least one price. This follows from the assumption that every good

is desired by at least one agent, which means that Mechanism 1 will allocate all of the goods.

2. Gi ∩ Gj = ∅ for all i 6= j or every good has at most one price. This follows from the fact that

no fractional parts of any good is allocated to agents from two or more bottleneck sets, which is

another algorithmic property of Mechanism 1.

To show that the pk’s form a set of equilibrium prices, we will show that given the pk’s, the buyers

in every Bi will choose to purchase only goods from Gi to maximize their utility function. For uniform

valuation, one can show inductively that for every i and every buyer j in Bi, buyer j’s desired set of

goods Dj is a subset of ∪ii′=1Gi. Moreover, Lemma 3.4 of [44] shows that AV G(Bi, O
i) is an increasing

function of i, which means that goods belonging to Gi are cheaper than those belonging to Gi′ for

i > i′. Hence, all buyers in Bi will opt to buy as much of their desired goods in Gi as possible.

Furthermore, each buyer has enough budget to buy up to AV G(Bi, O
i) unit of goods from Gi, since

the price of each good is 1/AV G(Bi, O
i). Finally, one can partition the goods in Gi such that every

buyer in Bi receives exactly AV G(Bi, O
i) unit of goods that he desires, which means that all buyers
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in Bi will use up their budgets to purchase all of the goods in Gi. This implies that the given prices

clear the market.

Corollary 3.1. For piecewise uniform valuations, MEA is group-strategyproof.

Thus if we want to generalize Mechanism 1 of [44] to piecewise constant valuations and maintain

robust envy-freeness then we should opt for CCEA. On the other hand, if one still wants to achieve

Pareto optimality, then MEA is the appropriate generalization. In both generalization, we lose strate-

gyproofness.

3.5 MCSD — Mixed Constrained Serial Dictatorship Algorithm

In light of the impossibility results established in Theorems 3.5 and 3.6, it is reasonable to ask if there

is a strategyproof cake-cutting algorithm satisfying some appealing properties. If Pareto efficiency is

the additional property we require, it follows from Theorem 3 of [108] that every strategyproof mech-

anism must be a dictatorship, which in our case would reduce to giving some agent every part of the

cake that he finds desirable. Chen et al. [44] asked if there is a strategyproof and proportional algo-

rithm for piecewise constant valuations. Our next mechanism—Mixed Constrained Serial Dictatorship

(MCSD)—is a partial answer to that question.

Before diving into the MCSD algorithm, we would like to draw the reader’s attention to a funda-

mental difference between the (random) assignment problem and the cake cutting problem. In random

assignment, the objects being allocated are commonly known. In the cake-cutting problem, however,

the discontinuity points of each agent’s valuation function is private information for that agent, so any

algorithm that uses the reported discontinuity points to artificially create the objects must also incen-

tivize the agents to report these breakpoints truthfully. Otherwise, the transformation to the random

assignment instance could create an object over which some agent has non-uniform preferences. To

illustrate this difficulty, consider the uniform allocation rule [41] for the assignment problem, which

distributes a 1/n fraction of each object to each agent. It is easy to see that this rule is strategyproof

(the allocation is insensitive to the reported preferences) and proportional for the assignment model.

Suppose we use the same rule for the cake-cutting problem in the following manner: agents report their

value density functions (breakpoints and values in each interval), and the transformation is applied to

create an assignment instance with the objects being subintervals in which each agent’s reported value
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density is a constant. For the rule to be fully specified, we need to say precisely which piece or pieces

adding up to a 1/n fraction of each subinterval is assigned to an agent. The next proposition shows

that no deterministic conversion method can make the uniform rule strategyproof.

Proposition 3.4. No deterministic implementation of the fraction-to-subinterval conversion method

for the uniform allocation rule is strategyproof.

Chen et al. [44] proposed a randomized mechanism that is strategyproof in expectation, ex-post

robust proportional and envy-free motivated by a notion of perfect partition (see their paper details).

Their mechanism can be viewed as a randomized implementation of the fraction-to-subinterval conver-

sion method for the uniform allocation rule. However, since the uniform allocation rule does not take

into account the preference of the agents, it has poor efficiency guarantees. This motivates the design

of MCSD which achieves better efficiency guarantees by taking agent preferences into account.

We start with a randomized algorithm that is strategyproof and robust proportional in expectation.

The algorithm is a variant of random dictatorship. A random ordering of the agents is drawn, each

ordering equally likely. Agents choose pieces of the cake in this order, with the additional constraint

that each agent consume at most 1/n fraction of the cake in total. Obviously, each agent will consume

his most-preferred part of the cake when it is his turn, and there may be many equally good choices for

an agent. To handle this, we break ties consistently by allocating to each agent the left-most part of the

cake that he prefers most; if his most preferred pieces have been completely consumed, but he has not

reached his quota of 1/n, then starts consuming the left most part of his second most preferred pieces,

etc. until his quota is reached. We will call this algorithm Constrained Random Serial Dictatorship

(CRSD). Notice that CRSD is strategyproof, as in every draw of lottery, it is optimal for the agents

to report their valuation function truthfully. Later in Proposition 3.6, we show that CRSD is robust

proportional in expectation. To summarize, CRSD is a randomized algorithm that is strategyproof

and satisfies robust proportionality in expectation.

The MCSD algorithm, described next, can be thought of as a derandomized version of CRSD

obtained by computing the CRSD allocation for each of the n! different permutations and aggregating

them appropriately. The algorithm is formally presented as Algorithm 3.5.19

Note that MCSD may require an exponential number of cuts of the cake in the number of agents.

19We do not make the free disposal assumption in the algorithmic description here.
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In Example 3.2, we illustrate how MCSD works.

Example 3.2 (Illustration of MCSD). We implement MCSD on the cake cutting problem in Figure 3.1.

For the permutation (12), agent 1 first chooses the cake piece [0, 0.1]∪ [0.5, 0.9] and agent 2 then takes

the remaining piece [0.1, 0.5] ∪ [0.9, 1]. For the permutation (21), agent 2 first chooses the cake piece

[0.3, 0.8] and agent 1 then takes the remaining piece [0, 0.3] ∪ [0.8, 1].

The set of all relevant subintervals induced by the two permutations is

{[0, 0.1], [0.1, 0.3], [0.3, 0.5], [0.5, 0.8], [0.8, 0.9], [0.9, 1]}.

When we we additionally consider the discontinuities in the players’ valuations, the set of relevant

subintervals becomes

J ′ = {[0, 0.1], [0.1, 0.3], [0.3, 0.5], [0.5, 0.6], [0.6, 0.8], [0.8, 0.9], [0.9, 1].

Counting the number of times each agent receives each subinterval and dividing the counts by 2, we

get:

X1 = [0, 0.1] ∪ 1

2
[0.1, 0.3] ∪ 1

2
[0.5, 0.6] ∪ 1

2
[0.6, 0.8] ∪ [0.8, 0.9] ∪ 1

2
[0.9, 1]

and

X2 =
1

2
[0.1, 0.3] ∪ [0.3, 0.5] ∪ 1

2
[0.5, 0.6] ∪ 1

2
[0.6, 0.8] ∪ 1

2
[0.9, 1].

where p[a, b] for some 0 ≤ p ≤ 1 denotes a subinterval of [a, b] with length equal to p times that of

[a, b].

Proposition 3.5. For piecewise constant valuations, MCSD is well-defined and returns a feasible

allocation in which each agent receives a collection of intervals of total length 1/n.

The proof is deferred to Appendix A.

Proposition 3.6. For piecewise constant valuations, MCSD satisfies robust proportionality.

Proof. We first prove that MCSD satisfies proportionality. In the case where all agents have the same

valuations as the valuation of i, i is guaranteed 1/n of the value of the whole cake as MCSD allocates a

1/n fraction of each interval to each agent. Next, fixing the value density function of agent i, agent i’s
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utility is minimized under the MCSD allocation when all other agents have identical utility. Formally,

we have for each π ∈ ΠN and preferences V−i of all agents other than i,

Vi(MCSDπ(Vi, V−i)) ≥ Vi(MCSDπ(Vi, (Vi, . . . , Vi))).

The reason is for any fixed permutation of the agents, the predecessors of i in π leave weakly better

pieces of the cake for i when their valuations are different from i compared to when their valuations

are the same. Averaging over all permutations, we get

Vi(MCSD(Vi, V−i)) ≥ Vi(MCSD(Vi, (Vi, . . . , Vi))) =
Vi([0, 1])

n
.

Finally, note that when an agent selects his best possible cake piece in each permutation, the exact

height of the valuation function is not relevant and only the relative height matters. Hence, MCSD in

fact satisfies robust proportionality.

Corollary 3.2. For any valuation profile, the allocation returned by MCSD stochastically dominates

that of the uniform allocation rule.

This follows from Proposition 3.1. Hence, we have a precise measure under which MCSD is more

efficient than the uniform allocation rule.

In order to implement MCSD, we need to specify how a fractional portion of the interval Jj is

converted to a subinterval or collection of subintervals of Jj . As with the uniform allocation rule, the

strategyproofness of MCSD depends on how this conversion is done. In fact, Proposition 3.4 also implies

that no deterministic implementation of the conversion procedure can make MCSD strategyproof. This

is because, when every agent has an identical valuation function, then MCSD coincides with the uniform

rule due to robust proportionality.

Corollary 3.3. MCSD is not strategyproof under any deterministic procedure that converts fraction

of each interval of J ′ to a collection of subintervals of that interval.

In light of this difficulty, we describe a randomized conversion method (see Algorithm 3.6) that

makes MCSD strategyproof. The method first fixes an ordering of the agents and randomly picks a

starting point inside each interval. The subintervals are then carved out in proportion to the fractional

assignments. Whenever we reach the right endpoint of the interval with our cuts, we wrap around and

keep going starting with the left endpoint of the interval (equivalently, identify the two end-points of
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the interval and turn it into a circle). This randomized implemention of MCSD is called Constrained

Mixed Serial Dictatorship, or CMSD for short. We show that CMSD is strategyproof in expectation.

Also note that even though the allocation given by CMSD is random, it guarantees the same ex-post

utility for every agent with respect to the reported valuations.

Proposition 3.7. The CMSD mechanism is strategyproof in expectation.

Consider the profiles P = (Pi, P−i) and P ′ = (P ′i , P−i) that differ only in the report of agent i.

Let J1, . . . , Jk denote the intervals whose fractional allocations are specified to each agent by MCSD

in profile P and J ′1, . . . , J
′
k′ denote the intervals whose fractional allocations are specified to each agent

by MCSD in profile P ′. Let Vi(J) denote agent i’s total utility derived from receiving the interval J .

Let pPij (pP
′

ij respectively) be the fractional allocation of interval Jj (J ′j respectively) to agent i. Since

CSRD is strategyproof, comparing the expected utility of agent i in P and P ′ (and treating i’s true

preferences as Pi), we get
k∑
j=1

pPijVi(Jj) ≥
k′∑
j=1

pP
′

ij Vi(J
′
j)

To show that our implementation of MCSD is strategyproof in expectation, it suffices to show that

if MCSD asks for a subinterval Xij of Jj with length pijlen(Jj) for some 0 ≤ pij ≤ 1, then the output

returned by Algorithm 3.6 satisfies E[Vi(Xij)] = pijVi(Jj). The following lemma, whose proof is in

Appendix A, proves this claim.20

Lemma 3.1. Let U be uniformly distributed on the interval [a, b] and let 0 ≤ α ≤ 1. Let A =

[U,U + α(b− a)] if U + α(b− a) ≤ b and A = [a, U − (1− α)(b− a)] ∪ [U, b] if U + α(b− a) > b, then

we have that EU [Vi(A)] = αVi([a, b]), where Vi(A) =
∫
A vi(x)dx for any integrable function vi.

To apply the lemma, we take a and b to be the left and right end points of Jj , α = pij and

U = mod(Uj +
∑i−1

k=1 pij(bj − aj)), the left endpoint of Xij given in Algoirthm 3.6.

We end the section with some limitations of MCSD. First, while MCSD is strategyproof in expec-

tation, it is not group strategyproof, even in the weaker sense.

Proposition 3.8. For cake cutting with piecewise constant valuations, MCSD is not weakly group-

strategyproof even for two agents.

20the lemma holds for any integrable value density function vi, not just piecewise constant value density functions.
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The proof of Proposition 3.8 can be found in Appendix A.

Furthermore, as long as there are at least seven agents, MCSD is not weak group strategyproof

even if the agents have piecewise uniform valuations. This follows from the fact that RSD is not weakly

group-strategyproof for dichotomous preferences when there are at least seven agents [29, 26].

Second, even though MCSD satisfies both proportionality and symmetry, it is not envy-free.

Proposition 3.9. MCSD is not envy-free for three agents even for piecewise uniform valuations.

The proof of Proposition 3.9 can be found in Appendix A.

However for the case of two agents, it is robust envy-free and polynomial-time.

Proposition 3.10. For two agents and piecewise constant valuations, MCSD is robust envy-free, and

polynomial-time but not Pareto optimal.

For two agents, proportionality implies envy-freeness and robust proportionality implies robust

envy-freeness (see [44]). Strategyproofness follows from Proposition 3.7. Moreover, for two agents, the

algorithm is polynomial time with only two permutations.

Finally, a significant drawback of MCSD is that it is not Pareto efficient when agents have piecewise

constant valuations. This can be seen from the example of Proposition 3.8. Moreover, computing the

MCSD allocation is non-trivial as the number of agents grows (see e.g. [105]).

3.6 Discussion

The relation between the random assignment problem and cake cutting has been noticed before [44].

However, in their discussion of related work, Chen et al. [44] argue that techniques from the random

assignment literature cannot be directly applied even to piecewise uniform functions—a subclasses

of piecewise constant functions. The authors attributed this difficulty to the fact that in the random

assignment problem, each agents gets one object. We observed that PS can be adopted to the case when

agents get multiple objects and each object has arbitrary capacity. Moreover, many of its properties of

PS in the unit demand setting remain satisfied (see [39] for generalizations of PS beyond unit demand

setting).

Chen et al. [44] stated that generalizing their strategyproof algorithm for piecewise uniform valu-

ations to the case for piecewise constant valuations as an open problem. We presented two algorithms
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— CCEA and MEA — that generalize Mechanism 1 of [44]. Although they both satisfy certain desir-

able properties, both natural generalizations are not strategyproof. Our impossibility results further

rule out the existence of mechanisms satisfying the properties that CCEA or MEA satisfies along with

strategproofness, which partially answers the open problem that [44] poses.

Apart from the paper of [44], we are aware of no positive results regarding discrete, strategyproof,

and fair algorithms even for the restricted domain of piecewise constant valuations. In this chapter we

present a proportional algorithm (MCSD) for piecewise constant valuations. If we are allowed to use

randomization, then we show that MCSD can be adapted to be strategyproof in expectation. Notice

that if we instead require our algorithm to be strategyproof ex post and proportional in expectation,

then CRSD would satify these properties. We note that [44] showed that the uniform allocation rule is

envy-free and proportional, and strategyproof in expectation. However, we argue that it is inefficient:

as it does not satisfy unanimity and its allocation is always stochastically dominated by the allocation

of MCSD. It remains an open question whether there exists a strategyproof algorithm that always

returns a proportional allocation for the piecewise constant valuation setting. In fact, the problem is

open even for the special case of piecewise constant valuation where the value density function for each

agent can take up to only two different constants. Finally, note that in the piecewise uniform case,

when one of constants is zero, we are able to leverage the free disposal property in order to obtain

strategyproofness while not incurring fairness and efficiency losses.

One difficulty that arises in coming up with strategyproof and proportional algorithm lies in that

there is no restriction on the distribution of the discontinuity points of the agents’ valuation functions.

To illustrate this point, suppose the algorithm designer knows that the discontinuity points of the

agents’ valuation functions come from a set S = {d1, . . . , dk}, where 0 ≤ d1 ≤ . . . ≤ dk ≤ 1. Con-

sequently, a mechanism that partitions [0, 1] into intervals of the form [di, di+1] and allocates 1/n of

each interval to each agent would be proportional, envy-free and strategyproof. Even if the designer

does not know such an S, but instead we require the minimum distance between any two consecutive

discontinuity points of the agent’s valuation function to be at least some ε > 0, then we can construct

a strategyproof and δ-proportional algorithm for this setting by cutting the cake into small intervals

and allocating 1/n fraction of each interval to each agent.
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Algorithm 3.5 MCSD (Mixed Constrained Serial Dictatorship)— proportional and unanimous algo-

rithm for piecewise constant valuations

Input: Cake-cutting problem with piecewise constant valuations.

Output: A robust proportional allocation.

1: for each π ∈ ΠN do

2: C ←− [0, 1] (intervals left)

3: for i = 1 to n do

4: Xπ
π(i) ←− maximum preference cake piece of size 1/n from C

5: C ←− C −Xπ
π(i).

6: i←− i+ 1.

7: end for

8: end for

9: Construct a disjoint and exhaustive interval set J ′ induced by the discontinuities in agent valuations

and the cake cuts in the n! cake allocations.

10: Yi ←− empty allocation for each i ∈ N .

11: for each Jj = [aj , bj ] ∈ J ′ do

12: for each i ∈ N do

13: Let pij =
count(i,Jj)

n! where count(i, Jj) is the number of permutations in which i gets Jj .

14: Generate Aij ⊆ Jj that is of length pij |Jj | according to a subroutine.

15: Yi ←− Yi ∪Aij
16: end for

17: end for

return Y = (Y1, . . . , Yn)
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Algorithm 3.6 A subroutine that converts fractional allocation into subintervals via randomization

Input: Interval Jj = [aj , bj ] and a vector of fractional assignment pj = (p1j , . . . , pnj), where pij is the

fractional allocation of interval Ij to agent i.

Output: Random subintervals Xij ⊆ Jj for i = 1, . . . , n, where Xij is the subinterval allocated to

agent i

1: Generate Uj ∼ unif [aj , bj ].

2: For aj ≤ x ≤ 2bj − aj , let mod (x) = x if aj ≤ x ≤ bj and x− (bj − aj) if x > bj .

3: If mod (Uj +
∑i−1

k=1 pkj(bj − aj)) ≤ mod (U +
∑i

k=1 pkj(bj − aj)) set

Xij = [ mod (Uj +
i−1∑
k=1

pkj(bj − aj)), mod (Uj +
i∑

k=1

pkj(bj − aj))]

4: Else set:

Xij = [aj , mod (Uj +

i∑
k=1

pkj(bj − aj))] ∪ [ mod (Uj +

i−1∑
k=1

pnj(bj − aj)), bj ]
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Chapter 4

A Generalization of the Probabilistic

Serial Mechanism and its Relationship

to the Leximin Allocation

4.1 Introduction

We consider a resource allocation problem on a bipartite network. There are a set of buyers or agents,

each with a demand requirement, and a set of sellers or resources, each with a supply capacity. Each

buyer has preferences over the set of sellers. Moreover, each buyer’s demand can only be satisfied (if

it is satisfied at all) in its entirety by a single seller whose capacity can accommodate the demand.

The goal is to design a mechanism that assigns the buyers to the sellers in a fair and efficient manner

while respecting the sellers’ capacities. Moreover, as each buyer’s preference ordering over the sellers

is private information, we also would like our mechanism to be strategyproof. The classical random

assignment problem (see e.g. [29]) can be viewed as a special case of this problem in which each buyer

has unit demand and each seller has unit capacity. We will refer to this case as the UDC special case.

Kurokawa et al. [81] first considered this model in the context of classroom assignment. Those

authors were contacted by a representative of one of the largest school districts in California, with the

task of allocating unused classrooms in the district’s public schools to the district’s charter schools.

Each public school has a given number of unused classrooms (its capacity), and each charter school has
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a number of required classrooms (its demand). Finally, an operational constraint requires that a charter

school’s demand must be satisfied in a single public school. Kurokawa et al. [81] modeled the agent

preferences as dichotomous: every charter school lists a subset of public schools that it finds acceptable.

In such a setting, they gave a mechanism that satisfies many nice properties, including: proportionality

(for every pair of charter and public schools i and j, the probability that i’s demand is satisfied by

a school that i weakly prefers over j is above a threshold level), envy-freeness (every charter school

prefers its probabilistic allocation to that of any other school), Pareto optimality (no other feasible

probabilistic allocation is at least as good for every charter school and strictly better for some school)

and strategyproofness (no school can benefit by misreporting its preferences). The mechanism always

computes a leximin allocation: one that maximizes the lowest probability of any charter school having

its demand satisfied in an acceptable facility; subject to this constraint, it maximizes the second lowest

probability; and so on. We shall refer to this mechanism as the leximin mechanism.

The leximin mechanism was originally proposed in the seminal paper of Bogomolnaia and Moulin

[26], who study the UDC special case. There they showed the equivalence between the probabilistic

serial mechanism and the leximin mechanism. The PS mechanism in the UDC setting was originally

proposed by Bogomolnaia and Moulin [29] as an eating procedure in which each agent consume her

most preferred resource out of the available resources at each given point in time, assuming the agents

have strict preferences. It was later extended by Katta and Sethuraman [76] to the general preference

domain, which encompasses the dichotomous preference domain as a special case. Despite failing

to be strategyproof in the general preference domain, the PS mechanism is known to be envy-free,

proportional and ordinally efficient (a generalization of Pareto optimality). A natural question is

whether the PS mechanism can be generalized to handle more general demands and capacities.

On a separate note, Bogomolnaia [27] recently gave an alternative definition of the PS mechanism

in the spirit of a leximin allocation for the UDC setting when agents have general preferences. Given

a random allocation X, let vX be a vector such that for every agent i and her preference indifference

class l, there is a entry in vX corresponding to the probability that agent i is assigned to a seller

from indifferent class l or better. Bogomolnaia [27] showed that the PS mechanism lexicographically

maximizes vX over all feasible allocations X. We will refer to this allocation as the generalized leximin

allocation in the chapter. Note that for the dichotomous preference domain, there is only one preference

indifference class for each agent. Hence, we immediately deduce from [27] that the PS mechanism
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always computes a leximin allocation for dichotomous preferences in the UDC setting.

Research Questions: Given the equivalence results between the PS and (generalized) leximin mech-

anism established by [26] and [27] for the UDC setting, it is natural to ask if there is a suitable gener-

alization of the PS mechanism that computes a generalized leximin allocation in the arbitrary demand

and supply setting. Moreover, [81] showed that the leximin mechanism is a compelling mechanism to

use in the general supply and demand setting with dichotomous agent preferences as it satisfies many

nice properties. It is not known what properties are satisfied by the generalized leximin mechanism in

the general preference domain.

4.1.1 Our Contributions

We propose the generalized probabilistic serial (GPS) mechanism. The GPS mechanism, by definition,

computes a generalized leximin allocation as defined earlier. We extend the exponential LP, proposed

in [81] for the case of dichotomous preference, to compute such an allocation. Alternatively, we

give another algorithmic approach for computing a generalized leximin allocation that is more closely

related to the interpretation of the PS mechanism as an eating algorithm in the UDC special case.

Next, we examine the properties satisfied by the GPS mechanism in the general demand and supply

capacity setting with general preferences. It is known from [29] that even for the UDC setting, the PS

mechanism fails to be strategyproof. We show that the generalized PS mechanism fails envy-freeness

as well. Nonetheless, the mechanism remains Pareto optimal, and we conjecture that it is proportional

as well.21 Our results suggest the potential need to consider other allocation methods. A summary of

the results is provided in Table 4.1.

4.1.2 Related Work

The modern literature on fair division of indivisible goods dates back at least to the seminal paper [75],

which adapted the competitive equilibrium with equal incomes (CEEI) solution. The main drawbacks

of this solution are its prohibitive computational and informational requirements: it requires the solu-

tion of a fixed-point problem, and a complete knowledge of the utility functions of the agents. Budish

21We provide a proof of proportionality for dichotomous preferences. Note that our definition of proportionality is

stronger than that of [81].
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Demand \ Preference Dichotomous General

UDC PS = leximin ([26]) PS = generalized leximin ([27])

EF, Prop, PE, weak GSP ([26]) EF, Prop, OE ([76])

General leximin = GPS (Prop. 4.1) generalized leximin = GPS (Thm 4.1)

EF, Prop, PE, SP ([81], Prop 4.3) Prop (?), OE (Prop. 4.4)

Table 4.1: abbreviations: EF = envy-freeness, prop = proportionality, PE = Pareto efficiency, OE =

ordinal efficiency, GSP = group strategyproofness.

[38] later proposed an approximate CEEI solution, where the approximation guarantees are practical

as long as the supply of each good is relatively large.

In the realm of ordinal preferences, most of the academic literature focuses on the UDC special

case, also known as the random assignment problem. The two prominent mechanisms used in the

random assignment literature are the random serial dictatorship (RSD) mechanism of [1], which orders

the agents uniformly at random and lets them successively choose an available resource according

to this (random) order, and the probabilistic serial mechanism (PS) of [29], which allows agents to

“eat” (at identical rates) their shares of different resources one by one in the order in which they

rank the resources. RSD is known to satisfy weaker efficiency and fairness properties than PS, but is

strategyproof, whereas PS is not strategyproof in general. The probabilistic allocation for an agent-

resource pair in the PS mechanism can be efficiently computed, whereas this computation is difficult

for RSD [105]. The original random assignment problem involves assigning n resources to n agents.

Since the work of [29], the PS mechanism has been extended to deal with the general preference domain

involving indifference in preferences (see [76]), multi-unit demands (see e.g. [77, 99, 10]) and general

social choice settings [12]. The Birkhoff von-Neumann theorem [24, 127] enables an algorithm to output

a compact representation of a random assignment or packing by specifying its probabilistic distribution

over all pairs of buyers and sellers. Budish et al. [39] recently generalized the Birkhoff von-Neumann

theorem to handle many real-world combinatorial domains. Unfortunately, their results do not apply

to the setting where a demand must be satisfied entirely by a single seller such as the one that we are

studying.

The leximin mechanism was original proposed by [26] for the UDC setting with dichotomous agent

preferences. Kurokawa et al. [81] were the first ones to propose the leximin mechanism for the setting
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of general supply and unsplittable demand. In addition to the nice properties mentioned in [81],

Bogolmonaia and Moulin [26] also showed the Lorenz dominance of the leximin probability vector in

the UDC seting, which does not hold for general supply and demand (see [81] for a counterexample).

Bogomolnaia [27] later showed that the PS mechanism always returns a generalized leximin allocation.

Attempting to understand the connection between the PS mechanism and the leximin allocation for

the general supply and demand setting is one of the main objectives of this chapter.

4.1.3 Model and Notation

Let B = {1, . . . , n} denote the set of buyers or agents. Let S = {1, . . . ,m} denote the set of sellers or

resources. Each buyer i has a pair (di,Pi), where di denotes the number of units demanded by the buyer

and Pi is a preference ordering over a subset of sellers Ai that buyer i finds acceptable. Specifically,

Pi is a total ordering over the set Ai ⊆ S, i.e. for every pair of sellers j, j′ ∈ Ai, either j �i j′ (j is

weakly preferred to j′) or j′ �i j (j′ is weakly preferred to j). If both of the aforementioned relations

hold, then we say that i is indifferent between sellers j and j′ or j ∼i j′. Hence, we can partition Ai

into preference indifference classes {Ai1, . . . , AiLi} indexed in decreasing preference order such that for

every l = 1, . . . , Li and every j, j′ ∈ Ail, j ∼i j′. Each seller j has a capacity cj . Since we are not

allowed to split the demand of a buyer across different sellers, buyer i finds seller j acceptable only if

di ≤ cj .
A deterministic allocation is a mapping X : B → S ∪ {0}, where Xi = X(i) denotes the seller

that buyer i is assigned to.22 Buyer i is not assigned to any seller if Xi = 0. We say that X is

feasible if for all j ∈ S,
∑

i∈B:Xi=j di ≤ cj . A feasible random allocation is a distribution over feasible

deterministic allocations. From hereon, when we refer to the term “allocation”, we will assume that it

is feasible unless stated otherwise. A random allocation is a probability distribution over deterministic

allocations. The outcome of a random allocation can be compactly described by the following sub-

stochastic matrix P = {pij}, where pij is the probability that buyer i is assigned to seller j under the

random allocation.

Let Til = ∪ll′=1Ail′ . Let BS denote the set of buyers who find some seller s ∈ S acceptable.

In this chapter, we will focus on these desirable properties:

22If buyer i is assigned to seller j, then seller j satisfies all of buyer i’s di units of demand and no larger.
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1. Envy-freeness: Buyer i is said to envy buyer i′ in an allocation if i′’s demand is at least that of

i, and there exists some seller j such that the total probability that i is assigned to a seller that

she weakly prefers to j is smaller than that of buyer i′. We say that an allocation is envy free if

no envy exists between any pair of buyers i and i′. Mathematically, an allocation is envy-free if∑
j′∈Ai:j′�ij

pij′ ≥
∑

j′∈Ai:j′�ij
pi′j′ , ∀i, i′ s.t. di′ ≥ di, and ∀j

2. Proportionality : An allocation is proportional if for each buyer i and for each of her preference

indifference level l, the probability that i is matched with a seller in Til is at least |Til|
max{|Til|,|BTil |}

.23

3. Ordinal Efficiency : Let Pi and Qi denote the probabilistic allocation vector for buyer i in

random allocation matrices P and Q respectively. We say that Pi stochastically dominates Qi

according to i’s preference or Pi � Qi if∑
j′:j′�ij

pij′ ≥
∑

j′:j′�ij
qij′ ∀i, j

We say that i strictly prefers Pi to Qi, denoted by Pi �i Qi, if at least one of the inequalities

in the above definition is strict. Finally, we say that P stochastically dominates Q, denoted by

P � Q, if Pi �i Qi for all i ∈ N , with Pi �i Qi for some i ∈ N .24 We say that a random allocation

P is ordinally efficient if it is not stochastically dominated by any other random allocation Q.

Note that our notions of envy-freeness, proportionality, and ordinal efficiency generalize the correspond-

ing concepts defined in [81] for dichotomous preferences. In particular, ordinal efficiency coincides with

Pareto optimality for dichotomous preferences.

4.1.4 The Generalized Leximin Allocation Vector

We consider an extension of the definition of leximin allocation vector introduced by [27] for the UDC

special case. Let Li be the number of preference indifference classes in buyer i’s preference ordering. Let

L =
∑n

i=1 Li. Given a random allocation matrix P , for every buyer i and indifference class Ail indexed

in decreasing preference order, compute the L-dimensional vector of probability sums (
∑

j∈Til pij)il

23The literature on fair division such as cake cutting typical uses a weaker notion of proportionality: it only requires

each agent to receive an acceptable resource with probability at least 1/n under the allocation.

24Note that our notion of stochastic dominance defines a partial order on the set of sub-stochastic matrices.
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and sort the components of this vector in non-decreasing order (break ties arbitrarily) to obtain VP .

We say that a random allocation is leximin optimal if it lexicographically maximizes the vector VP .

We will refer to such an assignment as a generalized leximin allocation (GLS), and the mechanism that

always returns such an assignment as the generalized leximin mechanism (GLM). Note that our notion

of the leximin allocation generalizes the notion defined by [81] for the dichotomous preference domain.

4.2 Computing a Generalized Leximin Allocation

We first extend the iterative LP algorithm introduced by [81] for finding a leximin optimal allocation

for the dichotomous setting to the full preference domain. To that end, we first describe a feasibility

checking subroutine:

Feasibility check subroutine:

Let vi indicate the preference indifference class to which buyer i is assigned (we set vi = 0 if i is

unassigned). That is, buyer i can only be assigned to a seller in the set Ai,vi . The question we wish

to answer is: is there a packing satisfying the demand vector (v1, . . . , vn)? This can be answered by

solving the following integer program. Define a variable xij for every seller j ∈ Ai,vi that equals to 1

if buyer i is assigned to seller j and 0 otherwise. Then we solve the following integer program:

max 0∑
j∈Ai,vi

xij = 1 ∀i = 1, . . . , n s.t. vi > 0 (4.1)

∑
i:vi≤Li,j∈Ai,vi

dixij ≤ cj ∀j = 1, . . . ,m

xij ∈ {0, 1} ∀j = 1, . . . ,m, vi = 1, . . . , Li

Given a vector v = (v1, . . . , vn), if the above integer program has a feasible solution for v, then we

include v in the set of all feasible vectors F . Once F is constructed, we define the following iterative

procedure for computing a leximin allocation.
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Iterative Allocation LP:

We let p∗il indicate the probability that buyer i is assigned to a seller in Ail in the leximin allocation

that we will iteratively compute. Initially set all p∗il = 0. Let Rt be the remaining subset of buyers at

the end of iteration t. Initialize R0 = {1, . . . n}. Let it be the index of the preference indifference class

under consideration for buyer i in iteration t of the algorithm. Initially, set i1 = 1 for all i. Now, given

that we have completed iteration t− 1 of the algorithm, we solve the following LP in iteration t with

variables yv for every v ∈ F and pil for i = 1, . . . , n and l = 1, . . . , it.

max M (4.2)

s.t.

it∑
l=1

pil ≥M ∀i ∈ Rt−1

pil = p∗il ∀i = 1, . . . , n, l = 1, . . . , it − 1

pil =
∑

v∈F | vi=l

yv ∀i = 1, . . . n, l = 1, . . . , it

∑
v∈F

yv ≤ 1

yv ≥ 0 ∀v.

Here yv denotes the probability that packing v is chosen and pil is the probability that buyer i is

assigned to a seller in Ail.

Let (p̃il) be the optimal probabilities returned by LP (4.2) and M̃ be the optimal value of M . Let

SM̃ be the set of buyers i such that
∑it

l=1 p̃il = M̃ . To ensure that this constraint is actually tight for

buyer i in every single optimal solution (i.e. buyer i’s allocation probability cannot be further improved

without hurting the allocation of another buyer), for every b ∈ SM̃ , we solve the following LP.
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max

bt∑
l=1

pbl (4.3)

s.t.

it∑
l=1

pil ≥ M̃ ∀i ∈ Rt−1

pil = p∗il ∀i = 1, . . . , n, l = 1, . . . , it − 1

pil =
∑

v∈F | vi=l

yv ∀i = 1, . . . n, l = 1, . . . , it

∑
v∈F

yv ≤ 1

yv ≥ 0 ∀v.

Let (p̂bl) be the optimal probabilities returned by LP (4.3) for buyer b. If
∑bt

l=1 p̃bl = M̃ , then set

p∗b,bt = p̂b,bt and include it in Rt. Moreover, if bt < Lb, then set bt+1 = bt + 1. If bt = Lb, then do not

include buyer b in Rt. On the other hand, if we have
∑bt

l=1 p̃bl > M , then set bt+1 = bt and include b

in Rt. Finally, for every b 6∈ SM̃ , we set bt+1 = bt and include b in Rt.

We keep iterating the algorithm until Rt = ∅. Note that in every iteration t, at least one of the

buyers (in SM̃ ) will not be included in Rt.
25 Hence, we need to solve at most (

∑n
i=1 Li) LPs before

the algorithm terminates. Finally, it can be shown via induction that the vector p∗ returned by the

above procedure is a leximin allocation vector.

4.3 The Equivalence between the Generalized Probablistic Serial

(GPS) Mechanism and the Generalized Leximin Mechanism

In this section, we propose another way of computing a generalized leximin allocation that is reminiscent

of the eating procedure prescribed by the probabilistic serial mechanism in the UDC setting. The

probabilistic serial (PS) mechanism in the UDC setting was originally proposed by [29] when agents

(buyers) have strict preference over resources (sellers). Katta an Sethuraman [76] later extended the

25This is because if
∑bt
l=1 p̃bl > M̃ for every b ∈ SM̃ , then a strict convex combinations of the solutions (p̂bl) for b ∈ SM̃

will result in a feasible solution of LP (4.2) with objective value strictly larger than M̃ , a contradiction.
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mechanism to accommodate indifferences in agents’ preferences. At a high level, the mechanism works

as follows: in every iteration, given a subset of buyers/agents S, the union of resources OS in the

preference indifference class that each agent in S is currently consuming, as well as the probabilistic

assignment matrix P that has been allocated to agents in S so far, the mechanism computes a score

S(S,OS , P ). The mechanism then finds the subset of agents S∗ that minimizes the S(S,OS , P ) over all

subsets of agents that are still allowed to consume more resources. S∗ is commonly referred to as the

bottleneck set. Each agent in S∗ is allocated a probability of obtaining a resource from the preference

indifference class that the agent is currently consuming so that the sum of allocated probabilities

for each agent in S is S(S∗, OS∗ , P ). If S(S∗, OS∗ , P ) = 1, then agents in S∗ are removed from

consideration. Otherwise, each agent in S∗ starts consuming resources from her next level of preference

indifference class (if any).

In this section, we seek to generalize the PS mechanism to the more general setting of arbitrary

demands and supplies. The key to establishing the result is identifying the appropriate generalization

of S(S,OS , P ). In UDC setting, the score S(S,OS , P ) represents the maximum probability that each

agent in S can be assigned to a resource in a preference indifference class no worse than the one she is

currently consuming, provided that every agent in S receives the same aggregate probability whenever

possible. It turns out that this high level view of S(S,OS , P ) carries over to the general supply and

demand setting. The difference lies in that for the UDC setting, the Birkhoff von-Neumann theorem

allows us to move between a probabilistic allocation of agent-resource pairs and a distribution over

matchings. Consequently, we can treat the resources as divisible goods and S(S,OS , P ) can be com-

puted in a fairly straightforward manner by solving a parametric max flow problem (see e.g. [76]),

which can be solved in polynomial time. Nonetheless, for general demand and supply quantities, we

need to specify an explicit distribution over packings that maximizes the probabilistic assignment for

a subset of buyers S. The following subproblem checks whether a distribution over packings exists for

a given vector of probability assignments between buyer preference indifference class pairs.

Packing Subproblem:

Let S be a subset of buyers. Consider a subset of ordered pairs Q = {(i, O)}, where i ∈ S is a buyer

and O is a subset of sellers that buyer i can be matched to (O typically denotes the set of sellers from

one of buyer i’s preference indifference classes). There may be multiple ordered pairs for a given buyer
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i ∈ S. Moreover, each buyer i ∈ S participates in at least one ordered pair in Q. Let IQ = ∪O:(i,O)∈QO.

Finally, for every pair (i, Q) ∈ Q, we are given an integer q(i,Q). We also have an integer r associated

with IQ. Now, for every pair (i, O) ∈ Q, we duplicate buyer i q(i,Q) times. Each of the duplicated

buyers finds only sellers in O acceptable. We duplicate r copies of the set of sellers IQ. We say that

the duplication is feasible if, there exists a packing such that

1. Every duplicated buyer is assigned to some duplicated acceptable seller.

2. At most one copy of the same buyer can be assigned to a seller in each copy of IQ.

3. The packing respects the capacity for all duplicated sellers.

Note that if the duplication is feasible, then we know that there is a sub-distribution over packings

that achieves the probabilistic assignment such that for every pair (i, O), buyer i is matched to a seller

in O with probability
q(i,Q)

IQ
. Checking whether a duplication is feasible is a NP-hard problem, even if

there is a single seller that all buyers desire. A reduction from the partition problem nearly identical

to the hardness result for computing a leximin vector shown in [81] can be attained.

4.3.1 Dichotomous Preference Domain

We first present a generalization of the PS mechanism for the dichotomous preference setting as a

warm up. Let pi be the probability that buyer i is assigned to a seller that he finds acceptable. Let R

denote the remaining set of buyers to be considered by the algorithm. Below is the description of the

generalized PS (GPS) algorithm for the dichotomous setting:

1. Initialize pi = 0 for all buyer i. Let Ii be the set of acceptable sellers for buyer i. Set R = N .

2. While R 6= ∅, consider the following duplication. Let l be the least common multiple of all

denominators of pi for every i ∈ N\R (l = 1 if N\R is empty). Consider a packing subproblem

instance where we have cpil copies of buyer i for every i ∈ N\R for some c ∈ N, q copies of every

buyer i ∈ S ⊆ R, and cl copies of each seller that buyers in (N\R) ∪ S collectively desires. Let

OS be the set of sellers that some buyer in S finds acceptable.26

26Note that for any fractional value pi and any l fixed, there exists a pair of integers q and c such that q
cl

= pi.
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3. Let S(S,OS , P ) be the maximum value of q
cl such that the duplication for the given parameters

is feasible.27

(a) Find S∗ = arg minS⊆R S(S,OS , P ). If there are multiple S∗’s we look for one that is a min-

imal subset. Also, among all minimal optimal subsets, we break ties using a lexicographical

ordering.

(b) Set pi = S(S∗, OS∗ , P ) for all i ∈ S∗. The distribution over packings is determined by the

duplication subproblem that yields S(S∗, OS∗ , P ).

(c) Remove buyers in S∗ from R.

4. Return the probabilistic allocation vector p = (pi).

Next, we show that the GPS mechanism indeed computes a leximin random allocation. This

establishes the equivalence between the GPS mechanism and the generalized leximin mechanism for

dichotomous preferences.

Lemma 4.1. Let pt be the probability that each of buyer is assigned to an acceptable seller in iteration

t of the algorithm. Then the sequence pt is non-decreasing with respect to time, i.e. p1 ≤ p2 ≤ . . . ≤ pk,

where k is the last iteration of the algorithm.

Proof. It suffices to show that pt ≤ pt+1. Let St and Pt be the bottleneck set of buyers in iteration

t and probabilistic assignments matrix at the end of iteration t respectively. Since St minimizes the

value of S(S,OS , Pt−1) as a function of S, it must be the case that S(St ∪ St+1, OSt∪St+1 , Pt−1) ≥
S(St, OSt , Pt−1). Consequently, there is a distribution over packings that ensures every buyer in St ∪
St+1 is matched to one of her acceptable sellers with probability at least S(St, OSt , Pt−1). This implies

that we can match each buyer in St+1 to be matched to one of her acceptable sellers with probability

at least S(St, OSt , Pt−1) while giving the same guarantees to buyers in St. Then by definition, it must

be the case that

pt+1 = S(St+1, OSt+1 , Pt) ≥ S(St, OSt , Pt−1) = pt,

as desired.

27Note that due to the nature of the algorithm, the duplication with q = 0 is always feasible.
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Proposition 4.1. The GPS mechanism computes a leximin probabilistic allocation for the dichotomous

preference domain.

Proof. Let p be the probabilistic allocation vector computed by the PS mechanism. We will show

inductively that p is lexicographically identical to the leximin vector u entry by entry. Let vi denote

the probabilistic allocation of buyer i in an allocation vector v, and v(j) denote the j-th smallest entry

of the vector v.

Base case: the probabilistic assignment computed by PS is a feasible assignment. Hence, the value

of a minimum element is at most the value of a minimum element of the leximin probability vector,

or p(1) ≤ u(1). On the other hand, look at the subset of buyers S1, the subset of buyers who received

the minimum probabilistic assignment in p, note that this corresponds to the subset of buyers who

received an assignment in the first iteration of PS by Lemma 4.1. The PS mechanism maximizes their

average probabilistic allocation among all feasible allocations, which is no worse than the minimum

probabilistic assignment received by the buyers in S1 in any feasible allocation. Let i ∈ S1 be an buyer

who receives the minimum probabilistic allocation amongst all buyers in S1 with respect to u, then we

have that p(1) ≥ ui ≥ u(1). Hence, it is the case that p(1) = u(1). Moreover, we can assume without

lost of generality that p(1) and u(1) correspond to the utility of the same buyer, namely buyer i.

Now, conditioning on the fact that the first k minimum probabilistic entries of p and u agree, we

will show that (k+1)-st entry also agrees. Again, since p corresponds to a feasible random assignment,

and the k smallest entries of p and u agree, it must be the case that p(k+1) ≤ u(k+1). To show that

p(k+1) ≥ u(k+1), we will assume from the inductive hypothesis that the same subset of buyers are

assigned the k minimum probabilities in both p and u. Note that if we continue the PS mechanism

on the remaining set of buyers R after fixing the allocation of the buyers who received the k smallest

probabilistic assignments, then we would have the identical probabilistic allocation for all buyers as the

one we get starting from scratch. Let SR1 be the first bottleneck set computed amongst the remaining

buyers R given the allocation for the k minimum probability buyers. By the previous observation and

Lemma 4.1, every buyer in SR1 is assigned to an acceptable seller with probability p(k+1). Note that the

minimum probabilistic allocation of the buyer i in SR1 given by u is no better than the one computed

by PS, since PS maximizes their allocations over all assignments that share the k smallest entries with

that of PS. Hence, we get that p(k+1) ≥ ui ≥ u(k+1). Moreover, together with the inductive hypothesis,

we have shown that the same subset of buyers are assigned the k+ 1 minimum probabilities in both p
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and u.

4.3.2 Full Preference Domain

In this subsection, we describe the GPS mechanism over the full preference domain. Let pij be the

probability that buyer i is assigned a seller from his j-th tier of preference indifference class Aij . let

Ci be the index of the preference indifference class that buyer i is currently consuming from. Let R

denote the remaining set of buyers to be considered by the algorithm.

1. Initialize pij = 0 and Ci = 1 for all i = 1, . . . , n and j = 1, . . . , Li. Set R = N .

2. While R 6= ∅:

(a) Create an instance of the packing subproblem as follows. Fixed a subset of buyers S, let l

be the least common multiple of all denominators of pij where pij > 0. (l = 1 if all pij = 0.)

For some c ∈ N, we create cl copies of each seller in

{s ∈ Aij for some i ∈ S, j = 1, . . . , Ci or i 6∈ S, j = 1, . . . , Ci − 1 if Ci > 1},

and pijcl copies of buyer i each of whom finds only sellers in Aij acceptable for every j < Ci

and i = 1, . . . , n. For every i ∈ S, let mi,Ci ≥ 0 be the number of copies of buyers i each

finding only sellers in Ai,Ci acceptable. We require mi,Ci to satisfy the following condition

for every pair of buyers i, i′ ∈ S∑
j<Ci

pijcl +mi,Ci =
∑
j<Ci′

pi′jcl +mi′,Ci′
= M (4.4)

We define the score S(S,OS , P ) = maxmi,Ci ,i∈S
M
cl , for all parameters mi,Ci ’s, c that satisfies

(4.4) and for which the duplicated packing problem has a feasible solution.28

(b) Find S∗ ∈ arg minS(S,OS , P ) over all S ⊆ R. Each buyer in i ∈ S∗ is matched to a

seller in Ai,Ci with probability S(S∗, OS∗ , P )−∑j<Ci
pij . The distribution over packings is

determined by the duplication subproblem that yields S(S∗, OS∗ , P ).

(c) If S(S∗, OS∗ , P ) < 1, then for every i ∈ S∗, set Ci = Ci + 1 if Ci < Li. Otherwise, remove i

from R. If S(S∗, OS∗ , P ) = 1, then remove sellers S∗ from R. Ci stays the same for every

i ∈ R\S∗.
28One can show that there always exists a feasible solution for M = maxi∈S

∑
j<Ci

pij .
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3. Return the probability allocation matrix P .

Next, we show that the GPS mechanism indeed computes a leximin random allocation. This

establishes the equivalence between the GPS mechanism and the generalized leximin mechanism for

general preferences.

Lemma 4.2. Let St and Pt be the bottleneck set of buyer preference indifference class pairs in iter-

ation t and probabilistic assignments matrix at the end of iteration t respectively. Then the sequence

S(St, OSt , Pt−1) is non-decreasing with respect to t.

Proof. It suffices to show that S(St, OSt , Pt−1) ≤ S(St+1, OSt+1 , Pt). Since St minimizes the value of

S(S,OS , Pt−1) as a function of S, it must be the case that S(St∪St+1, OSt∪St+1 , Pt−1) ≥ S(St, OSt , Pt−1).

Consequently, there is a distribution over packings that ensures every buyer in St ∪ St+1 is matched

to one of the sellers the preference indifference class that she is currently consuming or better with

probability at least S(St, OSt , Pt−1). This implies that buyers in St+1 can be matched to one of the

sellers from her current preference indifference class with probability at least S(St, OSt , Pt−1) while

giving the same guarantees to buyers in St. Then it must be the case that

S(St+1, OSt+1 , Pt) ≥ S(St, OSt , Pt−1),

as desired.

Theorem 4.1. The GPS mechanism computes a leximin probabilistic allocation for full preference

domain.

Proof. Let vP be the vector of probability partial sums (
∑

j∈Til pij)il computed by the PS mechanism.

We inductively show that vP is lexicographically identical to the leximin vector u entry by entry. Given

a vector of probability partial sums v, let vil be the probability that buyer i will be assigned to a seller

from one of her top l preference indifference classes computed by the PS mechanism, and let v(j) denote

the j-th smallest entry of the vector v.

Base case: the probabilistic assignment computed by PS is a feasible assignment. Hence, the value

of a minimum element is at most the value of a minimum element of the leximin probability vector, or

vP(1) ≤ u(1). On the other hand, look at S1, the subset of buyers who received the minimum probabilistic

assignment in P from their current indifference class, note that this corresponds to the subset of buyer
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preference indifference class pairs who received an assignment in the first iteration of PS by Lemma

4.2. The PS mechanism maximizes their average probabilistic allocation for being assigned to a seller

from their top preference indifference class of sellers among all feasible random allocations, which is no

worse than the minimum probabilistic assignment for the top preference indifference class received by

the buyers in S1 in any feasible random allocation. Let i ∈ S1 be an buyer who receives the minimum

probabilistic allocation from her top preference indifference class amongst all buyers in S1 with respect

to u, then we have that p(1) ≥ ui1 ≥ u(1). Hence, it is the case that vP(1) = u(1). Moreover, we

can assume without lost of generality that p(1) and u(1) correspond to the utility of the same buyer

preference indifference class pair, namely buyer (i, 1).

Now, conditioning on the fact that the first k minimum probabilistic entries of p and u agree,

we will show that the (k + 1)-st entry also agrees. Again, since p corresponds to a feasible random

assignment, and the k smallest entries of p and u agree, it must be the case that p(k+1) ≤ u(k+1).

To show that p(k+1) ≥ u(k+1), we will assume from the inductive hypothesis that the subset of buyer

preference indifference class pairs corresponding to the k minimum probabilities are the same in both p

and u. Note that if we continue the PS mechanism upon fixing the allocation of the buyers who received

the k smallest probabilistic assignments, then we would have the identical probabilistic allocation for

all buyers as the one we get starting from scratch.29 Let SR1 be the first bottleneck set computed

amongst the remaining buyers R given the allocation for the k minimum probability buyer preference

indifference class pairs. By the previous observation and Lemma 4.2, every buyer in SR1 is assigned

to a seller from the preference indifference class that the buyer is currently consuming from or better

with probability p(k+1). Note that the minimum probabilistic allocation of the buyer in SR1 for a seller

from the preference indifference class that the buyer is currently consuming from or better given by u

is no better than the one computed by PS, since PS maximizes their allocations over all assignments

that share the k smallest entries with that of PS. We will refer to this buyer as i. Hence, we get that

p(k+1) ≥ ui,Ci ≥ u(k+1). Moreover, together with the inductive hypothesis, we have shown that the

same subset of buyer preference indifference class pairs are assigned the k + 1 minimum probabilities

in both p and u.

29Subject to the appropriate tie breaking rule.
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Now that we have established the equivalence between the GPS mechanism and the generalized

leximin mechanism, we will use the terms “GPS mechanism” and “generalized leximin mechanism” in-

terchangeably throughout the remainder of the chapter. Bogomolnaia first established this equivalence

in the UDC special case in [27]. One can view Theorem 4.1 as a generalization of her result. Note

that the leximin allocation sequentially maximizes minimum entry of a probabilistic allocation vector,

whereas the GPS mechanism iteratively identifies a subset of agents who maximum possible allocation

is minimized. Hence, one can view our result as establishing the equivalence between a max min and

a min max allocation problem.

4.4 Properties of the Generalized Leximin Mechanism

Kurokawa et al. [81] showed that the leximin mechanism satisfies satisfies envy-freeness, proportional-

ity, Pareto optimality, and weak group strategyproofness in the dichotomous setting. The generalized

leximin mechanism is not strategyproof in the general preference domain as it coincides with the PS

mechanism in the UDC special case. Even for the special case, it is shown in [29] that the PS mech-

anism is not weakly strategyproof. Somewhat surprisingly, we show that the leximin allocation is not

envy free for the general preference domain. On the other hand, we show that the leximin allocation

satisfies ordinal efficiency (an extension of Pareto optimality) in the general preference domain, and

proportionality in the dichotomous preference domain (note that our definition of proportionality is

stronger than that of [81]. We conjecture that proportionality is satisfied by the leximin allocation in

the general preference domain as well.

Proposition 4.2. The leximin allocation is not envy-free.

Proof. Consider the following instance instance with 4 buyers (1, 2, 3, 4) and 2 sellers (a, b), with buyer

demand quantities being

d1 = 3, d2 = d3 = d4 = 2,

and seller supply quantities being

sa = 4, sb = 3.
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Buyer preferences are as follows:

1 : a

2 : a, b

3 : b, a

4 : b

Note that the leximin allocation is given by

a b

1: 1/2 0

2: 1/2 0

3: 1/4 1/2

4: 0 1/2

The distribution over packings for the above assignment is as follows.

1− a, 3− b w.p. 1/4

1− a, 4− b w.p. 1/4

2− a, 3− b w.p. 1/4

2− a, 3− a, 4− b w.p. 1/4

Buyer 2, who is assigned to only seller a with probability 1/2, will envy the allocation of buyer 3.

The main reason that buyer 3 receives a better probabilistic assignment than buyer 2 is that seller a,

who is buyer 3’s second most preferred choice, can serve buyers 2 and 3 simultaneously. On the contrary,

seller b, who is buyer 2’s second most preferred choice, cannot serve buyers 2 and 3 simultaneously.

Next, we show that leximin allocation is proportional in the dichotomous preference domain.

Proposition 4.3. A leximin allocation is proportional when agents have dichotomous preferences.
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Proof. Let A be a leximin assignment. Let vA denote the agent to acceptable resource assignment

probability vector corresponding to A. let p1 < p2 < . . . < pk be distinct entry values of vA. Define

the j-th bottleneck set Bj to be the set of agents who receives an acceptable resource with probability

pj for j = 1, . . . , k. Note that the bottleneck sets form a partition of the set of agents. Consider the

following lemma.

Lemma 4.3. Let Rj denote the set of resources that are desired by an agent in one of the first j

bottleneck sets. Let Di be the set of resources that agent i finds acceptable. For any set of resources R,

let AjR be the set of agents from the first j bottleneck sets who desires some resource from R. Then we

have that for any j such that |AjDi | ≥ 1,

pj ≥ min
{ |Di ∩Rj |
|AjDi |

, 1
}
∀i, j.

To see that this lemma implies proportionality. Let ADi be the set of agents who find some resource

in Di acceptable. Let ki be the bottleneck set that the agent i belongs to. Applying this lemma with

j = ji (note that i ∈ AjiDi , so |AjDi | ≥ 1), we get

pji ≥ min
{ |Di ∩Rji |
|AjiDi |

, 1
}

= min
{ |Di|
|AjiDi |

, 1
}
≥ min

{ |Di|
|ADi |

, 1
}
.

The equality holds because Di ⊆ Rji , and the second inequality holds because Aj
i

Di
⊆ ADi . Pro-

portionality follows immediately as agent i belongs to the bottleneck set Bji . Now we prove the

lemma.

Proof. We show this via induction on the bottleneck set starting from the first j. From the inductive

hypothesis, we have that

pj ≥ pj−1 ≥ min
{ |Di ∩Rj−1|
|Aj−1Di

|
, 1
}
.

We will assume from now on that
|Di∩Rj−1|
|Aj−1
Di
|
≤ 1, otherwise we are done with the proof. Since we

can write
|Di∩Rj |
|AjDi |

as a convex combination of
|Di∩Rj−1|
|Aj−1
Di
|

and
|Di∩(Rj\Rj−1)|
|AjDi\A

j−1
Di
|

, it suffices to show that

pj ≥ |Di∩(Rj\Rj−1)|
|AjDi\A

j−1
Di
|

.

Note that Rj\Rj−1 are resources desired only by agents in bottleneck set Bj out of all agents in

the first j bottleneck sets, and AjDi\A
j−1
Di

are the set of agents in Bj who desire some resource in Di.

Consequently, we deduce that AjDi∩(Rj\Rj−1)
⊆ AjDi\A

j−1
Di

. We will show that pj ≥ |Di∩(Rj\Rj−1)|
|Aj
Di∩(Rj\Rj−1)

|
≥
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|Di∩(Rj\Rj−1)|
|AjDi\A

j−1
Di
|

. To do so, we will identify a special set of resources R̃ ⊆ Di ∩ (Rj\Rj−1) (to be defined

later). For agents in ∪jj′=1Bj′\A
j

R̃
, we fix their allocation to be the one given by a leximin allocation

A. For agents in Aj
R̃

, we will produce a distribution over matchings such that each of them receives

an acceptable object with probability
|Di∩(Rj\Rj−1)|
|Aj
Di∩(Rj\Rj−1)

|
using only resources in R̃. The agents from all

remaining bottleneck sets will receive no resource. Call the distribution over packings that we find A′.
Then it must be the case that pj ≥ |Di∩(Rj\Rj−1)|

|Aj
Di∩(Rj\Rj−1)

|
. Otherwise, vA′ entry-wise dominates vA for every

agent in the first j bottleneck sets and strictly dominates vA for agents in Aj
R̃

. Then the distribution

over packing εA′ + (1− ε)A would lexicographically dominate A for ε sufficiently small.

The following lemma formally defines R̃ and demonstrates its existence. Let R(A,R) denote the

set of resources some agent in A desires among the resources in R. Since we will only use the term

R(A,Di ∩ (Rj\Rj−1)) for some A ⊆ AjDi∩(Rj\Rj−1))
in the lemma and its proof, we use R(A) to denote

R(A,Di ∩ (Rj\Rj−1)) from now on for simplicity.

Lemma 4.4. There exists R̃ ⊆ Di ∩ (Rj\Rj−1) such that for any A ⊆ Aj
R̃

,

|R(A)|
|A| ≥

|Di ∩ (Rj\Rj−1)|
|AjDi∩(Rj\Rj−1)

|
.

Lemma 4.4 along with the generalized Hall’s marriage theorem imply that there exists a distribution

over matchings in which every agent in AjR is matched with a resource with probability at least

|Di∩(Rj\Rj−1)|
|Aj
Di∩(Rj\Rj−1)

|
. The generalized Hall’s marriage theorem can be shown via a direct application of the

max-flow min cut theorem.

We now describe the procedure for obtaining R̃:

1. Initialize R = Di ∩ (Rj\Rj−1).

2. If AjR = min
A⊆AjR

|R(A)|
|A| , then stop and set R̃ = R. Otherwise, select a set R(A∗), where A∗ is a

maximal subset in arg min
A⊆AjR

|R(A)|
|A| , set R = R\R(A∗t ) for the next iteration and repeat.

Let Rt and A∗t be the set R and A∗ in iteration t of the above procedure respectively. Note that for any

t, we can write |Rt|
|AjRt |

as a convex combination of
|R(A∗t )|
|A∗t |

and
|Rt\R(A∗t )|
|AjRt\A

∗
t |

= |Rt+1|
|AjRt\A

∗
t |

. Since
|R(A∗t )|
|A∗t |

≤ |Rt|
|AjRt |

,

it must be the case that |Rt+1|
|AjRt\A

∗
t |
≥ |Rt|
|AjRt |

. Moreover, note that AjRt+1
⊆ AjRt\A∗t . Putting it together,

we get
|Rt+1|
|AjRt+1

|
≥ |Rt+1|
|AjRt\A∗t |

≥ |Rt|
|AjRt |

.
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Hence, when the procedure terminates, we have that for set A ⊆ R̃

|R(A)|
|A| ≥

|R̃|
|Aj

R̃
|
≥ |R1|
|AjR1

|
=
|Di ∩ (Rj\Rj−1)|
|AjDi∩(Rj\Rj−1)

|
,

as desired.

Proposition 4.4. A leximin allocation is ordinally efficient.

Proof. This follows directly from the definition. Given a leximin allocation and its probabilistic as-

signment matrix P , if there exists another feasible random allocation whose probabilistic assignment

matrix Q stochastically dominates P , then the corresponding vector vQ would also entry-wise weakly

dominate vQ and strictly dominate vQ in at least one entry, which leads to a contradiction.

4.5 Discussion

We showed that the positive results of [81] for the leximin mechanism in the dichotomous preference

domain does not carry over to the full preference domain. In particular, the leximin mechanism is no

longer envy-free or strategyproof. Numerous impossibility results (see e.g. Chapter 2 of this thesis,

[29, 76, 11]) have shown incompatibility between strategyproofness and various efficiency and fairness

notions on different preference domains in the UDC setting. Nonetheless, even setting strategyproofness

aside, our work opens up the question whether an envy-free, proportional, and ordinally efficiency

mechanism exists in this setting.

The computational complexity of the GPS mechanism is another direction that can be explored. For

the UDC setting, Katta and Sethuraman [76] showed that the bottleneck set of agents in each iteration

can be identified by solving a parametric network flow problem. On the other hand, Kurokawa [81]

showed that computing a leximin allocation in our setting is NP-hard. Hence, we cannot hope for a

polynomial time implementation of the GPS mechanism unless P = NP. Nonetheless, in the current

specification of the GPS mechanism, the packing subproblem in Section 4.3 (which is already difficult)

is computed for every subset of agents S. Perhaps one can compute the bottleneck agent set via a

single optimization problem and reduce the computational complexity as a result.



CHAPTER 5. APPROXIMATELY OPTIMAL MECHANISMS FOR STRATEGYPROOF
FACILITY LOCATION: MINIMIZING LP NORM OF COSTS 76

Chapter 5

Approximately Optimal Mechanisms

for Strategyproof Facility Location:

Minimizing Lp Norm of Costs

Joint work with Itai Feigenbaum.

5.1 Introduction

We consider the problem of locating a single facility on the real line. This facility serves a set of n

agents, each of whom is located somewhere on the line as well. Each agent cares about his distance

to the facility, and incurs a disutility (equivalently, cost) that is equal to his distance to access the

facility. An agent’s location is assumed to be private information that is known only to him. Agents

report their locations to a central planner who decides where to locate the facility based on the reports

of the agents. The planner’s objective is to minimize a “social” cost function that depends on the

vector of distances that the agents need to travel to access the facility. It is natural for the planner

to consider locating the facility at a point that minimizes her objective function, but in that case the

agents may not have an incentive to report their locations truthfully. As an example, consider the case

of 2 agents located at x1 and x2 respectively, and suppose the location that optimizes the planner’s

objective is the mid-point (x1 + x2)/2. Then, assuming x1 < x2, agent 1 has an incentive to report a

location x′1 < x1 so that the planner’s decision results in the facility being located closer to his true
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location. The planner can address this issue by restricting herself to a strategyproof mechanism: by

this we mean that it should be a (weakly) dominant strategy for each agent to report his location

truthfully to the central planner. For instance, the planner could always locate the facility at agent 1’s

reported location, which is strategyproof. Even though strategyproofness is an attractive property, but

it comes at a cost: based on the earlier example, it is clear that the planner cannot hope to optimize

her objective. One way to avoid this difficulty is to assume an environment in which agents (and the

planner) can make or receive payments; in such a case, the planner selects the location of the facility,

and also a payment scheme, which specifies the amount of money an agent pays (or receives) as a

function of the reported locations of the agents as well as the location of the facility. This option gives

the planner the ability to support the “optimal” solution as the outcome of a strategyproof mechanism

by constructing a carefully designed payment scheme in which any potential benefit for a misreporting

agent from a change in the location of the facility is offset by an increase in his payment.

There are many settings, however, in which such monetary compensations are either not possible

or are undesirable. This motivated Procaccia and Tennenholtz [98] to formulate the notion of Approx-

imate Mechanism Design without Money. In this model the planner restricts herself to strategyproof

mechanisms, but is willing to settle for one that does not necessarily optimize her objective. Instead,

the planner’s goal is to find a mechanism that effectively approximates her objective function. This

is captured by the standard notion of approximation that is widely used in the CS literature: for a

minimization problem, an algorithm is an α-approximation if the solution it finds is guaranteed to have

cost at most α times that of the optimal cost (α ≥ 1).

Procaccia and Tennenholtz [98] apply the notion of approximate mechanism design without money

to the facility location problem considered here for two different objectives: (i) minisum, where the

goal is to minimize the sum of the costs of the agents; and (ii) minimax, where the goal is to minimize

the maximum agent cost. They show that for the minimax objective choosing any k-th median—

picking the kth largest reported location—is a strategyproof, 2-approximate mechanism. They design

a randomized mechanism called LRM (Left-Right-Middle) and show that it is a strategyproof, 3/2-

approximate mechanism; furthermore, they show that those mechanisms provide the optimal worst-

case approximation ratio possible (among all deterministic and randomized strategyproof mechanisms,

respectively). For the minisum objective, it is known that choosing the median reported location is

optimal and strategyproof, see [90]. Feldman and Wilf [60] consider the same facility location problem
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on a line but with the social cost function being the L2 norm of the agents’ costs (Feldman and Wilf

actually used the sum of squares of the agents’ costs, however most of their results can be easily

converted to the L2 norm. Of course, the approximation ratios they report need to be adjusted as

well). They show that the median is a
√

2-approximate strategyproof mechanism for this objective

function, and provide a randomized (1 +
√

2)/2-approximate strategyproof mechanism. Feldman and

Wilf also generalize the median mechanism to maintain strategyproofness and a
√

2 approximation

ratio on trees; furthermore, they provide a family of randomized strategyproof mechanisms for trees,

and in particular show that a member of this family reduces the approximation ratio to strictly below
√

2. A general survey of approximate mechanism design without money for facility location problems

has been written by [45].

Aside from the recent literature on approximate mechanism design, our work is loosely related to

other strands in the literature with a much longer history. First is the classical work on social choice,

which deals with the aggregating the preferences of a set of voters over a set of alternatives, see e.g.

[92]. The location problem we consider is a special case in which the alternatives are all possible points

on the real line (the location of the facility), and agents have single-peaked preferences. An important

difference, however, is the following: a typical social choice problem is to find an aggregation rule

satisfying a desired set of properties, whereas in our case the planner wishes to optimize or approximate

a given social objective function. Nevertheless, various techniques and results from this literature

are useful in our setting as well. An important result along these lines is [90]’s characterization

of strategyproof mechanisms on the line. A parallel characterization result was developed by [109]

for general graphs. In both these papers, much like in this chapter, generalized medians play an

important role; also, despite not having a specific objective function, these characterizations assume

less specific efficiency related properties, such as Pareto efficiency and onto range. Additional papers

along these lines are [20, 50]. It is important to note that impossibility results abound in social choice

models—our focus on the simple special case enables us to avoid impossibility results such as the

Gibbard-Satterthwaite Theorem (see [68, 106]), which implies the non-existence of a reasonable social

choice function. Second is the classical work in operations research on graphical location problems

that considers locating the facility at a Condorcet point (see e.g. [69, 82, 15, 16]). (A Condorcet

point is one that is preferred by a majority of agents to any other location.) This literature seeks

to establish bounds on the total cost to all the agents to access the facility divided by the minimum
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cost, with the understanding that smaller ratios are better. However, this literature does not model

individual agent incentives, and moreover does not also explore other mechanisms. Finally, there is a

rich literature on facility location problems and variations (such as the k-median and k-center problems)

where agent incentives are not taken into account. In such problems, there is typically a single objective

function (the planner’s), and agent locations are known. In this literature, one resorts to approximation

algorithms for a different reason—often, these optimization problems turn out to be computationally

intractable, and the focus is on developing computationally efficient heuristics for which a worst-case

approximation guarantee can be proved (see [128], and chapters 25-26 of [125]). To our knowledge, most

of the algorithms designed in this literature violate our (rather strong) strategyproofness requirements.

In addition, some consideration has been given in literature to the circle topology, by [5, 6]. It is

important to note that while the idea of using approximate mechanisms to induce strategyproofness

was first proposed in 2009, the problem of finding strategyproof mechanisms has received attention

beforehand. Those papers allow much more generality in the preferences of the agents, but typically

do not have a specific objective function to optimize, and thus approximation is not of relevance there.

In this chapter, we follow the suggestion of Feldman and Wilf [60] and study the problem of locating

a single facility on a line, but with the objective function being the Lp norm of the vector of agent-costs

(for general p ≥ 1). In the context of real world facility location problems, where the agents must drive

to and from the facility, the Lp norm can represent situations where travel time or other cost increases

superlinearly with the distance (as suggested in [35]). For example, when driving over larger distances,

there is an increased likelihood (depending on traffic) of the need to stop and refuel, or, in the case

of electric cars, stop and recharge–which is even more costly since such recharging can be done at

home, without wasting the driver’s time. As another example, certain hybrid cars increase their fuel

consumption in longer drives— which is relevant if the cost represents fuel consumption rather than

travel time. For such problems, our results provide strong lower bounds, robust to the topology of the

road network (since they only require a line) and the value of p. We also hope that our results regarding

the median will guide the construction of good mechanisms for more general topologies, similarly to

the case of p = 2 in [60], where the optimality of the median on the line inspires the construction of

a mechanism for tree networks using the appropriate adaptation of the median. Another use of the

Lp norm is to strike a balance between efficiency and fairness. The cases of p = 1 and p = ∞, which

were both studied in [98], can be viewed as representing the two extremes on the spectrum between
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maximizing efficiency (minimizing the total social cost) and maximizing fairness (minimizing the cost

of the agent who is worst off). Thus, our definition of social cost allows for a controlled tradeoff between

efficiency and fairness by varying the value of p. On the line, this interpretation of the Lp norm becomes

particularly interesting in the context of voting. Public opinion on many issues is considered to be on a

spectrum between political left and right, lending itself naturally to a one dimensional description. One

of the common problems in democratic societies is to balance between majority rule and respecting

minority rights; thus, the Lp measure allows for a quantitative exploration of this balance. Of course,

this interpretation of the Lp norm can be relevant to physical facility location problems as well.

We define the problem formally in section 2. In section 3, we show that the median mechanism

(which is strategyproof) provides a 2
1− 1

p approximation ratio, and that this is the optimal approxima-

tion ratio among all deterministic strategyproof mechanisms. We move onto randomized mechanisms

in section 4. First, we present a negative result: we show that for integer ∞ > p > 2, no mechanism—

from a rather large class of randomized mechanisms— has an approximation ratio better than that

of the median mechanism, as the number of agents goes to infinity. It is worth noting that all the

mechanisms proposed in literature so far— for minimax, minisum, and the L2 social cost functions—

belong to this class of mechanisms. Next, we consider the case of 2 agents, and show that the LRM

mechanism provides the optimal approximation ratio among all randomized strategyproof mechanisms

(that satisfy certain mild assumptions) for this special case, for every p ≥ 1. Our result for the special

case of 2 agents also gives a lower bound on the approximation ratio for all randomized mechanisms.

We briefly discuss some directions for further research in section 5. In Appendix B we discuss some

technical details omitted from the chapter, as well as an additional negative result for an alternative

definition of the agents’ cost.

5.2 Model

Let N = {1, 2, . . . , n}, n ≥ 2, be the set of agents. Each agent i ∈ N reports a location xi ∈ R. A

deterministic mechanism is a collection of functions f = {fn| n ∈ N, n ≥ 2} such that each fn : Rn → R

maps each location profile x = (x1, x2, . . . , xn) to the location of a facility. We will abuse notation and

let f(x) denote fn(x). Under a similar notational abuse, a randomized mechanism is a collection of

functions f that maps each location profile to a probability distribution over R: if f(x1, x2, . . . , xn) is
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the distribution π, then the facility is located by drawing a single sample from π.

Our focus will be on deterministic and randomized mechanisms for the problem of locating a single

facility when the location of any agent is private information to that agent and cannot be observed or

otherwise verified. It is therefore critical that the mechanism be strategyproof—it should be optimal

for each agent i to report his true location xi rather than something else. To that end we assume that

if the facility is located at y, an agent’s disutility, equivalently cost, is simply his distance to y. Thus,

an agent whose true location is xi incurs a cost C(xi, y) = |xi − y|. If the location of the facility is

random and according to a distribution π, then the cost of agent i is simply C(xi, π) = Ey∼π|xi − y|,
where y is a random variable with distribution π. The formal definition of strategyproofness is now:30

Definition 5.1. A mechanism f is strategyproof if for each i ∈ N , each xi, x
′
i ∈ R, and for each

x−i = (x1, x2, . . . , xi−1, xi+1, . . . xn) ∈ Rn−1,

C(xi, f(xi,x−i)) ≤ C(xi, f(x′i,x−i)),

where (α,x−i) denotes a vector with the i-th component being α and the j-th component being xj for

all j 6= i.

The class of strategyproof mechanisms is quite large: for example, locating the facility at agent

1’s reported location is strategyproof, but is not particularly appealing because it fails almost every

reasonable notion of fairness and could also be highly “inefficient”. To address these issues, and to

winnow down the class of acceptable mechanisms, we impose additional requirements that stem from

efficiency or fairness considerations. In this chapter we assume that locating a facility at y when the

location profile is x = (x1, x2, . . . , xn) incurs the social cost

sc(x, y) =

(∑
i∈N
|xi − y|p

)1/p

, p ≥ 1,

which one can viewed as the Lp norm of the individual cost vector. For a randomized mechanism f

that maps x to a distribution π, we define the social cost to be31

sc(x, π) = Ey∼π

[(∑
i∈N
|xi − y|p

)1/p
]
.

30Note that for randomized mechanisms, we require strategyproofness in expectation, rather than ex-post.

31For this definition of social cost, an alternative option is to let the agents’ costs increase non-linearly with their

distance from the facility, in particular C(xi, y) = |xi − y|p. In Appendix B we provide an interesting result for this case.
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For this definition of social cost, our goal now is to find a strategyproof mechanism that does

well with respect to minimizing the social cost. A natural mechanism (and this is the approach

taken in the classical literature on facility location) is the “optimal” mechanism: each location profile

x = (x1, x2, . . . , xn) is mapped to OPT (x), defined as OPT (x) ∈ arg miny∈R sc(x, y).32 This optimal

mechanism is not strategyproof as shown in the following example.

Example. Suppose there are two agents located at the points 0 and 1 respectively on the real line.

If they report their locations truthfully, the optimal mechanism will locate the facility at y = 0.5, for

any p > 1. Assuming agent 2 reports x2 = 1, if agent 1 reports x′1 = −1 instead, the facility will be

located at 0, which is best for agent 1.

Given that strategyproofness and optimality cannot be achieved simultaneously, it is necessary

to find a tradeoff. In this chapter we shall restrict ourselves to strategyproof mechanisms that ap-

proximate the optimal social cost as best as possible. The notion of approximation that we use is

standard in computer science: an α-approximation algorithm is one that is guaranteed to have cost

no more than α times the optimal social cost. Formally, the approximation ratio of an algorithm A is

supI{A(I)/OPT (I)}, where the supremum is taken over all possible instances I of the problem, and

A(I) and OPT (I) are, respectively, the costs incurred by algorithm A and the optimal algorithm on

the instance I.33 Our goal then is to design strategyproof (deterministic or randomized) mechanisms

whose approximation ratio is as close to 1 as possible.

5.3 The Median Mechanism

For the location profile x = (x1, x2, . . . , xn), the median mechanism is a deterministic mechanism that

locates the facility at the “median” of the reported locations. The median is unique if n is odd, but not

when n is even, so we need to be more specific in describing the mechanism. For odd n, say n = 2k−1

for some k ≥ 1, the facility is located at x[k], where x[k] is the kth largest component of the location

32Strictly speaking, the mechanism is not well defined in cases where the social cost at x is minimized by multiple

locations, but we could pick an exogenous tie-braking rule to deal with such cases.

33For the case of randomized mechanisms, it should be noted that this is the approximation ratio is in expectation

rather than with high probability.
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profile. For even n, say n = 2k, the “median” can be any point in the interval [x[k], x[k+1]]; to ensure

strategyproofness, we need to pick either x[k] or x[k+1], and as a matter of convention we take the

median to be x[k]. It is well known that the median mechanism is strategyproof.34 Furthermore, the

median mechanism is anonymous.35 Thus we may assume, without loss of generality, that each agent

reports her location truthfully.

Our main result in this section is that, for any p ≥ 1, the median mechanism uniformly achieves the

best possible approximation ratio among all deterministic strategyproof mechanisms. We start with

two simple observations, which will be used in the proof of this main result.

Lemma 5.1. For any real numbers a, b, c with a ≤ b ≤ c, and any p ≥ 1,

(c− a)p ≤ 2p−1[(c− b)p + (b− a)p].

Proof. For any p ≥ 1, f(x) = xp is a convex function on [0,∞), and so for any λ ∈ [0, 1] and x, y ≥ 0,

f(λx+ (1− λ)y)) ≤ λf(x) + (1− λ)f(y). (5.1)

Setting λ = 1/2, x = c− b, and y = b− a, we get:

1

2p
(c− a)p ≤ 1

2
[(c− b)p + (b− a)p]. (5.2)

Multiplying both sides of the inequality by 2p gives the result.

Lemma 5.2. For any non-negative real numbers a and b, and any p ≥ 1,

(a+ b)p ≥ ap + bp.

Proof. For integer p, the result is a direct consequence of the binomial theorem; the same argument

covers the case of rational p as well. Continuity implies the result for all p.

Theorem 5.1. Suppose there are n agents with the location profile x = (x1, x2, . . . , xn). Define the

social cost of locating a facility at y as (
∑n

i=1 |y − xi|p)
1
p for p ≥ 1. The social cost incurred by the

median mechanism is at most 2
1− 1

p times the optimal social cost.36

34A classical paper of [90] for a closely related model shows that all deterministic strategyproof mechanisms are essen-

tially generalized median mechanisms.

35In an anonymous mechanism, the facility location is the same for two location profiles that are permutations of each

other.

36This is a generalization of the results for p = 2 [60], p = 1 and p = ∞ [98] (when p = ∞, the median mechanism

provides a 2-approximation).
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Proof. We may assume that x1 ≤ ... ≤ xn. Let OPT be a facility location that minimizes the social

cost, and let m be the median. The inequality we need to prove is
n∑
i=1

|m− xi|p ≤ 2p−1
n∑
i=1

|OPT − xi|p.

We do this by pairing each location xi with its “symmetric” location xn+1−i and arguing that the total

cost of these two locations in the median mechanism is within the required bound of their total cost

in an optimal solution. For even n, this completes the argument; for odd n the only location without

such a pair is the median itself, which incurs zero cost in the median mechanism, and so the argument

is complete. Formally, the result follows if we can show

|m− xi|p + |xn+1−i −m|p ≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p), ∀ i ≤ bn/2c.

We consider two cases, depending on whether OPT is in the interval [xi, xn+1−i] or not. In each of

these cases, OPT may be above the median or below, but the proof remains identical in each subcase,

so we give only one.

1. xi ≤ m ≤ OPT ≤ xn+1−i or xi ≤ OPT ≤ m ≤ xn+1−i. We will prove the first of these subcases;

the proof of the second is identical. Applying Lemma 5.1 by setting a = m, b = OPT , and

c = xn+1−i, we get

|xn+1−i −m|p ≤ 2p−1(|xn+1−i −OPT |p + |OPT −m|p).

Thus,

|m− xi|p + |xn+1−i −m|p ≤ |m− xi|p + 2p−1(|xn+1−i −OPT |p + |OPT −m|p)

≤ 2p−1(|m− xi|p + |xn+1−i −OPT |p + |OPT −m|p)

≤ 2p−1(|xn+1−i −OPT |p + |OPT − xi|p),

where the last inequality is obtained by applying Lemma 5.2 to the terms |m−xi|p and |OPT −
m|p.

2. OPT ≤ xi ≤ m ≤ xn+1−i or xi ≤ m ≤ xn+1−i ≤ OPT . Again, we prove only the first subcase.

Note that

|xn+1−i −m|p + |m− xi|p ≤ |xn+1−i − xi|p

≤ |OPT − xn+1−i|p

≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p)
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where the first inequality follows from Lemma 5.2. (Note that Lemma 5.1 is not used in the proof

of this case.)

We end this section by showing that no deterministic and strategyproof mechanism can give a

better approximation to the social cost.

Lemma 5.3. Consider the case of two agents and suppose the location profile is (x1, x2) with x1 < x2.

For p ≥ 1, suppose the social cost of locating a facility at y is (|x1−y|p+|x2−y|p)1/p. Any deterministic

mechanism whose approximation ratio is better than 2
1− 1

p for p > 1 must locate the facility at y for

some y ∈ (x1, x2).
37

Proof. The function sc(x, y) is strictly convex in y, and its unique minimizer is y∗ = (x1 + x2)/2, with

the corresponding value sc(x, y∗) = |x2 − x1|/21−
1
p . Moreover sc(x, x1) = sc(x, x2) = |x2 − x1| =

2
1− 1

p sc(x, y∗). It follows that for the deterministic mechanism to do strictly better than the stated

ratio, the facility cannot be located at the reported locations; locating the facility to the left of x1 or

to the right of x2 only increases the cost of the mechanism, so the only option left for a mechanism to

do better is to locate the facility in the interior, i.e., in (x1, x2).

Theorem 5.2. Any strategyproof deterministic mechanism has an approximation ratio of at least 2
1− 1

p

for the Lp social cost function for any p ≥ 1.38

Proof. Using Lemma 5.3, we can now argue similarly to the case of p = ∞ (Theorem 3.2 in [98]).39

Suppose p > 1 (the bound holds trivially for p = 1), and suppose a deterministic strategyproof

mechanism yields an approximation ratio strictly better than 2
1− 1

p for the Lp social cost. For the

two-agent location profile x1 = 0, x2 = 1, Lemma 5.3 implies the facility is located at some y ∈ (0, 1).

Now consider the location profile x1 = 0, x2 = y. Again, by Lemma 5.3, the mechanism must locate

the facility at y′ ∈ (0, y) to guarantee the improved approximation. But if agent 2 is located at y < 1,

he can misreport his location as 1, forcing the mechanism to locate the facility at y, his true location;

this violates strategyproofness.

37Ex-post Pareto efficiency (as defined in section 4.2) requires the facility to be located in [x1, x2]; thus, this property

is stronger.

38The lower bound of 2 on the approximation ratio holds when p =∞, see [98].

39Another argument along this line can be found in the proof of Theorem 4.4 in [60].
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5.4 Randomized Mechanisms

Recall that when the social cost is measured by the L2 norm or the L∞ norm, randomization provably

improves the approximation ratio. In the former case, Feldman and Wilf [60] describe an algorithm

whose approximation ratio is (
√

2 + 1)/2; for the latter, Procaccia and Tennenholtz [98] design an

algorithm with an approximation ratio of 3/2. The mechanisms in both cases are simple and some-

what similar, placing non-negative probabilities only on the optimal location and generalized medians

(defined shortly), where these probabilities are independent of the reported location profile. In this

section we show that this is not enough in general; namely, randomizing over generalized medians

and the optimal location does not improve the approximation ratio of the median mechanism for any

integer p ∈ (2,∞). For the case of 2 agents we show that the best approximation ratio is given by the

LRM mechanism among all strategyproof mechanisms. Extending this analysis even to the case of 3

agents appears to be non-trivial.

5.4.1 Mixing Dictatorships and Generalized Medians with the Optimal Location

We begin with a definition of generalized medians.

Definition 5.2. Let x ∈ Rn, S ⊆ N , and m ∈ {1, . . . , |S|}. Let S = {s1, . . . , s|S|}, where xsi ≤ xsi+1.

Then, the mth generalized median of subset S in location profile x is x[m,S] = xsm.40 If S = N , we

allow for the shorthand x[m] = x[m,N ].

Next, we define the class of mechanisms currently used in literature:

Definition 5.3. Let f be a mechanism which satisfied the following. For every n ∈ N, S ⊆ N , m ∈
{1, . . . , |S|}, there exist non-negative numbers vS

n
m, and vnOPT with vnOPT +

∑
S⊆N,m∈{1,...,|S|} v

Sn
m = 1,

such that for every profile (x1, x2, . . . , xn), f locates the facility at OPT with probability vnOPT and at

x[m,S] with probability vS
n
m (where OPT is the optimal location for the profile (x1, x2, . . . , xn)).41 If f

satisfies these properties, we say that f is a Mixed Generalized Medians Optimal (MGMO) mechanism.

We now show that for integer p > 2, MGMO mechanisms cannot beat the median.

40That is, x[m,S] is the mth largest location among the locations of the agents in S, allowing for repetition.

41When a location appears more than once in OPT and x[m,S] for S ⊆ N and m ∈ {1, . . . , |S|}, the probabilities add

up.
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Theorem 5.3. Let f be a strategyproof MGMO mechanism. Then, for any finite integer p > 2, the

approximation ratio of f is at least 2
1− 1

p .

Proof. Fix n = 2k, with k ∈ N. In all profiles in our proof, the relative order of agents locations

remains the same: specifically, i < j implies xi ≤ xj for all of our profiles x. For every S ⊆ N , and

every j ∈ S let S(j) be the number of agents with index weakly smaller than j in S (for example,

if S = {2, 4, 9}, then S(2) = 1, S(4) = 2, and S(9) = 3). On our profiles, the probability that the

location of agent j ∈ N is chosen as a generalized median therefore is vnj =
∑

S⊆N :j∈S v
Sn
S(j).

For j = 1, . . . , k, define the profile xj as follows (where aj is a parameter to be defined shortly):

agents 1 through j are located at −aj ; agents j + 1 through k are located at 0; agents k + 1 through

2k−j+1 are located at 1; and agents 2k−j+2 through 2k are located at 1+aj (note the slight asymmetry

in the location of the agents: while k agents are at or below zero, and k agents are at or above 1, there

is an additional agent at 1 compared to zero and so one less agent at 1+aj compared to −aj). Now, aj

is chosen to be the smallest positive root of the function gj(α) = jαp−1− (k−j+1)− (j−1)(1+α)p−1;

such an aj must exist by the intermediate value theorem, as gj(0) < 0 and gj(α) is a continuous

function of α with gj(α)→∞ as α→∞.

We show that the optimal mechanism locates the facility at zero for the profile xj , i.e., OPT = 0.

Note that the social cost for this profile, when locating the facility at z ∈ [0, 1], is j(z + aj)
p + (k −

j)zp + (k − j + 1)(1 − z)p + (j − 1)(1 + aj − z)p, and when z ∈ (−aj , 0) the social cost becomes

j(z + aj)
p + (k − j)(−z)p + (k − j + 1)(1 − z)p + (j − 1)(1 + aj − z)p. Note that the social cost

function is differentiable for z ∈ (0, 1) and for z ∈ (−aj , 0). The left and right derivatives at 0 are both

pjap−1j −p(k− j+1)−p(j−1)(1+aj)
p−1, and thus the social cost function is differentiable on (−aj , 1)

with its derivative at z = 0 equal to zero (by our choice of aj). The fact that this is a global minimum

now follows from strict convexity of the social cost function ||xj − z(1, . . . , 1)||p (for all z ∈ R). Thus,

indeed, OPT = 0.

We now attempt to bound vOPT . For each profile xj , consider the profile x′j that differs only

in the location of agent j: namely, x′jj = 0 instead of −aj . Note that on this profile, OPT = 0.5

by symmetry. Strategyproofness implies that a deviation from profile x′j to profile xj should not be

beneficial for agent j, namely ajv
n
j − 1

2v
n
OPT ≥ 0 (where aj is the increase in agent j’s cost caused

by that deviation when the facility is built in his reported location, and 1
2 is the decrease in his cost

caused by that deviation when the facility is located at OPT ), which implies vnj ≥
vnOPT
2aj

. Defining aj
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for j = k + 1, . . . , 2k in a symmetric fashion, it follows that the same inequality holds for j in that

range, and that aj = a2k−j+1. Summing those inequalities up, we get:

1− vnOPT =

2k∑
j=1

vnj ≥
2k∑
j=1

vnOPT
2aj

= 2

k∑
j=1

vnOPT
2aj

=

k∑
j=1

vnOPT
aj

vnOPT ≤
1

1 +
∑k

j=1
1
aj

Now, we claim it is enough to show that as n → ∞ (or equivalently, as k → ∞),
∑k

j=1
1
aj
→ ∞.

The inequality then implies that vnOPT → 0. Consider the profile which locates k agents at 0 and k

agents at 1. The social cost of locating the facility at OPT on this profile is p
√
n/2, while the social

cost of locating the facility at an agent’s location is p
√
n2
− 1
p ; thus, the approximation ratio of f on this

profile is
vnOPT

p√n/2+(1−vnOPT )
p√n2−

1
p

p√n/2 = 2
1− 1

p − (2
1− 1

p − 1)vnOPT . Thus, as n → ∞, the approximation

ratio on these profiles approaches 2
1− 1

p , completing the proof.

We are left with the task of showing that limk→∞
∑k

j=1
1
aj

=∞ . To do so, we first show that for

j ≥ k
1
p−1 + 1, 2p−1(j − 1) > aj . Recall that aj was defined as the smallest positive root of gj(α), and

that gj(0) < 0. Thus, it is enough to show that for j in the appropriate range, gj(2
p−1(j − 1)) > 0.

For notational convenience, we denote Q = 2p−1.

gj(Q(j − 1)) = jQp−1(j − 1)p−1 − (k − j + 1)− (j − 1)(1 +Q(j − 1))p−1

= Qp−1(j − 1)p−1 − k − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−2

> Qp−1(j − 1)p−1 − (j − 1)

p−1∑
i=1

(
p− 1

i

)
(Q(j − 1))p−2

= Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−2
p−1∑
i=1

(
p− 1

i

)
> Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−22p−1 = 0.
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Now,

lim
k→∞

k∑
j=1

1

aj
> lim

k→∞

k∑
j=dk

1
p−1+1e

1

2p−1j

=
1

2p−1
lim
k→∞

k∑
j=dk

1
p−1+1e

1

j

≥ 1

2p−1
lim
k→∞

∫ k

k
1
p−1+2

1

t
dt

=
1

2p−1
( lim
k→∞

∫ k

k
1
p−1

1

t
dt− lim

k→∞

∫ k
1
p−1+2

k
1
p−1

1

t
dt)

=
1

2p−1
(( lim
k→∞

(1− 1

p− 1
) ln k)− 0) =∞

which completes our proof.

5.4.2 Optimality of the LRM Mechanism for 2 Agents

Procaccia and Tennenholtz [98] defined the mechanism Left-Right-Middle (LRM) as follows: place the

facility with probability 1
2 at OPT , and with probability 1

4 at each of x[1] and x[n]. They have shown

that it is strategyproof, and that it provides a best-possible approximation ratio of 3
2 when p = ∞.

Our next result shows that the LRM mechanism provides the best possible approximation ratio among

all shift and scale invariant (defined below) strategyproof mechanisms for the case of 2 agents for all

Lp social cost functions for p ≥ 1.

We begin with some definitions: we say that a mechanism f is shift and scale invariant if for every

location profile x = (x1, x2) and every c ∈ R, the following two properties are satisfied:42

1. Shift Invariance: the random variables Y ′ ∼ f(x1 + c, x2 + c) and Y + c s.t. Y ∼ f(x) are equal

in distribution.

42While these two properties are natural and reasonable to expect, it should be noted that they are not implied by

strategyproofness- one example is the constant mechanism, which always locates the facility at the same point regardless

of the reports. Requiring unanimity in addition to strategyproofness is also not sufficient to guarantee these properties;

for example, the mechanism that runs LRM if x[1] = 0, and otherwise locates the facility at x[1] and x[2] with probability

1/2 each, is easily seen to be strategyproof and unanimous but neither shift nor scale invariant.
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2. Scale Invariance: the random variables Y ′ ∼ f(cx1, cx2) and cY s.t. Y ∼ f(x) are equal in

distribution.43

A convenient notation for a given location profile x is to denote its midpoint as mx = x1+x2
2 . We say

that a mechanism f is symmetric if for any location profile x and for any y ∈ R, P(f(x) ≥ mx + y) =

P(f(x) ≤ mx − y).

The structure of the proof is as follows. Our goal is to show that within the class of strategyproof,

shift invariant and scale invariant mechanisms, we can further limit ourselves to symmetric mechanism

that locate the facility always at the agents’ locations or the midpoint; within this further restricted

class, it becomes easy to prove that LRM is optimal. We achieve this goal gradually. First we show that

we may restrict ourselves to symmetric (and anonymous) mechanisms. We then provide a characteriza-

tion of strategyproofness for such mechanisms, and use it to show that we can further restrict ourselves

to mechanisms which, for each profile x, do not locate the facility both at (min {x1, x2},max {x1, x2})
and at (−∞,min {x1, x2}) ∪ (max {x1, x2},∞) with positive probability. We then show that we can

restrict ourselves to mechanisms that locate the facility always at the agents’ locations or the midpoint.

The following lemma allows us to focus on symmetric mechanisms.

Lemma 5.4. Given any strategyproof, shift and scale invariant mechanism, there exists a symmetric,

strategyproof, shift and scale invariant mechanism with the same worst-case approximation ratio.

Proof. Given a mechanism f , we define the mirror mechanism of f , fmirror, to be such that for every

profile x, we have that P(fmirror(x) ≥ mx + b) = P(f(x) ≤ mx − b) for all b ∈ R.44

We will need the following notation: For each profile x = (x1, x2), let Yx1,x2 ∼ f(x), and Y ′x1,x2 ∼
fmirror(x). We claim that fmirror is shift invariant, scale invariant and strategyproof (all of the equal-

ities below are in distribution):

1. Shift invariance: let c ∈ R. Then Y ′x1+c,x2+c = 2mx1+c,x2+c−Yx1+c,x2+c = 2mx +2c−Yx1,x2−c =

Y ′x1,x2 + c.

43It is possible to replace shift invariance with symmetry in our assumptions, and preserve our results; see Appendix

B.

44Equivalently, the mirror mechanism can be thought of as follows: whenever f locates the facility at y ∈ R (that is,

the single sampling of f(x) yields y), fmirror ”mirrors” that location about mx, meaning it locates the facility at 2mx−y.
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2. Scale invariance: let c ∈ R. Then Y ′cx1,cx2 = 2cmx1,x2 − Ycx1,cx2 = c(2mx1,x2 − Yx1,x2) = cY ′x1,x2 .

3. Strategyproofness: assume fmirror is not strategyproof, and assume without loss of generality

that agent 2 has a profitable misreport: there exist profiles (w1, w2) and (w1, w2 + α) for some

α ∈ R such that E[|w2 − Y ′w1,w2
|] > E[|w2 − Y ′w1,w2+α|]. However, note that w2 − Y ′w1,w2+α =

−w1−α+Yw1,w2+α = Yw1−α,w2−w1 (the second equality follows from shift invariance), and that

w2 − Y ′w1,w2
= Yw1,w2 −w1. Thus, it follows that E[|w1 − Yw1,w2 |] > E[|Yw1−α,w2 −w1|], violating

strategyproofness for f . Thus fmirror must be strategyproof.

Therefore, the mechanism g that picks f with probability 1/2 and fmirror with probability 1/2 is a

strategyproof mechanism that is also symmetric; g trivially satisfies shift and scale invariance. Finally,

note that g has the same approximation ratio as f for all location profiles, since fmirror has the same

approximation ratio as f .

Mechanisms which satisfy shift and scale invariance as well as symmetry also satisfy anonymity:

Lemma 5.5. If a mechanism f is shift invariant, scale invariant and symmetric, it is also anonymous.

Proof. Again, all equalities are in distribution. Let x be a location profile. We need to prove Yx1,x2 =

Yx2,x1 . Shift and scale invariance gives Yx2,x1 = −Yx1,x2 +x1+x2; thus, P(Yx2,x1 ≤ b) = P(x1+x2−b ≤
Yx1,x2). But P(x1 + x2 − b ≤ Yx1,x2) = P(Yx1,x2 ≤ b) by symmetry about mx, thus Yx2,x1 = Yx1,x2 .

The next lemma deals with an equivalent condition for strategyproofness for symmetric, shift and

scale invariant mechanisms.

Lemma 5.6. A symmetric, shift and scale invariant mechanism f is strategyproof if and only if for

any profile x ∈ R2 with x1 = 0 < x2, the following conditions hold:

1. −
∫
(−∞,x2) ydF (y) +

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

2.
∫
(−∞,x2) ydF (y)−

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

where Y ∼ f(x) with c.d.f. F .

Proof. The proof is in Appendix B.
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Given a strategyproof, shift invariant, scale invariant and symmetric mechanism, the upcoming

results demonstrate how to find another strategyproof, shift invariant, scale invariant and symmet-

ric mechanism that restricts the probability assignment to x1, x2, and mx for every profile x and

simultaneously gives a weakly better approximation than the original mechanism.

Lemma 5.7. Let f be a strategyproof, shift invariant, scale invariant and symmetric mechanism.

There exists another strategyproof, shift invariant, scale invariant and symmetric mechanism g with a

weakly smaller expected social cost on every profile, such that at least one of the following two properties

holds:

(1) For every two-agent profile x, P(g(x) ∈ (x1, x2)) = 0 for every two-agent profile x. (Doesn’t

utilize interior)45

(2) For every two-agent profile x, P(g(x) ∈ (−∞, x1) ∪ (x2,∞)) = 0 for every two-agent profile x.

(Ex-post Pareto efficiency)

Proof. The proof is in Appendix B.

Lemma 5.8. Let f be a strategyproof, shift invariant, scale invariant, symmetric mechanism. Assume

that f is either ex-post Pareto efficient or doesn’t utilize interior. Then there exists another strate-

gyproof mechanism g with a weakly smaller expected social cost on every profile, such that P(g(x) ∈
{x1, x2,mx}) = 1 for every location profile x. Furthermore, g satisfies shift invariance, scale invariance

and symmetry.

Proof. We break the proof into two cases.

1. Assume f is ex-post Pareto efficient. Let g be the mechanism that satisfies P(g(x) = x1) =

P(f(x) = x1), P(g(x) = x2) = P(f(x) = x2), P(g(x) = mx) = 1−P(g(x) = x1)−P(g(x) = x2).

Note that since mx minimizes the social cost function for the profile x, g certainly provides a

weakly better approximation ratio than f . Furthermore, symmetry, shift and scale invariance

are preserved.

Let us prove that condition 1 in Lemma 6 holds for g; the proof for condition 2 is similar. Since

f is a strategyproof mechanism, the condition implies that for any profile x = (x1, x2) with

45Note that it is possible for such a mechanism to still be ex-post Pareto efficient, if P(g(x) ∈ {x1, x2}).
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x1 = 0 < x2,

0 ≤ −
∫
[0,x2)

ydF (y) + x2P(f(x) = x2)

= −
∫
(0,x2)

ydF (y) + x2P(f(x) = x2)

= −E[f(x)1
(
f(x) ∈ (x1, x2)

)
] + x2P(f(x) = x2)

= −mxP(f(x) ∈ (x1, x2)) + x2P(f(x) = x2)

= −mxP(g(x) = mx) + x2P(g(x) = x2)

= −
∫
(0,x2)

ydG(y) + x2P(g(x) = x2).

The third equality holds because the distribution is symmetric around mx. Hence, the condition

is satisfied for the mechanism g.

2. Assume f doesn’t utilize interior. Let g be the mechanism which, for every profile x, locates

P(g(x) = x1) = P(g(x) = x2) = 0.5, which is clearly strategyproof, shift invariant, scale invari-

ant, and symmetric. sc(x, x2) minimizes sc(x, y) among y ≥ x2 and sc(x, x1) minimizes sc(x, y)

among y ≤ x1. Hence, E[sc(x, g(x))] ≤ E[sc(x, f(x))].

Now we are ready to prove the main theorem.

Theorem 5.4. The LRM mechanism gives the best approximation ratio among all strategyproof mech-

anisms that are shift invariant, scale invariant and ex-post Pareto efficient.

Proof. By the previous lemma, it suffices to search among the class of strategyproof shift invariant,

scale invariant and symmetric mechanisms where any element f of the class satisfies the property

that P(f(x) ∈ {x1, x2,mx}) = 1 for every location profile x. Clearly, for such mechanisms, the

approximation ratio increases as P(f(x) ∈ {x1, x2}) increases. Assume P(f(x) ∈ {x1, x2}) < 0.5. Then

P(f(x) = mx) > 0.5, and by symmetry, P(f(x) = x2) < 0.25. But this gives, when x1 = 0 and x2 > 0,

that −mxP(f(x) = mx) + x2P(f(x) = x2) = −x2
2 P(f(x) = mx) + x2P(f(x) = x2) < 0, violating

strategyproofness by Lemma 6. Thus we must have that P(f(x) ∈ {x1, x2}) ≥ 0.5, which implies that

among all such mechanisms, LRM provides the best approximation ratio of 0.5(2
1− 1

p + 1).

An immediate consequence of Theorem 5.4 is the following corollary.
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Corollary 5.1. Any strategyproof shift and scale invariant mechanism has an approximation of at

least 0.5(2
1− 1

p + 1) in the worst case.

5.5 Discussion

The most important open question in our view is whether or not randomization can help improve the

worst-case approximation ratio for general Lp norm cost functions. The case of p = 1 is uninteresting

because there is an optimal deterministic mechanism; for p = 2 and p = ∞ we already saw that

randomization improves the worst-case approximation ratio, but we do not know if this is simply a

happy coincidence, or if one can obtain similar results for all p > 2. Our negative result in Section 4

implies that any improvement by randomization would require a different approach than the existing

mechanisms.

There are many other natural questions as well: for instance, what happens for more general topolo-

gies such as trees or cycles? Is it possible to characterize all randomized strategyproof mechanisms on

specific topologies?

Finally, we believe it is of interest to consider more general cost functions for the individual agents.

The properties established for LRM and many other randomized mechanisms depend on the assumption

that agents incur costs that are exactly equal to the distance to access the facility. Clearly, this is a

very restrictive assumption, and working with more general individual agent costs is an interesting

direction to broaden the applicability of this class of models (see Appendix B.1 for a result regarding

this direction).46

46For deterministic mechanisms, our result continues to hold for arbitrary single peaked cost functions, as long as the

social cost remains an Lp measure of the distances.
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Chapter 6

Approximation Algorithms for the

Incremental Knapsack Problem

6.1 Introduction

Traditional optimization problems often deal with a setting where the input parameters are static.

However, the static solution that we obtain from such a problem may be inadequate for a system

whose parameters change over time. We consider one special case of this dynamic environment in

which we have a maximization problem subject to certain capacity constraints. All of the inputs to

the optimization problem are static except the capacities, which increase weakly over time. The goal

is to find a sequence of compatible feasible solutions over time that maximizes a certain aggregate

objective function. We will call such an optimization problem an incremental optimization problem.

Unlike online and stochastic optimization problems, all input parameters are known with certainty

from the outset.

In this chapter we consider the incremental knapsack problem, a special case of the incremental

optimization problem. In the discrete incremental knapsack problem, we are given a knapsack whose

capacity grows as a function of time. There is a time horizon of T periods and the capacity of the

knapsack is Bt in period t for t = 1, . . . , T . We are also given a set of n items to be placed in the

knapsack. Item i has a weight wi > 0 that is independent of the time period, and a value at time

t of the form vi∆t where vi > 0 and ∆t > 0 (this particular functional form will allow us to model

discounting). At any time period t, we require that the sum of the weights of the items in the knapsack
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cannot exceed the knapsack capacity Bt. Moreover, once an item is placed in the knapsack, it cannot

be removed from the knapsack at a later time period. Finally, we are interested in maximizing the

total discounted knapsack values47 over time.

To put it formally, for any X ⊆ S, define V (X) to be
∑

i∈X vi and W (X) to be
∑

i∈X wi. Then we

are interested in finding a feasible solution F = {S1, S2, . . . , ST } with S1 ⊆ S2 . . . ⊆ ST ⊆ S, where St

represents the subset of items in the knapsack in period t, that maximizes the quantity
∑T

t=1 V (St)∆t

subject to the constraints W (St) ≤ Bt for t = 1, . . . , T . The special case where ∆t = 1 for all t will be

called time-invariant. For brevity, in what follows we will denote the incremental knapsack problem

as DIK, and its time-invariant version as DIIK.

One can also consider a continuous version of the problem. Here we assume that there is a con-

tinuous time parameter s ∈ [0, S] for some S > 0. We are given a knapsack capacity function B(s),

weakly increasing in s, and a set K of n items to be placed in the knapsack. Item i has a value of vi

and a weight of wi, both time-independent. At any time s, the sum of the weights of the items in the

knapsack cannot exceed the knapsack capacity B(s). Moreover, once an item is placed in the knapsack,

it cannot be removed from the knapsack at a later time. We are interested in finding a feasible solution

F = {K(s)}s∈[0,S] that maximizes the quantity
∫ S
1 ∆(s)V (K(s))ds, where V (K(s)) is the total value

of the items found in the knapsack at time s, under F and ∆ is a discounting function. If one allows

for any arbitrary capacity function B, then one can embed any instance of the discrete problem as a

corresponding instance of the continuous problem with time horizon S = T + 1 by keeping the same

item size and value while setting B(s) = Bi for i − 1 ≤ s < i for i = 1, . . . , T (with B0 = 0). Since

the continuous version of the problem is more general, we will denote it as IK and its time invariant

case as IIK.

IK can be used to model an investment problem over a time horizon where the set of project costs

and rewards are known in advance. We get additional funds in each time period and unused funds

roll over from one period to the next. Consequently, B(s) represents the budget at time s. Projects

that we have invested in generate a reward (think of it as a benefit to society or to the investor) at

each time point and we assume that the total reward is additive across projects and time (taking

discounting into account). Like the standard knapsack problem, having a limited budget prevents us

from investing in all of the projects. The additional complication lies in the fact that we may not

47By knapsack value at time t, we mean the sum of item values that are packed into the knapsack by time t.



CHAPTER 6. APPROXIMATION ALGORITHMS FOR THE INCREMENTAL KNAPSACK
PROBLEM 97

have enough budget to invest in some projects (that generate high reward) initially. Hence, there is

trade-off between investing in the affordable projects now versus saving budget in order to invest in

more valuable projects later.

Since the single period knapsack problem is already known to be NP-hard, we look for polynomial

time approximation algorithms for different special cases of IK. For a maximization problem, a k-

approximation algorithm (for some k ≤ 1) is a polynomial time algorithm that guarantees, for all

instances of the problem, a solution whose value is within k times the value of an optimal solution.

Moreover, we say that the maximization problem has a (fully) polynomial time approximation scheme,

or a PTAS (FPTAS respectively), if for every 0 ≤ ε < 1, the algorithm guarantees, for all instances of

the problem, a solution whose value is within 1− ε times the value of an optimal solution. Moreover,

the algorithm should run in time that is polynomial in the size of the inputs and ε.

6.1.1 Scheduling Interpretation

The incremental knapsack problem can also be interpreted as a special case of a single machine schedul-

ing problem with the objective max
∑n

i=1 vig(Ci), for some non-increasing function g. We treat the

weight of an item as its processing time in the corresponding scheduling problem. Given a sequence σ

for which the items are packed into the knapsack, let Ci denote the completion time of job i under σ.

Let B−1σ (Ci) be the first time t in which B(t) ≥ Ci. Then item i contributes a reward vi
∫ T
B−1
σ (Ci)

∆(s)ds

under σ. Our objective is to identify a sequence σ that maximizes the quantity

n∑
i=1

vi

∫ S

B−1
σ (Ci)

∆(s)ds.

Contrary to the well studied problem of minimizing
∑n

j=1 vjf(Cj), where f is an arbitrary non-

decreasing function f , the maximization version of the problem has not been widely explored. Finally,

exact algorithms that maximize
∑n

i=1 vi(T − B−1σ (Ci)) also minimize
∑n

i=1 viB
−1
σ (Ci). Nonetheless,

this equivalence does not preserve approximation guarantees, and we are not aware of any way to uti-

lize the existing literature (on the scheduling problem) to construct a good approximation algorithm

for the incremental knapsack problem.
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6.1.2 Related Work

The special case of DIIK where vi = wi for all i has been examined in the literature. This problem

is known as the incremental subset sum problem. Hartline [71] gave a 1/2-approximation algorithm

for the incremental subset sum problem via dynamic programming. Sharp [113] gave a PTAS for

the incremental subset sum problem for a fixed T . This algorithm uses a variant of the dynamic

programming algorithm for the standard (i.e., 1-period) knapsack problem, and runs in time O((V nε )T ),

where V = maxi{vi}. In Section 6.2, we will show that this problem is in fact strongly NP-hard

when T is taken to be an input. Consequently, the classic result of [66] rules out an FPTAS for

the incremental subset sum problem (and its generalizations) unless P = NP . Hartline [70] gave a

O(1/ log T )-approximation algorithm for DIIK.

A well-studied problem related to DIK is the generalized assignment problem (GAP). In the gen-

eralized assignment problem, we are given a set of m knapsacks and n items, with knapsack j having

a capacity bj . Further, placing item i in knapsack j consumes wij units of capacity of knapsack j, and

generates a value of vij . Notice that a variant of DIK where one is only allowed to pack an additional

Bt+1−Bt units at each time t, is a special case of the generalized assignment problem: here, we would

set bt = Bt+1 − Bt and wit = wi for all i and vit = vi
∑T

t ∆t for all i and t. However, DIK is not

a special case of GAP because in DIK we are allowed to pack more than Bt+1 − Bt units at time t,

assuming the knapsack has spare capacity from earlier time periods. Approximation algorithms for

GAP have been studied by [114, 43, 56, 61], starting with the work of Shmoys and Tardos [114]. They

presented an LP-based algorithm for the minimization version of the problem. Chekuri and Khanna

[43] later observed that their algorithm can be modified into a 1/2-approximation algorithm for the

maximization version of the problem. The authors also identified a few APX-hard special cases of

generalized assignment. Fleischer et al. [61] gave an algorithm with approximation ratio of 1 − 1/e.

The best known constant factor algorithm is due to [56], who improved the approximation factor of

[61] by a small ε. Chekuri and Khanna [43] presented a PTAS for the special case of GAP where item

weights and values do not depend on the knapsack in which they are placed. Unfortunately, these

results are not directly applicable to DIK, because the knapsack capacities cannot be decomposed

over time.

The objective of minimizing the sum of some function of the job-competition times on a single

machine is a well studied problem in machine scheduling. A comprehensive literature review of the
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subject can be found in surveys such as [42, 74]. Two relevant works are the paper of Cheung and

Shmoys [46], who gave a 2-approximation algorithm for the problem 1‖∑ fj(Cj) for any non-negative,

non-decreasing function fj , and the work of Megow and Verschae [86], who developed a PTAS for the

problem 1‖∑ vjf(Cj), where f is any non-decreasing function. As we observed earlier, the scheduling

interpretation of IK is a maximization version of sum of non-increasing function of completion times.

Even though an exact algorithm for solving the problem 1‖∑ vjf(Cj) can also solve a transformed

version of IK, the transformation does not preserve approximation guarantees. Hence, the existing

algorithms cannot be applied directly to solve our problem. Recently, Gamzu and Segev [65] proposed

a PTAS for the problem 1‖max
∑
vj/Cj , a special case of IK with S =∞, B(s) = s and ∆(s) = 1

s2
.

Their approach does not immediately generalize to other important special cases of IK such as DIK
because the capacity function in the discrete setting is a step function rather than a simple linear

function. One notable difference is that the special case of DIK where item weight/processing time

equals its value is strongly NP-hard (see Proposition 6.1), whereas the corresponding special case of

1‖max
∑
vj/Cj can be solved via a simple index rule (see [65]).

6.1.3 Our Contributions

We give a (12(1 − 1
e ) − O(ε))-approximation algorithm for the special case of DIK when the discount

factors are weakly increasing with respect to time (which DIIK is a special case of). With the

assumption on the discount factors, we only lose a factor of ε in the approximation even if we pack

items in at most logε T time periods. This enables us to enumerate all possible time sequences of when

items are packed into the knapsack (there are O(T 1/ε) such time sequences). For each time sequence,

our algorithm makes use of a novel reduction to the general assignment problem.

Our second result provides a PTAS for the special case of DIK when the discount factors are

non-decreasing with respect to time. This LP-based approximation scheme involves a disjunctive

formulation (background and details, below) that can be rounded to obtain the desired approximation.

Specifically, we construct a disjunction over O(N((log T/ε)O(log(log T/ε)/ε2))) LPs (which is polynomial

in T and n), each with nT variables and O(nT ) constraints. This improves on the result of [113]. This

PTAS also extends the earlier work of [21] and [22] on the disjunctive approach for the single period

knapsack problem.

Our second result relies on the classical approach of disjunctive programming [14]. Suppose we
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want to find an approximate solution to max{wTx : x ∈ P} (P ⊆ Rn, possibly non-convex), with

approximation factor α. Moreover, suppose no good convex relaxation of P is known. In this case,

we may still be able to leverage the idea of disjunctive programming to give us a good approximation

guarantee. The idea is to find a set of polyhedra Q1, Q2, . . . QL in Rn such that P ⊆ ∪Li=1Q
i and for

each i we can compute, in polynomial time, xi ∈ P with wTxi ≥ αmax{wTx : x ∈ Qi}. Taking x? =

argmaxi{wTxi} yields a factor α approximate solution to the original optimization problem. As stated,

this approach simply constitutes a case of enumeration (polynomially-bounded if L is polynomial in

n and T ). Further, wTx? ≥ αmax{wTx : x ∈ conv(∪iQi)}, and this last maximization problem can

be formulated as a single linear program (polynomial-sized if L is), and, as will be the case below, we

obtain an approximation algorithm based on rounding.

For the continuous incremental knapsack problem IK, we focus on the special case where the

knapsack capacity grows linearly with time, or LIK. Moreover, we consider discounting functions

that are order inducing, meaning that once we have decided the subset of items to pack into the

knapsack by the time horizon S, an optimal order in which to pack the items can be computed via

a simple index rule. We observe that common discounting functions such as ∆(s) = 1, ∆(s) = e−rs,

and ∆(s) = (1 + r)−s for some constant r > 0 are all order inducing discounting functions. We then

show that LIK with any order inducing discounting function admits an FPTAS.48 We also show that

the continuous incremental subset sum problem with linear knapsack capacity and no discounting,

denoted by LIIS, can be solved easily via a simple greedy algorithm. Our result also implies that the

special case of LIK with no discounting and a constant number of value to weight ratio item-classes

can also be solved in polynomial time. Finally, we present an NP-hardness result for the piecewise

linear incremental knapsack problem (PLIK for short) with two pieces.

The rest of the chapter is organized as follows. The first part of the chapter focuses on DIK. We

show that the problem is strongly NP-hard and demonstrate that some common approaches will not

yield a good approximation algorithm. We then move on to our algorithmic results for various special

cases of DIK. We first discuss the constant factor algorithm via a reduction to GAP, followed by our

PTAS via disjunctive programming. Finally, we consider LIK, where we present an FPTAS and a

linear time greedy algorithm for LIIS. We end with the NP-hardness result for PLIK.

48Since the linear functional form can be compactly specified, we require the running time of our FPTAS to be

polynomial in n and log T .



CHAPTER 6. APPROXIMATION ALGORITHMS FOR THE INCREMENTAL KNAPSACK
PROBLEM 101

6.2 Hardness Results for DIK

We first show that the incremental subset sum problem, a special case of DIIK, is already strongly

NP-hard. Further, we demonstrate that some common approach will not provide a good approximation

ratio.

Proposition 6.1. The incremental subset sum problem is strongly NP hard.

Proof. We show that 3-partition can be reduced to incremental subset sum. In the 3-partition problem,

we are given a set S of 3m integers a1, . . . a3m, and we want to decide whether S can be partitioned

into m triples that all have the same sum B, where B = (1/m)
∑3m

i=1 ai. It is known that 3-partition is

strongly NP-hard even if all the integers take values between B/4 and B/2. Given a set S of 3m integers

a1, . . . , a3m, let ai be the weight and value of item i. Suppose the knapsack capacity is Bt = tB in

period t for t = 1, . . . , T = m. Lastly, we ask whether there exists a packing that achieves an objective

value of BT (T + 1)/2. Notice that since every item’s weight equals to its value, a feasible solution can

achieve an objective value of BT (T + 1)/2 if and only if it saturates the knapsack capacity in every

time period. It is clear that if a 3-partition exists, then such a packing exists. Conversely, if such a

packing exists and since the value of the items are strictly between B/4 and B/2, three additional

items must be packed in every time period in order for the knapsack to be at full capacity. Hence, if

such a packing exists, then a 3-partition exists.

We now show that the optimal solution to a DIIK instance may not exhibit a “nested structure”,

that is, constructing a feasible solution to a T period problem from an optimal solution to its T − 1

period subproblem may be very sub-optimal. To see this, suppose there are n = T items. Items 1

through T − 1 each have unit weight and value 1/T 2, whereas item T has weight T and value T . The

knapsack capacity is t in period t. It is easy to see that the optimal solution for time periods 1 through

T − 1 is to pack one additional unit weight item in every period, giving us an objective value of O(1),

whereas the optimal solution for time periods 1 through T is to wait till period T to pack the weight T

item, giving us an objective value of T . An alternative idea is to solve first for an optimal packing S∗

for the knapsack with capacity BT and restrict ourselves to pack items from S∗ in periods 1 through

T − 1. We show that this approach may be very sub-optimal as well. Consider T items. Items 1

through T − 1 each have unit weight and value, whereas item T has weight T and value T + ε. The



CHAPTER 6. APPROXIMATION ALGORITHMS FOR THE INCREMENTAL KNAPSACK
PROBLEM 102

knapsack capacity is again t in period t. The optimal solution for the knapsack with capacity T is to

pack the weight T item, giving us an objective value of T + ε. Nonetheless, doing so will not enable

to us to pack anything in periods 1 through T − 1, whereas the overall optimal solution is to pack one

additional unit weight item each of the periods 1 through T −1, giving us an objective value of O(T 2).

To contrast DIK with the standard knapsack problem further, recall that the LP relaxation of the

standard knapsack problem has an integrality gap of two when every individual item can fit into the

knapsack. This is because the greedy algorithm that packs items in value-to-weight ratio order yields

a 1/2-approximate solution. The approximation result of the greedy algorithm extends when all items

can fit into the knapsack initially.

Proposition 6.2. If every item can fit into the knapsack initially, then the greedy algorithm is a

1/2-approximation algorithm for DIK.

The proof of Proposition 6.2 can be found in Appendix C.1.

Unfortunately, the story is more complicated when some items cannot fit into the knapsack initially.

To illustrate the underlying difficulty, we consider a natural generalization of the knapsack IP here.

Let xi,t = 1 if item i is placed in the knapsack at time t and 0 otherwise. In order to prevent an item

those size is larger than the knapsack capacity Bt to be fractionally packed into the knapsack by an

LP solution, we set xit = 0 if item i does not fit into the knapsack at time t.

IP = max
T∑
t=1

∆t

n∑
i=1

vixi,t (6.1)

s.t.

n∑
i=1

wixi,t ≤ Bt ∀t

xi,t−1 ≤ xi,t ∀i, and t = 2, 3, . . . , T

xi,t = 0 for any i, t such that wi > Bt

xi,t ∈ {0, 1} ∀i, t.

Proposition 6.3. The LP relaxation of (6.1) has an unbounded integrality gap, even when there is no

discounting and has item have the same value as its weight.
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Proof. Fix a k ≥ 2 and let T = nk. Consider a set of n items, where vi = wi = ki for i =

1, . . . , logk(T ) = n. The knapsack capacities follow the following pattern:

Bt = ki if T (1− 1

ki−1
) + 1 ≤ t ≤ T (1− 1

ki
) for i = 1, . . . , logk(T ) and BT = BT−1.

Since the LP can fractional pack the items, the knapsack capacity is saturated in every time period.

Moreover, since all items have weight equal to value, the optimal value of the LP solution is the sum

of the knapsack capacities over all time periods:

T + T

logk(T )∑
i=1

kiT
(

(1− 1/ki)− (1− 1/ki−1)
)

= T (k − 1) logk(T ) + T = O(Tk logk(T )).

Let ti = T (1−1/ki−1)+1 denote the first time when the knapsack capacity increases to ki. Notice that

any integer feasible solution to the IP only packs at times ti. The only items that fit in the knapsack

at time ti are items 0 through i. If we decide to pack item i in period ti, then the total revenue we get

for packing i over times ti ≤ t ≤ ti+1 − 1 is T (1/ki − 1/ki+1)ki+1 = T (k − 1). Since we cannot pack

any item before time ti if we pack item i in time ti, the total revenue we get up to time ti+1− 1 would

be T (k − 1). For every i > 1, this is clearly suboptimal since we would get more revenue up to time

ti+1 − 1 had we just packed item 1 in period 1 (since kT (1 − 1/ki+1) > kT (1 − 1/k) = T (k − 1) for

i > 1). Hence, no integer optimal solution would pack item i at time ti for every i > 1.

If we do not pack item i at time ti, then the optimal packing of the knapsack in period i is items 1

through i− 1 for every i. This is feasible as we can pack items j at time tj+1 for every j = 1, . . . , i− 1.

Hence, this is an optimal integer packing the sub-problem over time periods 1 through ti for every

i > 1. We evaluate this integer optimal solution by looking at how long each item has been placed in

the knapsack:

kT +

n−1∑
i=2

ki(T − ti+1 + 1) = kT +

n−1∑
i=2

ki(T − T (1− 1/ki)) ' kT + T (logk T − 1)

≤ 2T max(k, logk(T )).

Hence, the integrality gap is at least 0.5 min(logk(T ), k). For every k, we can choose T = kk so

that 0.5 min(logk(T ), k) = k/2. Letting k go to infinity and we have the desired result.

This result implies that any constant factor approximation algorithm must do something more

clever than simply solving the above LP relaxation and rounding the fractional solutions to a feasible

integral solution. It also suggests that our LP relaxations needs to be tightened.
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6.3 A Constant Factor Approximation Algorithm

In the introduction section, we drew a connection between DIK and the generalized assignment prob-

lem (GAP). We mentioned that a variant of DIK where unused capacity from the previous period

cannot roll over to the next period is equivalent to a special case of GAP. Nonetheless, in the event

that unused capacity does roll over from one period to the next, we need to balance the use of cur-

rent capacity to pack more items versus saving additional capacity to pack more valuable items later.

Suppose we know the exact capacity required for an optimal packing in each time period, then we

can easily obtain a corresponding instance of GAP and make use one of the known approximation

algorithms. The main ideas behind our approximation algorithm lies in

1. making a polynomial number of guesses on the set of time periods when a near optimal solution

packs additional item(s).

2. identifying a relationship between the total capacity of items packed after the k-th packing step

and the knapsack capacity during the (k − 1)-st packing step that enables the reduction to a

GAP instance.

These two observations enable us to come up with a good solution after making a polynomial number of

calls to a constant factor approximation algorithm, such as that of [56], for some transformed instance

of GAP.

We now discuss the first idea in detail. Fix 0 < ε ≤ 1. Define tj for j = 1, . . . ,K, where K is the

largest value such that d(1 + ε)Ke ≤ T as follows. Note that K = O( log Tε ). The set of time periods

that we will consider is

Tε = {tε0, tε1, . . . , tεK+1}, (6.2)

where tε0 = T , and tεj = T − d(1 + ε)j−1e for j = 1, . . . ,K + 1. Now take any feasible solution x of an

instance of DIK, we will construct a corresponding feasible solution xε that only packs items in periods

from Tε with a small loss in objective value, provided that the discounted factors are non-decreasing

with respect to time. Whenever an item i is first packed in the knapsack in time period t by x, where

tj < t ≤ tj−1, then it will be first packed in period tj−1 by xε. Note that xε is a feasible solution as

knapsack capacity is non-decreasing over time.
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Proposition 6.4. The objective value of xε is within a factor of 1/(1 + ε) of the optimal value if the

discounting factors are non-decreasing over time.

Proof. Suppose item i is packed by x in time tj < t ≤ tj−1 for some j. Then the contribution of item i

to the objective in x is vi
∑T

t′=t ∆t′ compared to vi
∑T

t′=tj−1
∆t′ in xε. Whenever ∆t′ is non-decreasing,

∑T
t′=t ∆t′∑T

t′=tj−1
∆t′
≤

∑T
t′=tj

∆t′∑T
t′=tj−1

∆t′
≤ 1 + ε.

Hence, the objective value of xε is at least 1/(1 + ε) fraction of the objective value of x.

For all feasible solutions that only pack items in time periods from Tε, we focus on the one that

achieves the highest objective value x∗ε . Let s1 < . . . < sk ∈ Tε be consecutive times when at least one

additional item is packed into the knapsack. Then:

Lemma 6.1. For 1 < j ≤ k, the total size of items packed into the knapsack by x∗ε up to period sj is

at least Bsj−1.

Proof. If this claim does not hold for some j, then the items that are packed into the knapsack in

period sj can all fit into the knapsack in period sj−1, giving us higher objective value in doing so,

which contradicts the optimality of x∗ε .

Now, let’s divide the packing periods dictated by x∗ε into two sets: those with even index Ie versus

those with odd index Io, i.e. Ie = {s2, s4, ..., s2bk/2c} and Io = {s1, s3, ..., s2dk/2e−1}. Clearly, items

packed into the knapsack by x∗ε during one of the aforementioned set of times will achieve at least 1/2

fraction of the objective value of x∗ε . Finally, by Lemma 6.1, for every sj ∈ Ie, the total size of items

packed during period sj by x∗ε is upper bounded by Bsj − Bsj−2 , as the total size of items packed up

to period sj−1 is at least Bsj−2 . The same holds for every sj ∈ Io. Now we are ready to describe the

algorithm:

1. Fix 0 < ε < 1. For every subset S of Tε:

(a) Index the time periods s1, . . . , sk of S in increasing order and divide them into Io and Ie.

Construct a GAP instance w.r.t the packing in time periods Io (Ie respectively).
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(b) For every period sj ∈ Io and (Ie respectively), create a knapsack with capacity Bsj −Bsj−2

(with B0 = 0). Items in the GAP instance have the same data as the incremental knapsack

instance. If an item i is packed into this knapsack, then we receive a value of vi
∑T

t=sj
∆t.

(c) Apply the algorithm of [56] on the two GAP instances and return the better of the two

solutions.

2. Take the best solution over all subset S.

Note that since Tε has O( log Tε ) elements, the size of the enumeration is O(T 1/ε). Since our guess

contains the packing of x∗ε with respect to both subsets of periods Io and Ie, our algorithm is guaranteed

to return a 1
2(1− 1

e )−O(ε) approximate solution, where 1/2 comes from taking the better of the solutions

produced by packing using Io versus Ie, 1− 1/e comes from the performance of the algorithm of Feige

and Vondrák, and the O(ε) comes from using a subset of periods from Tε for packing.

6.3.1 Improving the Approximation Guarantee

There are two potential methods for improving the constant following our algorithmic approach. First

is to obtain more accurate guesses of the size of additional items packed into the knapsack in each time

period for the reduction to GAP. Working with time periods from Tε and observing that at most one

item will straddle two or more consecutive time periods (i.e. its packing requires the saving of residual

capacity over one or more periods), the number of such guesses can be polynomially bounded in T .

However, to ensure that a feasible packing of additional items in a given time period translates to a

feasible packing of the corresponding knapsack in the GAP instance, we may need to blow up the size

of each knapsack in the GAP instance by a factor of 1+ε. The difficulty lies in arguing that the reverse

mapping from a GAP feasible solution to the corresponding feasible packing of incremental knapsack

incurs an objective loss of O(ε), since the increment in knapsack capacity is non-homogeneous across

time and an ε fractional increment of a knapsack in an earlier time period may have a large effect

compared to the same incremental in a later time period.

Another direction through which we can potentially improve the approximation ratio is to come

up with a better approximation algorithm for the special case of GAP that we manage reduce to.

Chekuri and Khanna [43] showed that even certain special cases of GAP are APX-hard, including a

special case where all items have the same weight across knapsacks but different values. Nonetheless,
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the instance of GAP that enables them to perform the reduction requires the existence of items i and

i′ and knapsack k and k′, where item i is more valuable when placed in knapsack k versus k′ and vice

versa for item i′. On the contrary, in the reduced GAP instance, an item will give us higher value

when it is placed in a knapsack corresponding to an earlier time period. Chekuri and Khanna gave a

PTAS for the special case of GAP where all items weight and values are identical across knapsacks.

Whether the GAP instances that we obtained from DIK admits a PTAS remains an open question.

6.4 A PTAS for DIIK

Now we are ready to present the PTAS for DIIK. This algorithm can be extended to the case of

DIK with monotonically nondecreasing ∆t. Consider an instance of DIIK and let ε ∈ (0, 1). Without

loss of generality, we can assume that the vi’s are integral. Moreover, we will only pack in periods

Tε = {s1, . . . , s|Tε|} and lose a factor of O(ε) in the process (see Proposition 6.4).49 Let T ′ = |Tε|. To

ease the notation, from hereon we will simply refer to period st as period t for t = 1, . . . , T ′. Fixing an

optimal solution OPT , and let h be a the maximum valued item that is ever placed in the knapsack

by OPT . Then it suffices to optimize over the set of items Sh = {i ∈ S|vi ≤ vh}. We partition Sh into

K + 1 subsets X = {S1,h, S2,h, . . . , SK,h, T h}, where

Sk,h = {j ∈ S, j 6= h : (1− ε)k−1vh ≥ vj > (1− ε)kvh} for k = 1, . . . ,K,

and

T h = {j ∈ S : (1− ε)Kvh ≥ vj}.

In order to attain the approximation ratio, we will choose K large enough so that (1− ε)K < ε/T ′ or

equivalently, K > log(T ′/ε)
ε .

Consider a modified instance of the problem where items have identical weights as the original

instance and item i has a modified value of v′i = (1 − ε)k−1vh if i ∈ Sk,h and v′i = vi otherwise.

Let OPTm denote an optimal solution to the modified instance of the problem. Let V (SOL) and

Vm(SOL) be the objective value with respect to a solution SOL of the original instance and the

modified instance respectively. As we did not change the item weights, OPTm is a feasible solution to

49Tε here is defined in the same way as in expression (6.2)
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the original instance. Moreover,

V (OPTm) ≥ (1− ε)Vm(OPTm) ≥ (1− ε)Vm(OPT ) ≥ (1− ε)V (OPT ),

where the first inequality follows from the fact that vi ≥ (1−ε)v′i for every item i, the second inequality

follows from the fact thatOPTm is an optimal solution to the modified instance, and the third inequality

follows from the fact that vi ≤ v′i for every item i.

Now, since all items within each Sk,h have equal value in the modified instance, it is clear that con-

ditioning on the number of items chosen by OPT within each Sk,h, OPT would choose the items within

the same value class in the order of non-decreasing weight (breaking ties arbitrarily). Thus, it suffices

to enumerate feasible solutions that can be described by a collection of vectors {σ1, . . . , σK}, where

σkt ∈ {0, 1, . . . , |Sk,h|} denotes the number of items chosen from Sk,h in time period t ∈ Tε, in order to

find an optimal solution. Nonetheless, the number of potential solutions that we have to enumerate

would be exponential in n if we attempt to enumerate all possible configurations of {σ1, . . . , σK}. Con-

sequently, we will only explicitly enumerate σkt taking values from {0, 1, . . . , min(d1/εe, |Sk,h|)}. For

σkt taking values larger than J = d1/εe, we will instead let the feasible region of an LP capture these

feasible points and let the LP choose the optimal value for us and subsequently round this value down

to an integer. Lastly, since we don’t know the most valuable item h taken by OPT in the original

instance of the problem, we will have to guess such an item by enumeration.

Our disjunctive procedure is as follows. First, we guess the most valuable item h ∈ S packed by

an optimal solution. Subsequently, we only consider choosing items from Sh and round the values of

the items in Sh to obtain the modified instance of the problem. We will then focus on solving the

modified instance of the problem. Let ki, i = 1, 2, . . . , |Sk,h|, be the i-th lightest weight item in Sk,h

(break ties arbitrarily). Let xki,t be the variable indicating whether item ki is placed in the knapsack

in time period t. Let σ = {σ1, . . . , σK} ∈ {0, . . . , J}T ′K and define the following polyhedron:
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Qσ,h = {x ∈ [0, 1]T
′n : xi,t = 0 ∀(i, t) s.t. vi > vh (6.3)

xh,T ′ = 1 (6.4)

xk1,t = xk2,t = . . . = xk|Sk,h|,t = 0 ∀(k, t) s.t. σkt = 0 (6.5)

xk1,t = xk2,t = . . . = xk
σkt
,t = 1, xk

σkt +1
,t = . . . = xk|Sk,h|,t = 0 (6.6)

∀(k, t) s.t. 1 ≤ σkt < J and σkt < |Sk,h| (6.7)

xk1,t = xk2,t = . . . = xk
σkt
,t = 1 ∀(k, t) s.t. σkt = J and σkt < |Sk,h| (6.8)

xk1,t = xk2,t = . . . = xk|Sk,h|,t = 1 ∀(k, t) s.t. σkt ≥ |Sk,h| (6.9)

whxh,t +
K∑
k=1

|Sk,h|∑
i=1

wkixki,t +
∑
i∈Th

wixi,t ≤ Bt ∀t (6.10)

xki,t−1 ≤ xki,t ∀(k, i), and t = 2, 3, . . . , T ′ (6.11)

xi,t−1 ≤ xi,t ∀i ∈ T h, and t = 2, 3, . . . , T ′}. (6.12)

Equation (6.3) ensures that all items more valuable than h are never packed in the knapsack.

Equation (6.4) ensures that item h is packed into the knapsack at some point over the time horizon.

Equations (6.5) - (6.9) encodes our guesses on how many items from each value class to pack at each

time period. Inequality (6.10) is the knapsack capacity constraint and inequalities (6.11) and (6.12)

are precedence constraints. Note that the optimal solution x∗ to the DIIK IP (6.1) with T ′ and the

time horizon and v′i as the item values is contained in some Qσ
∗,h∗ , where h∗ is the most valuable item

ever packed by x∗ and σ∗ denotes the number of items packed by x∗ from each value class in each time

period. Hence, as long as we can solve the LP {max
∑T ′

t=1 ∆t
∑n

i=1 v
′
ixi,t : x ∈ Qσ,h} for every (σ, h),

round the optimal LP solution to a feasible integer solution with an objective loss bounded by (1− ε),
and take the best solution over all values of (σ, h), we would obtain a (1 − O(ε)) for this special case

of DIK. Before diving into the details of how to convert an LP optimal solution to a feasible integer

solution with small loss in objective value, we first upper bound the number of LPs that need to be

solved.

Lemma 6.2. There are a total of O
(
N(1/ε+ T ′)O(log(T ′/ε)/ε2)

)
LPs in our disjunctive procedure.
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Proof. Let us first count the number of LPs for a fixed guess of h. For a fixed k ∈ {1, . . . ,K},
we have σk1 ≤ σk2 ≤ . . . ≤ σkT ′ . If σkT ′ = m, then there are at most

(
m+T ′−1

m

)
feasible T ′-tuples

(σk1 , σ
k
2 , . . . , σ

k
T ′) since the vector values are integers. Since 0 ≤ m ≤ J , we have that

(
m+T ′−1

m

)
≤ (J +

T ′)J . Consequently, there are at most
∑J

m=1

(
m+T ′−1

m

)
≤ J(J+T ′)J feasible T ′-tuples (σk1 , σ

k
2 , . . . , σ

k
T ′).

Thus, there are at most (J(J + T ′)J)K = O
(

(1/ε+ T ′)O(log(T ′/ε)/ε2)
)

in the disjunctive procedure for

a fixed h, giving us O
(
N(1/ε+ T ′)O(log(T ′/ε)/ε2)

)
LPs in total.

Since T ′ = O( log Tε ), we have O
(
N(1/ε+ T ′)O(log(T ′/ε)/ε2)

)
= O(N( log Tε )O(log(log T/ε2)/ε2)), which is

polynomial in T and n.

Now, we are ready to present our rounding procedure.

Theorem 6.1. For every non-empty polyhedron Qσ,h, there exists a polynomially computable point

xσ,h feasible for IIK, such that

T ′∑
t=1

∆t

∑
i∈Sh

v′ix
σ,h
i,t ≥ (1− ε) max{

T ′∑
t=1

∆t

∑
i∈Sh

v′ixi,t : x ∈ Qσ,h}.

Proof. Let x̄ be an optimal solution of max{∑T ′

t=1 ∆t
∑

i∈Sh v
′
ixi,t : x ∈ Qσ,h}. We will decompose the

objective into value classes and show that our rounding procedure gives a small loss in objective for

each value class. More precisely, we will show the validity of the inequality

T ′∑
t=1

∆t

|Sk,h|∑
i=1

v′kix
σ,h
ki,t
≥ (1− ε)

T ′∑
t=1

∆t

|Sk,h|∑
i=1

v′ki x̄ki,t, (6.13)

for every Sk,h and that of

T ′∑
t=1

∆t

∑
i∈Th

v′ix
σ,h
i,t ≥

T ′∑
t=1

∆t

∑
i∈Th

v′ix̄i,t −∆T ′εvh, (6.14)

in Lemma C.2.

Finally xσ,hh,t = x̄h,t for every t. The two inequalities imply:

T ′∑
t=1

∆t

∑
i∈Sh

v′ix
σ,h
i,t =

T ′∑
t=1

∆tx̄h,t +

T ′∑
t=1

∆t

K∑
k=1

|Sk,h|∑
i=1

v′kix
σ,h
ki,t

+

T ′∑
t=1

∆t

∑
i∈Th

v′ix
σ,h
i,t

≥
T ′∑
t=1

∆tx̄h,t + (1− ε)
T ′∑
t=1

∆t

K∑
k=1

|Sk,h|∑
i=1

v′ki x̄ki,t +
T ′∑
t=1

∆t

∑
i∈Th

v′ix̄i,t −∆T ′εvh

≥ (1− ε)
T ′∑
t=1

∆t

∑
i∈Sh

v′ix̄i,t.
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Recall that x̄h,T = 1. Proofs of Lemma ?? and ?? can be found in the Appendix C.2.

Putting everything together, we have our approximation theorem.

Theorem 6.2. Let y ∈ arg max Qσ,h 6=∅
∑T ′

t=1 ∆t
∑

i∈Sh v
′
ix
σ,h
i,t , where xσ,h is a feasible point for I I K,

then we have that

T ′∑
t=1

∆t

∑
i∈Sh

v′iyi,t ≥ (1− ε)Vm(OPTm) ≥ (1− ε)2V (OPT ).

6.4.1 Discussion

Proposition 6.4 buys us a lot of leverage in both of the constant factor algorithm and the PTAS that

we presented, as it allows us to consider and enumerate through just logarithmically many time periods

and only lose an approximation factor of ε in the process. Nonetheless, when the discounting factors

are decreasing with respect to time, then the proposition does not hold, as one may need to keep

a constant fraction of the T time periods in order to ensure a 1 − O(ε)-approximate solution. New

algorithmic ideas that balance two competing forces are needed: items packed in later time periods may

not contribute much to the objective when discounting factors decrease with time, but there could be

large increases in knapsack capacities during later time periods, which enables us to pack very valuable

items. Finding an algorithm that results in a good approximation ratio for this case is an intriguing

open problem.

6.5 Continuous Knapsack with Linear Capacity

In the remainder of this chapter, we will consider the incremental knapsack problem when the knapsack

capacity grows continuously with time, or IK for short. It suffices to think of a solution of an instance

of IK as an ordering of the items σ1, . . . , σn. Once the ordering is given, then we will pack item σi at

time tσi = inf{t | ∑j≤iwσj ≤ B(t)}, i.e. the earliest time that the item can fit into the knapsack, given

the order. Item σi is not packed into the knapsack by the end of the time horizon if
∑

j≤iwσj > B(T ).

We start with LIK, the case where the capacity of the knapsack grows linearly with time, i.e.

B(t) = ct for some constant c > 0. Moreover, we will consider order inducing discounting functions

where it suffices to decide which maximal subset of the n items to pack by time T . We say that S is

a maximal subset to pack by time T if
∑

i∈S wi ≤ T and
∑

i∈S∪j wi > T for any j ∈ N\S. It is clear
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that any optimal packing will pack a maximal subset of items by time T . Once the subset is decided,

then the optimal ordering of the items can be decided via a simple index rule. We will show that the

following common discounting functions ∆(s) = 1, ∆(s) = e−rs, and ∆(s) = (1 + r)−s for some value

r > 0 are all order inducing discounting functions.

Proposition 6.5. Let ri be an index asssociated with job i. Given any maximal subset S to pack by

time T, then any optimal packs the items in decreasing order of their indices, where

• ri =
vσi
wσi

if ∆(s) = 1;

• ri =
vσie

−rwσi

1−e−rwσi
if ∆(s) = e−rs, for any r > 0;

• ri =
vσi (1+r)

−wσi

1−(1+r)−wσi
for any r > 0.

Proof of the proposition can be found in Appendix C.3.

Hence, given an order inducing discounting function, the problem boils down to choosing an optimal

subset S? of items to pack by time T . This problem can be formulated as the following math program.

We will assume from here on that the items are ordered according to the index rule.

max
x

n∑
i=1

( ∫ T

1
c

∑i
j=1 wjxj

∆(s)ds
)
vixi (6.15)

s.t.
n∑
i=1

wixi ≤ cT

xi ∈ {0, 1} ∀i = 1, . . . , n.

Here xi = 1 if and only if i belongs to the subset chosen. Moreover, we will assume without lost of

generality from here on that c = 1, as we can scale the item weights appropriately.

Now we develop an FPTAS for solving the math program in (6.15) using an idea inspired by

Chapter 5 of [110]. Let Sk denote a set of vectors in 2 dimensions, where each vector v corresponds to

a feasible solution to the subproblem of (6.15) where one is only allowed to pack items 1 through k,

for k = 1, . . . , N . In particular, v stores the objective value and w stores the sum of the weights of the

feasible solution that it corresponds to. Notice that one can enumerate through the elements of Sk via

the following recursion.
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1. For k = 1, we have that S1 = {(0, 0), (v1
∫ T
w1

∆(s)ds, w1)} if w1 ≤ T , else S1 = {(0, 0)}.

2. For k = 2, . . . , n, we construct Sk from Sk−1 as follows: for every (v, w) in Sk−1, include (v, w)

in Sk. Also include (v + vk
∫ T
w+wk

∆(s)ds, w + wk) in Sk if w + wk ≤ T .

Upon scaling, for every k, the vectors in Sk (except (0, 0)) lies in a rectangle [1, V T ] × [1,W ] in R2,

where V =
∑

i vi and W =
∑

iwi. Given a ε > 0, set δ = 1 + ε
2n . Define the following set of rectangles

that covers [1, V T ]× [1,W ]

R = {[δi−1, δi]× [δj−1, δj ]|i = 1, . . . , L1, j = 1, . . . , L2},

where L1 = dln(TV )/ ln(δ)e ≤ d2nε (lnT + lnV )e and L2 = dln(W )/ ln(δ)e ≤ d2nε (lnW )e. Hence, the

number of rectangles is bounded by O(n
2

ε2
(log T + log V )(logW )), which is polynomial in the size of

the inputs.50 To get an FPTAS, we would like to define S′k for k = 1, . . . , n recursively as we did for

Sk such that

1. S′k ⊆ Sk for all k = 1, . . . , n.

2. For every k fixed, every rectangle in R contains at most one element of S′k.

3. For every k and every element (v, w) ∈ Sk, there exists an element (v′, w′) ∈ S′k that is “close”

to (v, w). The precise notion of “closeness” will be specified later.

S′k is constructed as follows.

1. For k = 1, set S′1 = S1. For every rectangle containing two or more elements of S′1, we keep the

one with the smallest w coordinate and delete the rest from S′1.

2. For k = 2, . . . , n, we construct S′k from S′k−1 as follows: for every (v, w) in S′k−1, include (v, w)

in S′k. Also include (v + vk
∫ T
w+wk

∆(s)ds, w + wk) in S′k if w + wk ≤ T . For every rectangle

containing two or more elements of S′k, we keep the one with the smallest w coordinate and delete

the rest from S′k.

50Note that since we are no longer explicitly specifying the capacity of the knapsack in every time period in the

continuous case, a polynomial time algorithm needs to have a running time that is polynomial in log T .
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This construction of S′k satisfies criteria 1 and 2 above by definition. Moreover, the construction can

be done in O(nL1L2) time, which is polynomial in the size of the inputs. The following lemma specifies

what we meant by the points in S′k being ”close to” the points in Sk.

Lemma 6.3. For every k and for every vector (v, w) ∈ Sk, there exists a vector (v′, w′) ∈ S′k such that

δkv′ ≥ v and w′ ≤ w

Proof. We prove this via induction on k. The base case k = 1 holds by the definition of S′1. Now for the

inductive step. Take any (v, w) ∈ Sk, if (v, w) ∈ Sk−1, then we are done by the inductive hypothesis.

Otherwise, by definition, there exists (v̂, ŵ) ∈ Sk−1 such that (v, w) = (v̂ + vk
∫ T
ŵ+wk

∆(s)ds, ŵ +wk).

Moreover, by the inductive hypothesis, there exists (ṽ, w̃) ∈ S′k−1 such that δk−1ṽ ≥ v̂ and w̃ ≤ ŵ.

Finally, let (v′, w′) ∈ S′k be the point that lies in the same rectangle as (ṽ + vk
∫ T
w̃+wk

∆(s)ds, w̃+wk)

(which is guaranteed to exist by the way S′k is constructed). Then we have that

δkv′ ≥ δk−1
(
ṽ + vk

∫ T

w̃+wk

∆(s)ds
)

≥ v̂ + vk

∫ T

ŵ+wk

∆(s)ds = v.

The first inequality follows from the fact that δv′ ≥ ṽ + vk
∫ T
w̃+wk

∆(s)ds because the two vectors lie

in the same rectangle. The second inequality follows from the fact that δk−1ṽ ≥ v̂ and that w̃ ≤ ŵ.

Moreover, we have that

w′ ≤ w̃ + wk ≤ ŵ + wk = w.

Now, take the vector (v?, w?) ∈ Sn corresponding an optimal solution of (6.15), then there exists a

solution (v′, w′) ∈ S′n such that (1 + ε)v′ ≥ δnv′ ≥ v?, which is the optimal objective value. Hence, if

we search through S′n for the vector with the highest v component, then we would obtain an 1−O(ε)

approximate solution to the optimal solution of (6.15), as desired. The running time of the algorithm is

O(nL1L2) as we need to compute S′1 through S′k for k = 1, . . . , n and the computation of S′k from S′k−1

takes O(L1L2) time. Since L1L2 = O(n
2

ε2
(log T + log V )(logW )), our algorithm runs in polynomial of

the size of the inputs and 1/ε. Hence, we have a bona fide FPTAS. The existence of an FPTAS also

implies that the problem is at most weakly NP hard.

Theorem 6.3. There exists a FPTAS for LIK with order inducing discounting functions.
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6.5.1 Incremental Subset Sum with Linear Capacity

Now we consider a special case of incremental knapsack with a linear capacity growth function, no

discounting, and where the weight of each item equals to its value, which we denote by LIIS for

short. We will show that the problem can be solved in linear time via a greedy algorithm. This result

contrasts that of the discrete incremental subset sum problem, which is shown to be stronly NP-hard

in Proposition 6.1 (even the standard subset sum problem is weakly NP-hard). Let B(t) = ct being the

capacity function of the knapsack for some constant c > 0. Since the discounting function ∆(s) = 1

is order inducing, once we have decided on a subset S of items to pack into the knapsack on [0, T ].

The optimal ordering is to pack items in non-increasing order of value-to-weight ratio. However, since

every item’s weight equals its value, every ordering of the items in S yield the same revenue. If we

compare the loss in revenue of this solution to that of the LP relaxation of the problem, where items

can be fractionally packed and thus the knapsack is full in every time period, then we incur a loss in

revenue of ∑
i∈S

w2
i

2c
+

1

2
(T − 1

c

∑
i∈S

wi)(cT −
∑
i∈S

wi)

compared to the total revenue cT 2

2 of an optimal fractional packing. From here on we will assume that

c = 1 by scaling the item weights appropriately.

Now we are ready for the main theorem.

Theorem 6.4. Sorting the items in non-decreasing order of item weights and greedily packing them

until packing any more item would exceed the knapsack capacity of T is optimal for LIIS.

Proof. Let S? and Sg denote an optimal set of items to pack and the set of items packed by greedy

respectively. Let c(S) denote the revenue loss of S. We would like to show that c(Sg) ≤ c(S?). We

know that ∑
i∈S?∩Sg

w2
i =

∑
i∈S?∩Sg

w2
i .

Hence, it suffices to show that

∑
i∈Sg\S?

w2
i + (T −

∑
i∈Sg

wi)
2 ≤

∑
i∈S?\Sg

w2
i + (T −

∑
i∈S?

wi)
2. (6.16)
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If S?\Sg = ∅, then we are done, since greedy packs everything OPT packs and potentially more.

Otherwise, note that for every k ∈ S?\Sg, we have that

wk ≥ max
i∈Sg\S?

wi,

otherwise greedy would have packed item k before an item in arg maxi∈Sg\S? wi. Moreover, we also

have that for every k ∈ S?\Sg,
wk > T −

∑
i∈Sg

wi,

because if it weren’t the case, then item k would have been packed by greedy. Now consider the

following lemma.

Lemma 6.4. Let a1, . . . ap and b1, . . . , bq be nonnegative numbers such that
∑p

i=1 ai =
∑q

i=1 bi. More-

over, if p ≥ 2, suppose also that every k = 1, . . . , p− 1, ak ≥ maxi=1,...,q bi. Then

p∑
i=1

a2i ≥
q∑
i=1

b2i .

Now suppose the lemma holds, then letting p = |S?\Sg|+ 1, q = |Sg\S?|+ 1, {ai}pi=1 = (S?\Sg)∪{T −∑
i∈S? wi} with ap = T −∑i∈S? wi, and {bi}qi=1 = (Sg\S?)∪{T −

∑
i∈Sg wi}. Then one can check that

{ai}pi=1 and {bi}qi=1 satisfies the conditions of Lemma 6.4. In particular, note that

p∑
i=1

ai =

q∑
i=1

bi = T −
∑

i∈S?∩Sg

wi.

Hence, equation (6.16) follows directly from an application of Lemma 6.4. The proof of Lemma 6.4

can be found in Appendix C.4.

Note that Theorem 6.4 does not immediately generalize to other discounting functions because the

cumulative loss in revenue while we are waiting to save up enough capacity to pack item i does not

just depend on its weight but also the time at which we pack the item.

Corollary 6.1. Any incremental knapsack instance with linear capacity function and no discounting

in which there are at most k value-to-weight ratio classes can be solved exactly in O(nk) time.

Proof. We first guess the number of items from each of the value-to-weight ratio classes packed by the

optimal solution. Then we pack items in non-increasing order of the ratio and within each ratio class,

we pack the items with the smallest weight first.
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6.5.2 Discussion

Whether there exists a polynomial time algorithm for LIK with no discounting remains an open

question. Theorem 6.3 gives an FPTAS for solving a slight generalization of the problem (for any

order inducing discounting function). Nonetheless, we are unable to derive an NP-hardness result to

complement our FPTAS. We conjecture that some reduction from the partition problem or its variants

exists. By Corollary 6.1, such a reduction (if one exists) will require us to construct an instance of the

incremental knapsack problem where there are a non-constant number of value-to-weight ratio classes.

The ratio classes should be constructed in a delicate fashion so that neither a non-decreasing weight

ordering greedy solution dominates (which would happen if the ratios are nearly identical) nor does a

non-increasing value-to-weight ratio ordering solution (which would happen if the ratios are far apart

from each other) dominate.

6.6 Piecewise Linear Capacity function

We say that the capacity function is piecewise linear if the time horizon can be partitioned into p

subintervals such that the capacity function is linear within each subinterval. We first show that IK is

NP-hard when we have a monotone piecewise capacity function with two pieces. The rough intuition

behind the hardness reduction is that the problem is very similar to the standard knapsack problem if

the slope of the first linear piece is large while the slope of the second linear piece is close to zero.

Theorem 6.5. PLIK with a two linear pieces and no discounting is NP-hard.

Proof. The reduction is from partition. Given a set of n positive integers {a1, . . . , an}, let a =

1
2

∑n
i=1 ai, the partition problem asks if there exists a subset that sums to a. Given an instance of the

partition problem {a1, . . . , an}, we construct an instance of incremental knapsack as follows. There are

n items with vi = wi = ai. The capacity function is the following 2-piecewise linear function: B(t) = t

for 0 ≤ t ≤ a, and B(t) = a for T ≥ t ≥ a. There is a time horizon T to be specified.

Suppose there exists a partition S. Then we can pack the items in S into the knapsack by time a.

Moreover, the order in which the items are packed will not change the objective value since item weight

equals to item value. Hence, let us assume that the items in S are packed in increasing order of their
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subscript. Consequently, we get an objective value of∑
i∈S

(T −
∑

j∈S | j≤i

aj)ai ≥
∑
i∈S

(T − a)ai = a(T − a).

Hence, if there exists a partition S. Then the optimal value of the correspondingly incremental knapsack

instance is at least a(T − a). On the other hand, suppose there does not exist a partition. Let S?

be an optimal subset to pack by time T in the corresponding incremental knapsack instance. Then,

assuming that we pack the items in increasing order of subscript, we have that∑
i∈S?

(T −
∑

j∈S? | j≤i

aj)ai = T
∑
i∈S?

ai −
∑
i∈S?

∑
j∈S? | j≤i

aiaj ≤ T (a− 1),

since
∑

i∈S? ai < a and ai’s are integers. We choose T so that a(T − a) > T (a − 1). One candidate

would be T = a2 + 1. Consequently, we have a valid polynomial size reduction: given any set of n

positive integers {a1, . . . , an}, there exists a partition if and only if one can attain an objective value

of at least a(T − a) = a(a2 − a+ 1) in the corresponding incremental knapsack problem.

6.6.1 Discussion

As is the case for linear capacity growth, it is clear that once an ordering for the items to be packed

by time T is determined, one would pack the items as early as possible with respect to that ordering.

However, it is no longer the case that once a subset to pack by time T is chosen, the optimal packing

follows the non-increasing value-to-weight ratio. Nonetheless, it remains true via Proposition 6.5 that

the items are packed in decreasing value-to-weight ratio ordering within each linear piece.

It seems plausible to extend the FPTAS for LIK to obtain an FPTAS for PLIK with a constant

number of linear pieces, if the discounting function is order inducing. This is because, with these

pseudo-polynomial number of guesses on the time at which the last (straddling) item is packed into

each linear capacity segment, the problem essentially decouples into an instance of p knapsacks each

with linear capacity and an interval during which items can be packed into the knapsack. Since items

packed within each knapsack will be arranged in value-to-weight ratio order, the problem again boils

down to guessing the subset that will be completely packed within each knapsack. Nonetheless, Lemma

6.3 does not easily generalize for this case. Generalizing Lemma 6.3 and turning the pseudo-polynomial

number of guesses of the packing epoch of straddling items into an approximation scheme are the two

challenges that we are currently trying to overcome so as to obtain an FPTAS for this setting.
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Chapter 7

Capacity Constrained Assortment

Optimization under the Markov Chain

based Choice Model

Joint work with Antoine Désir.

7.1 Introduction

Assortment optimization problems arise widely in many practical applications such as retailing and

online advertising. In these problems, the goal is to select a subset from a universe of substitutable

items to offer to customers in order to maximize the expected revenue. The demand of any item

depends on the substitution behavior of the customers that is captured mathematically by a choice

model. The choice model specifies the probability that a random consumer selects a particular item

from any given offer set. The objective of the decision maker is to identify an offer set that maximizes

expected revenue.

Many parametric choice models have extensively been studied in the literature in diverse areas

including marketing, transportation, economics, and operations management. The Multinomial logit

(MNL) model is by far the most popular model in practice due to its tractability [122]. However, some

of the simplifying assumptions behind this model, such as the Independence of Irrelevant Alternatives

property, make it inadequate for many applications. Consequently, more complex choice models have
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been developed to capture a richer class of substitution behaviors. Such models include the nested

logit model [129] and the mixture of Multinomial logit model [85]. Nonetheless, the increase in model

complexity makes their estimation and assortment optimization problems significantly more difficult.

Hence, one of the key challenges in assortment planing is choosing a model that strikes a good balance

between its predictability and tractability, as there is a fundamental tradeoff between these desirable

properties.

In a recent paper, Blanchet et al. [25] consider a Markov chain based choice model. Here, customer

substitution is captured by a Markov chain, where each item (including the no-purchase option) corre-

sponds to a state, and substitutions are modeled using transitions in the Markov chain. The authors

show that this model provides a good approximation in choice probabilities to a large class of exist-

ing choice models, allowing it to circumvent the model selection problem. In particular, the Markov

chain choice model is a generalization of several known choice models in the literature including MNL,

Generalized Attraction Model (GAM) ([62]), and the exogenous demand model ([79]). Furthermore,

Blanchet et al. [25] show that the unconstrained assortment optimization problem under the Markov

chain model is polynomial time solvable. Zhang and Cooper [130] also consider the Markov chain

model in the context of airline revenue management, and present a simulation study. In a recent pa-

per, Feldman and Topaloglu [58] study the network revenue management problem under the Markov

chain model and give a linear programming based algorithm.

In this chapter, we consider the capacity constrained assortment problem under the Markov chain

model. In this problem, every item i is associated with a weight wi, and the decision maker is restricted

to selecting an assortment whose total weight is at most a given bound, W . Therefore, we can formulate

the capacity constrained assortment optimization problem as

max
S⊆N

{
R(S) :

∑
i∈S

wi ≤W
}
, (Capacity-Assort)

where N denotes the universe of substitutable items and R(S) denotes the expected revenue for any

assortment S ⊆ N under the Markov chain model. For the special case of uniform item weights

(i.e. wi = 1 for all i), the capacity constraint reduces to a constraint on the number of items in the

assortment. We refer to this setting as the cardinality constrained assortment optimization problem:

max
S⊆N

{R(S) : |S| ≤ k} . (Cardinality-Assort)
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The cardinality and capacity constraints on assortments arise naturally in many applications, allowing

one to model practical scenarios, such as a shelf space constraint or budget limitations. Capacity con-

strained assortment optimization has been studied in the literature for many parametric choice models.

Davis et al. [51] give an exact algorithm for MNL under cardinality constraint, and more generally,

under totally-unimodular constraints. Gallego and Topaloglu [63] propose an exact algorithm for the

cardinality constrained problem for a special case of the nested logit model. More recently, Feldman

and Topaloglu [59] present an exact algorithm for the latter model when the cardinality constraint is

across different nests. Rusmevichientong et al. [104] devise a polynomial-time approximation scheme

(PTAS) for the cardinality constrained assortment problem under a mixture of MNL choice model.

Désir and Goyal [52] propose a fully polynomial-time approximation scheme (FPTAS) for the capacity

constrained assortment problem under both the nested logit and the mixture of MNL models.

7.1.1 Our Contributions

Hardness of Approximation. We show that the capacity constrained assortment optimization

problem under the Markov chain model is NP-hard to approximate within a factor better than some

given constant, even when all items have uniform prices and unit weights. In this case, the capacity

constraint reduces to a bound on the number of items, i.e. to a cardinality constraint. It is interesting

to note that, while the unconstrained assortment optimization problem under the Markov chain choice

model can be solved optimally in polynomial time, the cardinality constrained problem is APX-hard.

In contrast, in both the MNL and Nested logit models, the unconstrained assortment optimization and

the cardinality constrained assortment problems have the same complexity.

We also consider the case of totally-unimodular (TU) constraints on the assortment. Note that

a cardinality constraint is a special case of TU constraints. These capture a wide range of practical

constraints such as precedence, display locations, and quality consistent pricing constraints ([51]). We

show that the assortment optimization problem under general totally-unimodular (TU) constraints for

the Markov chain choice model is hard to approximate within a factor of O(n1/2−ε) for any fixed ε > 0,

where n is the number of items. This result drastically contrasts that of Davis et al. [51], who prove

that the assortment optimization problem with TU constraints for the MNL model can be solved in

polynomial time.
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Approximation Algorithms: Uniform Prices. The above hardness results motivate us to consider

approximation algorithms for the capacity constrained assortment optimization problem under the

Markov chain choice model. For the special case, when all item prices are equal, we show that the

revenue function is submodular and monotone. Therefore, we can obtain a (1 − 1/e)-approximation

for the cardinality constrained problem using a greedy algorithm ([94]). In fact, for this special case of

uniform prices, we can get a (1− 1/e)-approximation for more general constraints such as a constant

number of capacity constraints ([80]) and matroid constraint ([40]).

It is worth mentioning that, from a practical point of view, the uniform-price setting turns the

objective function into that of maximizing sales probability. This scenario is very common when

products are horizontally-differentiated, i.e., differ by characteristics that do not affect quality or price,

such as iPads coming in a variety of colors, or yogurt with different amounts of fat-content.

Approximation Algorithms: General Prices. For the general case of non-uniform item prices,

the revenue function is neither submodular nor monotone. Moreover, the performance of the greedy

algorithm can be arbitrarily bad even for the cardinality constrained problem. Our main contribution

in this chapter is to present a “local-ratio” based algorithm to obtain a (1/2 − ε)-approximation for

the cardinality constrained assortment optimization problem under the Markov chain model. The

running time of our algorithm is polynomial in the input size and 1/ε. The algorithm is based on a

“local-ratio” paradigm that builds the solution iteratively. In each iteration, the algorithm makes an

appropriate greedy choice and then constructs a modified instance such that the final objective value

is the sum of the objective value of the current solution and the objective value of the solution in

the modified instance. Therefore, the local-ratio paradigm allows us to capture the externality of our

action in each iteration on the remaining instance by constructing an appropriate modified instance;

thereby, linearizing the revenue function even though the original objective function is non-linear. This

technique may be of independent interest. We also obtain a (1/3 − ε)-approximation for the general

capacity constrained assortment optimization problem using the local-ratio paradigm. Our approach

also provides an alternative strongly-polynomial exact algorithm for the unconstrained assortment

optimization problem under the Markov chain model.

Computational Results. We conduct a computational study to compare the numerical performance

of our algorithm. We focus on two particular issues: performance and computational efficiency. We
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present an exact mixed-integer programming (MIP) formulation of the problem to compute the exact

optimal solution for comparison. In the numerical experiments, we observe that the practical perfor-

mance of our algorithm is significantly better than its worst-case theoretical guarantee. Specifically,

although the theoretical guarantee is (1/2 − ε) for the cardinality constrained problem, we observe

that the approximation ratio is 0.97 on average and at least 0.77 across all instances considered in our

experiments. With respect to computational efficiency, our algorithm is scalable and terminates in a

few seconds, and in fact, within one minute in the worst case over all large instances tested. On the

other hand, the MIP does not terminate even within a time limit of 2 hours on most of these large

instances (n = 200).

7.1.2 The Markov Chain Model and Notations

We denote the universe of n products by the set N = {1, 2, . . . , n} and the no-purchase option by 0,

with the convention that N+ = N ∪{0}. We consider a Markov chainM with states N+ to model the

substitution behavior of customers. This model is completely specified by initial arrival probabilities

λi for all states i ∈ N+ and the transition probabilities ρij for all i ∈ N+, j ∈ N+. If a retailer chooses

to offer a subset of products S to consumers, then the corresponding states in S of the Markov chain

become absorbing states. A customer arrives in state i with probability λi if the state is absorbing.

Otherwise, the customer transitions to a different state j 6= i and the process continues until the

customer reaches an absorbing state. In other words, the probability of a random customer purchasing

product i with S being the offer set of products is the probability that the customer reaches state i

before any other absorbing states in the underlying Markov chain.

Following [25], we assume that for each state j ∈ N , there is a path to state 0 with non-zero

probability. For a given offer set S ⊆ N , let π(i, S) be the choice probability that item i is chosen

when the assortment S is offered. Let pi denote the price of item i. For any assortment S, the expected

revenue can be written as

R(S) =
∑
i∈S

π(i, S) · pi.

For any (possibly empty) pairwise-disjoint subsets U, V,W ⊆ N+, let Pj(U ≺ V ≺ W ) denote the

probability that starting from j, we first visit some state in U before visiting any state in V ∪W ,

and subsequently visit some state in V before visiting any state in W , with respect to the transition

probabilities of M. Let P(U ≺ V ≺W ) =
∑n

j=1 λjPj(U ≺ V ≺W ). Note that with this notation, we
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can write π(i, S) = P(i ≺ S+\{i}) where S+ = S ∪ {0} for all S ⊆ N (in this case, W = ∅).

7.1.3 Outline

The remainder of this chapter is organized as follows. In Section 7.2, we present the hardness results

for the constrained assortment optimization problem under the Markov chain model. We present the

special case of uniform price items in Section 7.3. We also illustrate why several greedy algorithms,

including the one that is provably good for uniform prices, do not provide good approximations for

arbitrary prices. In Sections 7.4 and 7.5, we present the local-ratio paradigm and our algorithm for the

cardinality constrained problem. We present the generalization to the capacity constrained problem

in Section 7.6. Finally, the computational study is presented in Section 7.7.

7.2 Hardness of Approximation

In this section, we present our hardness of approximation results for the constrained assortment opti-

mization problem under the Markov chain choice model.

7.2.1 APX-hardness for Cardinality Constraint with Uniform Prices

We show that Cardinality-Assort is APX-hard, i.e., it is NP-hard to approximate within a given constant.

In particular, we prove this result even when all items have uniform prices.

Theorem 7.1. Cardinality-Assort is APX-hard, even when all items have equal prices.

Our proof is based on gap preserving reduction from the minimum vertex cover problem on 3-regular

(or cubic) graphs, to which we refer to as VCC. This problem is known to be APX-hard (see [3]). In

other words, for some constant α > 0, it is NP-hard to distinguish whether the minimum-cardinality

vertex cover is of size at most k or at least (1 + α)k for cubic graphs. Given any instance I of the

VCC problem with a cubic graph G = (V,E) and k > |E|/3, we construct an instance M(I) of

Cardinality-Assort as follows. We consider a Markov chain with states corresponding to each vertex in

G and an additional state 0 corresponding to the no-purchase item 0. Each state has a transition to

state 0 with probability 1/4. In addition, each state has transitions to the states corresponding to

their neighbors in G with probability 1/4 each (since G is a 3-regular graph, the sum of transition

probabilities out of any state is one).
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To prove the hardness result, we establish the following two properties: i) if the minimum vertex

cover of instance I has size at most k, then the optimal expected revenue for instanceM(I) is at least(
3
4 + k

4n

)
, and ii) if the minimum vertex cover of instance I has size at least (1 +α)k, then the optimal

expected revenue for instance M(I) is at most
(
3
4 + k

4n − α
16

)
. Therefore, there is a constant gap

between the optimal objective value for instance M(I) of Cardinality-Assort for the two cases. Since

it is NP-hard to distinguish between the two cases for instance I, this implies that it is NP-hard to

approximate Cardinality-Assort better than some constant (strictly smaller than 1); thereby, proving the

APX-hardness of Cardinality-Assort. We would like to note that Cardinality-Assort is APX-hard even

for the special case of uniform item prices. Furthermore, our hardness reduction provides interesting

insights towards the structure of difficult instances of the problem.

We present a detailed proof of Theorem 7.1 in Appendix D.1.

7.2.2 Totally-Unimodular Constraints

We consider the assortment optimization under the Markov chain model for the more general case

of totally-unimodular constraints. Let xS ∈ {0, 1}|N | denote the incidence vector for any assortment

S ⊆ N where xSi = 1 if i ∈ S and xSi = 0 otherwise. The assortment optimization problem subject to

a totally-unimodular constraint can be formulated as follows:

max
S⊆N

{
R(S) : AxS ≤ b

}
. (TU-Assort)

Here, A is a totally-unimodular matrix, and b is an integer vector. Note that the cardinality constraint

in Cardinality-Assort is a special case of TU-Assort. We show that TU-Assort is NP-hard to approximate

within factor O(n1/2−ε), for any fixed ε > 0 for the Markov chain model. This result drastically

contrasts that of [51], who proved that the assortment optimization problem with totally-unimodular

constraints can be solved in polynomial time when consumers choose according to the MNL model.

To establish our inapproximability results for TU-Assort, we demonstrate that totally-unimodular

constraints in the Markov chain model capture the distribution over permutations model as a special

case. Aouad et al. [7] show that even unconstrained assortment optimization under a general distribu-

tion over permutations (or rankings) model is hard to approximate within factor O(n1−ε) for any fixed

ε > 0 (n is the number of substitutable items). In an instance of the assortment optimization problem

over the distribution over permutations model, we are given a collection of items N = {1, . . . , n} with
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prices p1 ≤ · · · ≤ pn, respectively. In addition, we are given an arbitrary (known) distribution on K

preference lists, L1, . . . , LK , each of which specifies a subset of the items listed in decreasing order

of preference. A customer with a given preference list selects the most preferred item that is offered

(possibly the no-purchase item) according to his/her list. The goal is to find an assortment such that

the expected revenue is maximized.

Theorem 7.2. TU-Assort cannot be approximated in polynomial-time within a factor O(n1/2−ε), for

any fixed ε > 0, unless P = NP .

We present the proof in Appendix D.1.

7.3 Special Case: Uniform Price Items

In this section, we consider a special case of Cardinality-Assort when item prices are uniform, and prove

that this setting can be efficiently approximated within factor 1− 1/e.

7.3.1 Constant Factor Approximation Algorithm

When all prices are equal, we show that the revenue function is submodular and monotone. Using

the classical result of [94], we have that a greedy algorithm guarantees a (1 − 1/e)-approximation for

Cardinality-Assort for this special case of uniform prices. We start with a few definitions.

Definition 7.1. A revenue function R : 2N → R+ is monotone when for all S ⊆ N and i ∈ N , we

have R(S ∪ {i}) ≥ R(S).

Definition 7.2. A revenue function R : 2N → R+ is submodular when for all S ⊆ T ⊆ N and

i ∈ N\T , we have R(S ∪ {i})−R(S) ≥ R(T ∪ {i})−R(T ).

Theorem 7.3. When all items have uniform prices, the revenue function R(·) is submodular and

monotone.

Proof. Let p be the price of every item in N . Since item prices are identical, for every subset S and

item i ∈ N\S, we have

R(S ∪ {i}) = R(S) + p · P(i ≺ 0 ≺ S).
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Recall that P(i ≺ 0 ≺ S) is the probability that the Markov chain visits state i and then visits state 0

without visiting any state in S. When all prices are equal, the marginal increase in revenue by adding

item i is only due to the additional demand that item i is able to capture. Consequently, R(·) is

monotone as the quantity p · P(i ≺ 0 ≺ S) is non-negative. Moreover, the submodularity of R follows

from the fact that for all S ⊆ T , we have

R(S ∪ {i})−R(S) = p · P(i ≺ 0 ≺ S) ≥ p · P(i ≺ 0 ≺ T ) = R(T ∪ {i})−R(T ).

Therefore, from the classical result of [94] for maximizing a monotone submodular function subject

to a cardinality constraint, we know that the greedy algorithm gives a (1− 1/e)-approximation bound

for Cardinality-Assort with uniform prices. Algorithm 7.1 describes this procedure in detail. Note that

Algorithm 7.1 Greedy Algorithm

1: Let S be the set of states picked so far, starting with S = ∅.
2: While |S| < k and there exists i ∈ N\S such that R(S ∪ {i})−R(S) ≥ 0,

(a) Let i∗ be the item for which R(S ∪ {i})−R(S) is maximized, breaking ties arbitrarily.

(b) Add i∗ to S.

3: Return S.

for uniform prices, when |S| < k < n, the condition in Step 2 that there exist i ∈ N\S such that

R(S ∪ {i})−R(S) ≥ 0 is redundant as the revenue function is monotone, which is not necessarily true

for the case of arbitrary prices. Therefore, we include this condition to describe the greedy algorithm

for the general case to discuss implications for arbitrary prices.

More General Constraints for Uniform Prices. For the special case of uniform prices, since the

revenue function is monotone and submodular, we can exploit the existing machinery for approximately

maximizing submodular monotone functions subject to a wide range of constraints (see, for instance,

[83, 37, 80, 40]). This way, constant-factor approximations can be obtained for the assortment opti-

mization under the Markov chain model for more general constraints. For instance, Kulik et al. [80]

give a (1−1/e)-approximation algorithm for maximizing a monotone submodular function under a fixed

number of knapsack (capacity) constraints, and Calinescu et al. [40] give a (1 − 1/e)-approximation

for maximizing a monotone submodular function under a matroid constraint.
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7.3.2 Bad Examples for Arbitrary Prices

The approximation guarantees we establish for uniform prices do not extend to the more general setting

with arbitrary prices, even for Cardinality-Assort. In what follows, we point out the drawbacks of the

natural greedy heuristics, including Algorithm 7.1, in approximating Cardinality-Assort for arbitrary

prices. Intuitively, the performance of Algorithm 7.1 for general prices can be bad since it can make

a low-price item absorbing that subsequently blocks all probabilistic transitions going into high price

items. We formalize this intuition in the following lemma.

Lemma 7.1. For arbitrary instances of Cardinality-Assort with a cardinality constraint of k, Algo-

rithm 7.1 can compute solutions whose expected revenue is only O(1/k) times the optimum.

Proof. Consider the following instance of Cardinality-Assort with n = k+ 1 items, where k is the upper

bound specified by the cardinality constraint. We have a state s and states i = 0, . . . , k. The arrival

rates are all equal to 0, except for λs which is equal to 1. Moreover

pi =

 (1/k) + ε if i = s

1 if i = 1, . . . , k,
ρij =


1/k if i = s and j = 1, . . . , k

1 if i = 1, . . . , k and j = 0

0 otherwise,

where ε ≤ 1/(2k). Figure 7.1 provides a graphical representation of this instance. Algorithm 7.1 first

s

1

2

k

0

ps =
1
k + ǫ

ρs,i =
1
k

pi = 1

λs = 1

Figure 7.1: A bad example for Algorithm 7.1.
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picks item s as R({s}) = (1/k)+ ε while R({i}) = (1/k), for i = 1, . . . k. Once s is selected, adding any

other state cannot increase the revenue. Therefore, the greedy algorithm gives a revenue of (1/k) + ε.

However, the optimal solution is to offer items 1 to k, which gives a revenue of 1 in total. When ε

tends to 0, the approximation ratio goes to 1/k.

In fact, we can show that the above example is the worst possible and Algorithm 7.1 gives a

1/k-approximation for Cardinality-Assort.

Lemma 7.2. Algorithm 7.1 guarantees a 1/k-approximation for Cardinality-Assort.

We present the proof of the above lemma in Appendix D.2.

Modified Greedy Algorithm. The bad instance for Algorithm 7.1 shows that the algorithm may

focus too much on local improvements in each iteration, without taking into account the information of

the entire network induced by the probability transition matrix or the number of remaining iterations.

Therefore, we consider a modified greedy algorithm that accounts for the Markov chain structure by

using the optimal solution to the unconstrained assortment problem, where there is no restriction on

the number of items picked. This solution can be computed via an algorithm proposed by Blanchet et

al. [25] (we also give an alternative strongly-polynomial algorithm for the unconstrained problem in

Section 7.4.4). Intuitively, the items picked by the unconstrained optimal assortment should not block

each other’s demand too much. Let U∗ be the optimal unconstrained assortment whose associated

revenue can be written as

R(U∗) =
∑
i∈U∗

P(i ≺ U∗+\{i}) · pi. (7.1)

A natural candidate algorithm takes the k states with the largest P(i ≺ U∗+\{i}) · pi value within an

unconstrained optimal solution, and sets these states to be absorbing. Algorithm 7.2 describes this

procedure.

Algorithm 7.2 Greedy Algorithm on Optimal Unconstrained Assortment

1: Let U∗ be an optimal solution to the unconstrained problem.

2: Sort items of U∗ in decreasing order of P(i ≺ U∗+\{i}) · pi.
3: Return S = {top k items in the sorted order}.
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We show in the following lemma that even Algorithm 7.2 performs poorly in the worst case. In

fact, we present an example where every subset of k items of the optimal solution U∗ has revenue a

factor k away from the optimal.

Lemma 7.3. There are instances where the revenue obtained by Algorithm 7.2 is far from optimal by

a factor of k/|U∗| where k is the upper bound in the cardinality constraint.

Proof. Consider the following instance of the problem with n+ 2 items (or states). We have a state s

and states i = 1, . . . , n and state 0 corresponding to the no-purchase option. The arrival rates are all

equal to 0, except for λs which is equal to 1. Moreover

pi =

 1− ε if i = s

1 if i = 1, . . . , n,
ρij =


1/n if i = s and j = 1, . . . , n

1 if i = 1, . . . , n and j = 0

0 otherwise,

where ε > 0. Figure 7.2 provides a graphical representation of this instance. For this example, the

s

1

2

n

0

ps = 1− ǫ

ρs,i =
1
n

pi = 1

λs = 1

Figure 7.2: A bad example for Algorithm 7.2.

unconstrained optimal assortment is U∗ = {1, . . . , n}, and the greedy algorithm on U∗ selects k items

among U∗, meaning that a total revenue of k/n is obtained. However, the optimal solution of the

constrained problem is to only offer item s, which gives a revenue of 1 − ε. As ε tends to 0, the

approximation ratio goes to k/|U∗|.
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The poor performance of Algorithm 7.2 on the above example illustrates that an optimal assortment

for the constrained problem may be very different from that of its unconstrained counterpart. Hence,

searching within an unconstrained optimal solution for a good approximate solution to the constrained

problem can be unfruitful in general. It is worth noting that the lower bound of k/|U∗| for Algorithm

7.2 is tight, as stated in the following lemma, whose proof is given in Appendix D.3.

Lemma 7.4. Algorithm 7.2 guarantees a k/|U∗|-approximation algorithm to Cardinality-Assort.

The analysis of the two greedy variants for the cardinality constrained assortment optimization

under the Markov chain model provides important insights that we use towards designing a good

algorithm for the problem.

7.4 Local Ratio based Algorithm Design

In this section, we present the general framework of our approximation algorithm for the cardinality

and capacity constrained assortment optimization under the Markov chain model.

7.4.1 High-Level Ideas

As the example in Figure 7.1 illustrates, Algorithm 7.1 could end up with a highly suboptimal solution

due to picking items that cannibalize, i.e. block, the demand for higher price items. Picking the

highest price item will eliminate such a concern. However, a high price item might only capture very

little demand, and therefore, generate very small revenue as illustrated in the example in Figure 7.2.

When there is a capacity constraint on the assortment, picking such items may not be an optimal use

of the capacity. This motivates us to choose the highest price item in an appropriate consideration

set. Intuitively, the consideration set will consist of items that generate sufficiently high incremental

revenue.

We first give a high-level description of our algorithm that builds the solution iteratively. Let Mt

denote the problem instance in any iteration t. The algorithm (ALG) considers the following two steps

in each iteration t:

1. Greedy Selection. Define an appropriate consideration set Ct of items, and pick the “highest

price” item from Ct.
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2. Instance Update. Construct a new instance, Mt+1, of the constrained assortment optimization

problem with appropriately modified item prices and transition probabilities such that

ALG(Mt) = ∆t + ALG(Mt+1),

where ALG(·) is the revenue of the solution obtained by the algorithm on a given instance, and

∆t is the incremental revenue in the objective value from the item selected in iteration t.

The instance update step linearizes the revenue function even though the original revenue function

is non-linear, which is crucial for our iterative solution approach. We can also view the update rule as

a framework to capture the externality of our actions in each iteration of the algorithm. To completely

specify the algorithm, we need to provide a precise definition for the consideration set in the greedy step

and for the instance update step. For both cardinality and capacity constrained assortment optimiza-

tion problems, the instance update step is similar, as explained in Section 7.4.2. The consideration set,

however, depends on the particular optimization problem being considered and will be defined later on.

The intuition is to include items whose incremental revenue is above an appropriately chosen threshold.

Our algorithm can be viewed in a local-ratio framework (see, for instance, [18, 17, 19]). Therefore,

we will interchangeably refer to the instance updates as local-ratio updates. However, we would like

to note that the local-ratio framework does not provide a general recipe for designing an update rule

or analyzing the performance bound. In most algorithms in this framework, the update rule follows

from a primal-dual algorithm. However, for the capacity constrained assortment optimization problem

under the Markov chain model, we do not even know of any good LP formulation and the instance

update rule requires new ideas.

7.4.2 Instance Update in Local Ratio Algorithm

Notation. Given an instance M of the Markov chain model, we define an updated instance M(S)

given that S is made absorbing by modifying the item prices as well as the probability transition

matrix. Note that we index the updates by a set S. Therefore, the instance Mt introduced in the

preceding discussion is going to be thought of asM(St−1), where St−1 denotes the set of items picked

up to (and including) step t − 1. For an instance M(S), we will denote by pSi the updated price of

item i, and by ρSij the updated transition probabilities for every i ∈ N , j ∈ N+. Note that we do not

change the arrival rate to any state, i.e., λSi = λi for all i ∈ N . We also denote by RS : 2N → R the
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revenue function associated with the instance M(S) and by PS(·) the probability of any event with

respect to the instance M(S).

Price update. First, we introduce the price updates, such that when S is made absorbing, we

account for the revenue generated by every state j ∈ S. To this end, consider a unit demand at state

i /∈ S. This unit demand generates a revenue of pi when i is made absorbing. On the other hand,

when i is not absorbing, this unit demand at i generates a revenue of

∑
j∈S

Pi(j ≺ S+\{j}) · pj .

The above revenue (which was already accounted for by S) is lost when i is also made absorbing in

addition to S. Hence, the net revenue per unit demand at i when we make it absorbing, provided that

S is already absorbing, is

pi −
∑
j∈S

Pi(j ≺ S+\{j})pj ,

which we denote as the adjusted price pSi . Note that the adjusted prices can be negative, corresponding

to the situation where adding an item decreases the overall revenue. The price update is explicitly

described in Figure 7.3.

Transition probabilities update. Since the subset of states S is set to be absorbing, we will simply

redirect the outgoing probabilities from all states in S to 0. This is described in Figure 7.3.

Price update:

pSi =


0 if i ∈ S

pi −
∑
j∈S

Pi(j ≺ S+\{j})pj otherwise.

Transition probabilities update:

ρSij =


1 if i ∈ S and j = 0

0 if i ∈ S and j 6= 0

ρij otherwise.

Figure 7.3: Instance update in local-ratio algorithm.
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We would like to note that the probabilities Pi(j ≺ S+\{j}), needed for our price updates, can

be interpreted as the choice probability π(j, S) for a modified instance with λi = 1 and λ` = 0 for

` 6= i. Therefore, these quantities can be efficiently computed via traditional Markov chain tools (see,

for instance, [25]).

7.4.3 Structural Properties of the Updates

We first show that the local-ratio updates allow us to linearize the revenue function.

Lemma 7.5. R(S1 ∪ S2) = R(S1) +RS1(S2) for every S1, S2 ⊆ N .

Proof. Assume without lost of generality that S1 ∩ S2 = ∅, since the items in S1 ∩ S2 all have 0 as

their adjusted price and we can then apply the proof to S2\S1. Using the definition of the local ratio

updates, we have

RS1(S2) =
∑
i∈S2

PS1(i ≺ S2+\{i})pS1
i

=
∑
i∈S2

PS1(i ≺ S2+\{i})

pi −∑
j∈S1

Pi(j ≺ S1+\{j})pj


=
∑
i∈S2

PS1(i ≺ S2+\{i})pi −
∑
j∈S1

∑
i∈S2

PS1(i ≺ S2+\{i})Pi(j ≺ S1+\{j})pj .

With the definition of ρS1 , note that all items of S1 are redirected to 0. This, together with the fact

that S1 ∩ S2 = ∅ implies that for all i ∈ S2, we have PS1(i ≺ S2+\{i}) = P(i ≺ (S2 ∪ S1)+\{i}).
Consequently,

R(S1) +RS1(S2) =
∑
j∈S1

P(j ≺ S1+\{j})−
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})Pi(j ≺ S1+\{j})

 pj

+
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})pi

=
∑
j∈S1

(P(j ≺ S1+\{j})− P(S2 ≺ j ≺ S1+\{j})) pj

+
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})pi

=
∑
j∈S1

P(j ≺ (S2 ∪ S1)+\{j})pj +
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})pi

=R(S1 ∪ S2),
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where the second equality holds since

∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})Pi(j ≺ S1+\{j}) = P(S2 ≺ j ≺ S1+\{j}),

as by the Markov property, both the left and right terms in the above equality denote the probability

that we will visit some state in S2 before any state in S1+, followed by state j ∈ S1 before any other

state in S1+.

The next lemma shows that the composition of two local ratio updates over subsets S1 and S2 is

equivalent to a single local ratio update over S1 ∪ S2. This property is crucial for repeatedly applying

local-ratio updates.

Lemma 7.6. Let S1 ⊆ N be some assortment, and let M1 =M(S1). For any S2 with S1 ∩ S2 = ∅,
the instance M1(S2) is identical to the instance M(S1 ∪ S2) in terms of item prices and transition

probabilities.

It suffices to verify that (pS1
i )S2 = pS1∪S2

i for all S1,S2 and i /∈ S1 ∪S2, as the above identity clearly

holds for the transition matrix updates. The proof is similar to that of Lemma 7.5, and is presented

in Appendix D.4. Putting the previous two lemmas together gives the following claim.

Lemma 7.7. RS1(S2 ∪ S3) = RS1(S2) +RS1∪S2(S3) for any pairwise-disjoint sets S1, S2, S3 ⊆ N .

7.4.4 Warm-up: Exact algorithm for the Unconstrained Problem

As a warmup, we first present an alternative exact algorithm for the unconstrained assortment opti-

mization problem under the Markov chain model by using the local-ratio framework. Our algorithm is

based on the observation that it is always optimal to offer the highest price item for the unconstrained

problem, as it does not cannibalize the demand of other items. The latter property is implied by a

slightly more general claim, formalized as follows. For any x ∈ R, let [x]+ = max(x, 0).

Lemma 7.8. Let S ⊆ N . For any item i /∈ S with price pi ≥ [maxj∈S pj ]
+, we have R(S∪{i}) ≥ R(S).

Proof. From Lemma 7.5, we have that

R(S ∪ {i}) = R(S) +RS({i}) = R(S) + PS(i ≺ 0) · pSi .
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Now, pi ≥ [maxj∈S pj ]
+ and

pSi = pi −
∑
j∈S

Pi(j ≺ S+ \ {j}) · pj ≥ 0,

which implies R(S ∪ {i}) ≥ R(S).

The Algorithm. Based on the above lemma, we present an alternative exact algorithm for the

unconstrained assortment optimization problem under the Markov chain model. In particular, we

define the consideration set in each iteration to be the set of all items. Therefore, we select the highest

adjusted price item in every iteration (breaking ties arbitrarily) and update the prices and transition

probabilities according to the local ratio updates described in Figure 7.3. This selection and updating

process is repeated until all adjusted prices are non-positive, as explained in Algorithm 7.3.

Algorithm 7.3 Local Ratio for Unconstrained Assortment

1: Let S be the set of states picked so far, starting with S = ∅.
2: While there exists i ∈ N\S such that pSi ≥ 0,

(a) Let i∗ be the item for which pSi is maximized, breaking ties arbitrarily.

(b) Add i∗ to S.

3: Return S.

Theorem 7.4. Algorithm 7.3 computes an optimal solution for the unconstrained assortment opti-

mization problem under the Markov chain model.

Proof. The correctness of Algorithm 7.3 is based on the observation that it is always optimal to offer

the highest adjusted price item, as long as this price is non-negative. Suppose item 1 is the highest

price item. From Lemma 7.8, we get R(S ∪ {1}) ≥ R(S) for any assortment S. Therefore, we can

assume that item 1 belongs to the optimal assortment. From Lemma 7.5, we can write

max
S⊆N

R(S) = R({1}) + max
S′⊆N\{1}

R{1}(S′).

It remains to show that, when we get to an iteration where our current absorption set is X, and the

adjusted price of every state in the modified instance M(X) is non-positive, then X is an optimal

solution to M. To see this, by repeated applications of Lemmas 7.5 and 7.6, we have

max
S⊆N

R(S) = R(X) + max
S′⊆N\X

RX(S′).
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However, since the adjusted price of every state in the instance M(X) is non-positive, we must have

RX(S′) ≤ 0 for all S′ ⊆ N\X. Hence, it is optimal not to make any state in M(X) absorbing, which

implies that X is an optimal solution to M.

Implications. Our algorithm for the unconstrained assortment optimization over the Markov chain

model provides interesting insights for some known results about the optimal stopping problem and

the assortment optimization over the MNL model. Blanchet et al. [25] relate the unconstrained

assortment problem to the optimal stopping time on a Markov chain (see [47]). In this problem, we

need to decide at each state i whether to stop and get the reward pi, or transition according to the

transition probabilities of the Markov chain. Moreover, there is an absorbing state 0 with price p0 = 0.

Algorithm 7.3 for the unconstrained assortment optimization problem gives an alternative strongly

polynomial time algorithm for the optimal stopping problem.

Blanchet et al. [25] prove that the MNL choice model is a special case of the Markov chain based

choice model. Therefore, by analyzing Algorithm 7.3 to solve the assortment optimization over the

MNL model, we can recover the structure of the optimal assortment being nested by prices, i.e., the

optimal assortment consists of the ` top-priced items for some `. We give an explicit expression for

our local ratio updates when the underlying choice model is MNL in Appendix D.5. Talluri and Van

Ryzin [122] prove that under the MNL choice model, the optimal assortment to the unconstrained

assortment optimization problem is nested by prices. From our derived expression, it is not difficult

to verify that these updates do not change the ranking of the adjusted item prices. Hence, combining

the correctness of Algorithm 7.3 with the latter observation provides an alternative way of showing

that the optimal assortment is nested by price under the MNL model.

7.5 Cardinality Constrained Assortment Optimization for General

Case

In this section, we present a (1/2 − ε)-approximation for the cardinality constrained assortment op-

timization under the Markov chain model, for any fixed ε > 0. Following the local-ratio framework

described in Section 7.4, our algorithm for the cardinality constrained case also selects a state with

high adjusted price in each step from an appropriate consideration set. The consideration set is defined
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to avoid picking states that have a high adjusted price but capture very little demand. In particular,

the consideration set includes only items whose incremental revenue is at least a certain threshold.

The Algorithm. Our algorithm is iterative and selects a single item in each step. Let St be the set

of selected items by the end of step t, starting with S0 = ∅. We use σt to denote the item picked in

step t, meaning that St = {σ1, . . . , σt}. At every step t ≥ 1, we select the highest adjusted price item

(with respect to pSt−1 , breaking ties arbitrarily) among items in the following consideration set:

Ct =

{
i ∈ N\St−1 : RSt−1({i}) ≥ αR(S∗)

k

}
,

where S∗ is the optimal solution, k is the cardinality bound, and α ∈ (0, 1) is a parameter whose value

will be optimized later. Note that Ct is defined at the beginning of step t, whereas St is defined at the

end of step t, and includes the item selected in this step. Once the item σt is selected, we recompute

the adjusted prices via the local ratio update described in Figure 7.3, and update the consideration set

to get Ct+1. The algorithm terminates when either k items have already been picked (i.e., upon the

completion of step k), or when the consideration set Ct becomes empty.

Guessing the value of R(S∗). Since the optimal revenue R(S∗) is not known a-priori, we need

to describe how the value of R(S∗) is approximately guessed to complete the algorithm’s description.

A natural upper bound for R(S∗) is R(U∗), when U∗ is the optimal unconstrained solution. From

Lemma 7.4, we know that R(S∗) ≥ k
|U∗|R(U∗). Now, given an accuracy parameter 0 < ε < 1, let

Bj =
k

|U∗|R(U∗)(1 + ε)j , j = 1, . . . , J

J = min {j ∈ N : Bj ≥ R(U∗)} .
(7.2)

Note that J = O(1ε log k). For each guess Bj for the true value of R(S∗), we run the algorithm, and

eventually return the best solution found over all runs. Algorithm 7.4 describes the resulting procedure

for a particular choice of Bj and threshold α for the consideration set. Algorithm 7.5 describes the full

procedure for any given ε > 0.

7.5.1 Technical Lemmas

Prior to analyzing the performance guarantee of our algorithm, we present two technical lemmas. We

start by arguing that the revenue function is sublinear for general item prices.
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Algorithm 7.4 Algorithm with guess Bj and threshold α

1: Let S be the set of states picked so far, starting with S = ∅.
2: For all S, let C(S) = {i ∈ N\S : RS({i}) ≥ α·Bj

k }.
3: While |S| < k and C(S) 6= ∅,

(a) Let i∗ be the item of C(S) for which pSi is maximized, breaking ties arbitrarily.

(b) Add i∗ to S.

4: Return S.

Algorithm 7.5 Local-ratio Algorithm for Cardinality-Assort with threshold α

1: Given any ε > 0, let J and Bj , j ∈ [J ] be as defined in (7.2).

2: For all j ∈ [J ], let Sj be the solution returned by Algorithm 7.4 with guess Bj and threshold α

3: Return argmaxj∈[J ]R(Sj).

Lemma 7.9. For all S1, S2 ⊆ N consisting only of non-negative priced items, R(S1 ∪ S2) ≤ R(S1) +

R(S2).

Proof. We have that

R(S1 ∪ S2) =
∑
j∈S1

P(j ≺ (S1 ∪ S2)+ \ {j}) · pj +
∑

j∈S2\S1

P(j ≺ (S1 ∪ S2)+ \ {j}) · pj

≤
∑
j∈S1

P(j ≺ (S1)+ \ {j}) · pj +
∑
j∈S2

P(j ≺ (S2)+ \ {j}) · pj

= R(S1) +R(S2),

where the first inequality follows as for any j ∈ Si (i = 1, 2), P(j ≺ (S1 ∪ S2)+ \ {j}) ≤ P(j ≺
(Si)+ \ {j}).

Next, we establish a technical lemma that allows us to compare the revenue of the optimal solution

R(S∗) with the revenue of the set returned by our algorithm, R(St). First, note that the consideration

sets along different steps are nested (i.e., C1 ⊇ C2 ⊇ · · · ). Therefore, once an item disappears from

the consideration set, it never reappears. This allows us to partition the items of S∗ according to the

moment they disappear from the consideration set (since either their adjusted revenue becomes too

small or they get picked by the algorithm). More precisely, let Z0 = S∗ and for all t ≥ 1, we define the

following sets:
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• Zt = S∗ ∩ Ct denotes the items of S∗ which are in the consideration set Ct.

• Yt = Zt−1\Zt denotes the items of S∗ which disappear from the consideration set during step

t− 1.

• Y +
t = {i ∈ Yt : p

St−1

i ≥ 0} denotes the items of Yt which have a non-negative adjusted price at

step t.

Note that these sets are all defined at the beginning of step t. The following lemma relates the adjusted

revenue of items in Zt−1 and Zt in terms of the marginal change in revenue, R(St)−R(St−1).

Lemma 7.10. For all t ≥ 1, R(St)−R(St−1) ≥ RSt−1(Zt)− (RSt(Zt+1) +RSt(Y +
t+1)).

Proof. Recall that, by definition, Zt contains the items of S∗ that are in the consideration set at the

beginning of step t. Since our algorithm picks the highest adjusted price item, σt, in the consideration

set Ct, we have p
St−1
σt ≥ pSt−1

i ≥ 0 for all items i ∈ Zt. Therefore, by Lemma 7.8,

RSt−1(Zt) ≤ RSt−1(Zt ∪ {σt}). (7.3)

We now consider two cases, depending on whether the item σt appears in the optimal solution S∗ or

not.

Case (a): σt /∈ S∗. From Lemma 7.7, RSt−1(Zt∪{σt}) = RSt−1({σt})+RSt(Zt). Consequently, from

inequality (7.3), we have

RSt−1(Zt) ≤ RSt−1({σt}) +RSt(Zt)

= RSt−1({σt}) +RSt(Zt+1 ∪ Yt+1)

≤ RSt−1({σt}) +RSt(Zt+1 ∪ Y +
t+1)

≤ RSt−1({σt}) +RSt(Zt+1) +RSt(Y +
t+1),

where the second inequality holds since removing all negative adjusted price items can only increase

net revenue, and the last inequality follows from Lemma 7.9. Adding R(St−1) on both sides of the

inequality yields the desired inequality by Lemma 7.5.
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Case (b): σt ∈ S∗. From Lemma 7.7, RSt−1(Zt) = RSt−1({σt}) + RSt(Zt\{σt}). Then, similar to

the previous case, we have

RSt(Zt\{σt}) ≤ RSt((Zt+1 ∪ Y +
t+1)\{σt}) ≤ RSt(Zt+1) +RSt(Y +

t+1\{σt}).

Note that RSt(Y +
t+1\{σt}) = RSt(Y +

t+1) since pStσt = 0 and σt is an absorbing state in M(St). Adding

R(St−1) on both sides of the inequality concludes the proof.

From the above result, we obtain the following claim.

Lemma 7.11. For all t ≥ 0, we have R(St) ≥ R(S∗)− (RSt(Zt+1) +
∑t+1

j=1R
Sj−1(Y +

j )).

Proof. By summing the inequality stated in Lemma 7.10 over j = 1, . . . , t, we obtain a telescopic sum

which yields

R(St) ≥ R(Z1)−

RSt(Zt+1) +
t+1∑
j=2

RSj−1(Y +
j )

 .

Since every item in S∗ must have non-negative price and S∗ = Z1 ∪ Y1 by definition, we have

R(S∗) ≤ R(Z1) + R(Y1) by sublinearity of the revenue function (see Lemma 7.9). Combining these

two inequalities concludes the proof.

7.5.2 Analysis of the Local-Ratio Algorithm

We show that the local-ratio algorithm gives a (1/2 − ε)-approximation for Cardinality-Assort for any

fixed ε > 0. In particular, we have the following theorem.

Theorem 7.5. For any fixed ε > 0, Algorithm 7.5 gives a (1/2−ε/2)-approximation for Cardinality-Assort.

Moreover, the running time is polynomial in the input size and 1/ε.

Proof. For a fixed ε > 0, let j∗ be such that R(S∗)
1+ε ≤ Bj∗ ≤ R(S∗). Let B = Bj∗ and consider the

solution returned by Algorithm 7.4 with guess B and threshold α. We consider two cases based on the

condition by which the algorithm terminates.

Case 1. If the algorithm stops after completing step k, then by linearity of the revenue when using the

local ratio updates (Lemmas 7.5 and 7.6), the resulting solution Sk has a revenue of

R(Sk) =

k∑
t=1

RSt−1({σt}) ≥ αB ≥
α

1 + ε
·R(S∗) ≥ (1− ε)αR(S∗),
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where the above inequality holds since the item σt belongs to the consideration set Ct, and

therefore RSt−1({σt}) ≥ αB/k.

Case 2. Now, suppose the algorithm stops at the end of step k′ < k, after discovering that Ck′+1 = ∅.
From Lemma 7.11, we get

R(Sk′) +RSk′ (Zk′+1) ≥ R(S∗)−
k′+1∑
j=1

RSj−1(Y +
j ).

Now, since Ck′+1 = ∅, this implies that Zk′+1 = ∅. Moreover, from Lemma 7.9, we also have

RSj−1(Y +
j ) < |Y +

j | · α ·B/k for all j = 1, . . . , k′ + 1. Therefore,

k′+1∑
j=1

RSj−1(Y +
j ) ≤ α · B

k
·
k′+1∑
j=1

|Y +
j | ≤ αB ≤ αR(S∗),

where the second inequality holds since
∑k′+1

j=1 |Y +
j | ≤ k and the last inequality holds as B ≤

R(S∗). Therefore,

R(Sk′) ≥ R(S∗)− αR(S∗) = (1− α) ·R(S∗).

This shows that the approximation ratio attained by our algorithm is

min {(1− ε)α, 1− α} .

Picking α = 1/2 we obtain a (1/2− ε/2)-approximation for Cardinality-Assort.

Running time. Algorithm 7.5 considers J = O(1ε log n) guesses for R(S∗). For any given guess Bj ,

the running time of Algorithm 7.4 is polynomial in the input size. Therefore, the overall running time

of Algorithm 7.5 is polynomial in the input size and 1/ε.

Tight example. We show that Algorithm 7.5 is tight in the following sense: consider Algorithm 7.4

with input guess as the true value of R(S∗) and threshold α = 1/2, then there are instances for which

the approximation ratio is 1/2. In particular, we consider an instance with 3 items. The Markov chain

has 4 states N+ = {s, 1, 2, 0}. The prices are: ps = 1, p1 = p2 = 2. The arrival rate for state s is λs = 1

and all other states have an arrival rate of zero. The transition probabilities are given in Figure 7.4.

Consider the cardinality constrained assortment problem with cardinality bound, k = 1. The optimal
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assortment is S∗ = {s} with R(S∗) = 1. With guess R(S∗) and α = 1/2, the consideration set in the

first step is {s, 1, 2}, and therefore Algorithm 7.4 picks either 1 or 2, obtaining a revenue of R(S∗)/2.

We would like to note that our algorithm runs Algorithm 7.4 for different guesses Bj , j = 1, . . . , J

and returns the best solution across all runs. Therefore, the performance bound of our algorithm is

at least (1/2 − O(ε)) and possibly better. In fact, in our computational study, we observe that the

empirical performance of our algorithm is significantly better than the theoretical bound of (1/2−O(ε)).

We describe the computational study in Section 7.7. It is an interesting open question to provide a

tighter analysis of the approximation bound for Algorithm 7.5 that returns the best solution among

several guesses of R(S∗).

λs = 1

ps = 1

1/4
1

2

pi = 2

0s

1/4

1/2

Figure 7.4: A tight example for Algorithm 7.5.

7.6 Capacity Constrained Assortment Optimization for General Case

In this section, we show how to approximate the capacity constrained problem under the Markov chain

model within factor 1/3− ε, for any fixed ε > 0. Recall that, unlike the simpler cardinality case, now

each item i has an arbitrary weight wi, and we have an upper bound W on the available capacity.

We assume without loss of generality that each item individually satisfies the capacity constraint, i.e.,

wi ≤W for all i ∈ N .

The Algorithm. We describe a local-ratio based algorithm, similar in spirit to the one for the

cardinality constrained problem, by suitably adapting the way consideration sets are defined. For

this purpose, instead of considering items whose incremental absorption revenue exceeds a certain

threshold, we only consider items whose incremental absorption revenue per unit of weight exceeds a

certain threshold.



CHAPTER 7. CAPACITY CONSTRAINED ASSORTMENT OPTIMIZATION UNDER THE
MARKOV CHAIN BASED CHOICE MODEL 144

Again, our algorithm selects a single item in each step. Let St be the set of selected items by the

end of step t, starting with S0 = ∅. We use σt to denote the item picked in step t, meaning that

St = {σ1, . . . , σt}. At every step t ≥ 1, we select the highest adjusted price item (with respect to pSt−1 ,

breaking ties arbitrarily) among items in the following consideration set:

Ct =

{
i ∈ N\St−1 :

RSt−1({i})
wi

≥ αR(S∗)

W

}
,

where S∗ is the optimal solution, W is the capacity bound, and α ∈ (0, 1) is a parameter whose value

will be optimized later. Once the item σt is selected, we recompute the adjusted prices via the local

ratio update described in Figure 7.3. This selection and update process is repeated in every step until

either the consideration set becomes empty or adding the current item violates the capacity constraint.

Let t′ be such a step. In the former case, we stop and return St′−1. In the latter case, we take either

St′−1 or {σt′}, depending on which of these sets has a larger total revenue.

Guessing R(S∗). As in the case of cardinality constraints, since the value of R(S∗) is unknown,

we need to approximately guess the value R(S∗). We will use a procedure similar to the one given

in Section 7.5, with the exception of utilizing 1
|U∗|R(U∗) as a lower bound (see proof of Lemma 7.2

in Appendix D.2), where U∗ is the optimal unconstrained solution. In particular, we consider the

following guesses for R(S∗).

Bj =
1

|U∗|R(U∗)(1 + ε)j , j = 1, . . . , J

J = min {j ∈ N : Bj ≥ R(U∗)} .
(7.4)

Note that J = O(1ε log n). Algorithm 7.6 provides a description of our approximation algorithm for

Capacity-Assort, given a particular guess Bj for R(S∗) and threshold α, while Algorithm 7.7 describes

the complete procedure.

7.6.1 Analysis

To analyze the above algorithm, it is convenient to have a technical lemma similar to Lemma 7.11. By

defining the same sets Yt and Zt with respect to the optimal assortment S∗ to Capacity-Assort and the

adapted consideration sets Ct, the exact same lemma holds. We therefore do not restate this claim

and its proof, as these are identical to those of Lemma 7.11. The following theorem shows that the

local-ratio algorithm gives a (1/3− ε)-approximation for Cardinality-Assort for any fixed ε > 0.
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Algorithm 7.6 Algorithm with guess Bj and threshold α

1: Let S be the set of states picked so far, starting with S = ∅.
2: For all S, let C(S) = {i ∈ N : R

S({i})
wi

≥ α · BjW }.
3: While

∑
i∈S wi < W and C(S) 6= ∅,

(a) Let i∗ be the item of C(S) for which pSi is maximized, breaking ties arbitrarily.

(b) If
∑

i∈S∪{i∗}wi < W , add i∗ to S.

(c) Else return the highest revenue set among {i∗} and S.

4: Return S.

Algorithm 7.7 Local-ratio Algorithm for Capacity-Assort with threshold α

1: Given any ε > 0, let J and Bj , j ∈ [J ] be as defined in (7.4).

2: For all j ∈ [J ], let Sj be the solution returned by Algorithm 7.6 with guess Bj and threshold α

3: Return argmaxj∈[J ]R(Sj).

Theorem 7.6. For any fixed ε > 0, Algorithm 7.7 gives a (1/3−ε/3)-approximation for Capacity-Assort.

Moreover, the running time is polynomial in the input size and 1/ε.

Proof. For a fixed ε > 0, let j∗ be such that R(S∗)
1+ε ≤ Bj∗ ≤ R(S∗). Let B = Bj∗ and consider the

solution returned by Algorithm 7.6 with guess B and threshold α. We consider two cases based on the

condition by which the algorithm terminates. Let t′ be the step at which the algorithm terminates.

Case 1. Suppose we stop the algorithm since adding the item σt′ violates the capacity constraint, that

is,
∑t′

t=1wσt > W . In this case, we return either St′−1 or {σt′}, depending on which of these sets
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has a larger revenue. We argue that this choice guarantees a revenue of at least αR(S∗)/2, since

max {R(St′−1), R({σt′})} ≥ max

{
t′−1∑
t=1

RSt({σt}), RSt′−1({σt′})
}

≥ max

{
α
B

W

t′−1∑
t=1

wσt , α
B

W
wσt′

}

= α
B

W
·max

{
t′−1∑
t=1

wσt , wσt′

}

≥ α
B

2

≥ α · R(S∗)

2(1 + ε)

≥ (1− ε)α · R(S∗)

2
,

where the third to last inequality holds since max{∑t′−1
t=1 wσt , wσt′} ≥ W/2 and the second to

last inequality follows as B ≥ R(S∗)/(1 + ε).

Case 2. On the other hand, suppose the algorithm terminates since Ct′+1 = ∅. Using Lemma 7.11 adapted

to the capacitated case, we have

R(St′) +RSt′ (Zt′+1) ≥ R(S∗)−
t′+1∑
j=1

RSj−1(Y +
j ).

Since Ct′+1 = ∅, this implies that Zt′+1 = ∅. Moreover, from Lemma 7.9, for all j = 1, . . . , t′+ 1,

we have

RSj−1(Y +
j ) < αB ·

∑
i∈Y +

j
wi

W
.

Since our algorithm stopped prior to reaching the capacity constraint, we have
∑t′+1

j=1

∑
i∈Y +

j
wi ≤

W . Consequently,
∑t′+1

j=1 R
Sj−1(Y +

j ) < αB ≤ αR(S∗), and therefore,

R(St′) ≥ R(S∗)− αR(S∗) = (1− α)R(S∗).

As a result, the approximation ratio attained by our algorithm is

min
{

(1− ε)α
2
, 1− α

}
.

By setting α = 2/3, we obtain an approximation factor of (1/3− ε/3).
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Running Time . Algorithm 7.7 considers J = O(1ε log n) guesses of R(S∗). Each run of Algo-

rithm 7.6 for a given guess is polynomial time. Therefore, the overall running time of Algorithm 7.7 is

polynomial in the input size and 1/ε.

Tight example. Our analysis is tight in the following sense. When Algorithm 7.7 is run with the

true value of R(S∗), there are instances for which the approximation ratio is 1/3. For example, consider

the instance given in Figure 7.5. For a capacity bound of W = 1, the optimal assortment is S∗ = {b, c}.
Initially, all the items are in the consideration set and the algorithm picks item a, the highest price

item. In the next step, no item can be added to the assortment. The algorithm therefore returns

S = {a} since R({a}) > R({d}) and yields a revenue of R(S∗)/3 + O(ε). When ε goes to 0, the

approximation ratio goes to 1/3.

a

c e

0

(1 + 2ǫ, 1
2 + ǫ)

(12 ,
1
2 ) (1, 1

2 )

2
3

1
3

λa = 1
7

λc =
3
7

b d

(12 ,
1
2 ) (1, 1

2 )

1
3λb =

3
7

2
3

i

(pi, wi)

Figure 7.5: A tight example for Algorithm 7.7.

7.7 Computational Experiments

In this section, we present our results from a computational study to test the performance of Algo-

rithm 7.5 for the cardinality constrained assortment optimization for the Markov chain choice model.

In particular, we focus on testing: i) the performance of our algorithm with respect to an optimal

algorithm, and ii) the running time of this algorithm. We first present a mixed-integer programming

(MIP) formulation of Cardinality-Assort.
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7.7.1 A Mixed-Integer Programming Formulation

We show that the following mixed-integer program (MIP) is an exact reformulation of Cardinality-Assort.

max

n∑
i=1

αipi

s.t. αi + βi −
n∑
j=1

ρjiβj = λi, ∀i = 1, . . . , n

yi ≥ αi, ∀i = 1, . . . , n

n∑
i=1

yi ≤ k

αi ≥ 0, βi ≥ 0, yi ∈ {0, 1}, ∀i = 1, . . . , n.

(7.5)

Lemma 7.12. The mixed-integer program (7.5) is an exact reformulation of Cardinality-Assort.

Proof. Consider the following LP:

max
n∑
i=1

αipi

s.t. αi + βi −
n∑
j=1

ρjiβj = λi, ∀i = 1, . . . , n

αi ≥ 0, βi ≥ 0, ∀i = 1, . . . , n.

(7.6)

Let (α, β) be an extreme point solution to the above LP, and let S = {i : αi > 0}. Feldman and

Topaloglu [58] show that αi is the choice probability π(i, S) when the assortment S is offered under

the Markov chain choice model. Hence, the objective value
∑n

i=1 αiri equals to R(S). By adding the

indicator variables yi, we are restricting ourselves to the subset of feasible solutions where at most k of

the αi-s are allowed to be strictly positive. Note that the extreme points of this polytope, corresponding

to the projection of the feasible space of the MIP down to the (α, β) coordinates, are exactly the set of

assortments S with cardinality at most k. Hence, (7.5) is a mixed-integer formulation of the cardinality

constrained assortment optimization problem.

7.7.2 Settings Tested

We proceed by describing the families of random instances being tested in our computational experi-

ments. Here, each item’s price pi is uniformly distributed over the interval [0, 1]. Note that since we
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present statistics regarding approximation factors, any constant here will give identical results, so the

choice of 1 is arbitrary. In each instance, we compute the optimal unconstrained assortment U∗ using

the LP given by [25]. We then choose the cardinality constraint k uniformly between 1 and |U∗|/2.

For the transition probabilities ρij and the arrival rates λi, we test our algorithm on three different

settings:

1. We generate n2 independent random variables Xij , each picked uniformly over the interval [0, 1].

We then set ρij = Xij/
∑n

j=0Xij for all i, j such that i 6= j. Since we do not allow self-loops

(i.e. ρii = 0), the number of random variables needed is n2. For the arrival rates, we then

generate n independent random variables Yi, each picked uniformly over the interval [0, 1], and

set λi = Yi/
∑n

j=1 Yj for all i 6= 0.

2. In this setting, we sparsify the transition matrix of setting 1. More precisely, we additionally gen-

erate n2 independent random variable Zij , each following a Bernoulli distribution with parameter

0.2. For all i, j such that i 6= j, we set ρij = ZijXij/
∑n

j=0 ZijXij , where Xij are generated as

in setting 1. This is equivalent to eliminating each transition (i, j) with probability 0.8 and then

renormalizing. The arrival rates are generated similarly to setting 1.

3. The transition matrix in this last setting is one of a random walk. More precisely, we generate

n2 independent random variable Xij , each following a Bernoulli distribution with parameter 0.5.

We then set ρij = Xij/
∑n

j=0Xij for all i, j such that i 6= j. We also generate n random variables

Yi, each following a Bernoulli distribution with parameter 0.5, and set λi = Yi/
∑n

j=1 Yj for all

i 6= 0.

7.7.3 Results

We examine how our algorithm performs in term of both approximation and running time. Table 7.1

shows the approximation ratio of Algorithm 7.5 (with ε = 0.1) for the different settings and the

different values of n. We use the MIP formulation given in (7.5) to compute the optimal assortment.

As can be observed, the actual performance of our algorithm is significantly better than its worst case

theoretical guarantee. Indeed, in all settings tested, the average approximation ratio is always above

0.97. Moreover, the worst approximation ratio over all instances is above 0.77.
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Setting n
Approximation Ratio # instances within x% of OPT

# instances
Average Minimum 2% 5% 10% 20%

1 30 0.9783 0.7771 664 812 972 998 1,000

2 30 0.9784 0.7734 662 858 956 995 1,000

3 30 0.9830 0.7693 708 884 976 998 1,000

1 60 0.9803 0.8671 622 838 997 1,000 1,000

2 60 0.9796 0.8094 621 888 982 1,000 1,000

3 60 0.9854 0.8885 693 941 998 1,000 1,000

1 100 0.9763 0.9132 52 79 100 100 100

2 100 0.9782 0.8882 59 91 99 100 100

3 100 0.9848 0.9142 70 97 100 100 100

Table 7.1: Performance of Algorithm 7.5 for Cardinality-Assort.

The running time of our algorithm also scales nicely. Table 7.2 shows the performance of Algo-

rithm 7.5 in terms of running time for setting 2. The running times are very similar for the other

settings. On the other hand, while the MIP running time can be competitive in some cases, it blows

up when the number of products n gets large (see Table 7.2). Note that for n = 100, 12 out of the 100

n
Average Running Time Maximum Running Time

# instances
Algorithm 7.5 MIP Algorithm 7.5 MIP

30 0.18 0.17 0.67 0.25 1,000

60 0.74 0.67 1.25 29.34 1,000

100 3.18 278.20 9.16 10,226.98 100

200 31.98 ** 47.38 ** 20

Table 7.2: Running time of Algorithm 7.5 and the MIP for setting 2. ** Denotes the cases when we

set a time limit of 2 hours.

instances had a running time of at least 30 minutes. For n = 200, we set a time limit of 2 hours for the

MIP. Out of the 20 random instances generated, 16 reached the time limit without terminating. These
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numerical experiments suggest that Algorithm 7.5 is computationally efficient and that its numerical

performance is significantly better than the theoretical worst-case guarantee.

We also compare the performance of Algorithm 7.5 with the best solution found by the MIP

solver within a time limit that is equal to the running time for Algorithm 7.5 for the corresponding

instance. Table 7.3 shows the ratio between the performance of Algorithm 7.5 and that of the best

feasible solution found by the MIP within the allowed time limit as well as the duality gaps for the

best feasible solution. We observe that although the solver might not even terminate, it finds good

solutions within the time limit allowed. On average, the best MIP solution computed within the time

limit is slightly better than the solution computed by Algorithm 7.5. Although, for several instances,

Algorithm 7.5 outperforms the best MIP solution within the time limit (about 20% instances for n = 30

and 10% for n = 60). Therefore, the MIP solver spends a significant fraction of the time in reducing

the duality gap and proving optimality for large instances. It is interesting open question to find a

stronger LP formulation for the problem.

n
Algorithm 5/(Best MIP Solution) # instances with

ratio > 1

Duality gap
# instances

Average Maximum Average Maximum

30 0.9800 1.0851 200 2.64 % 34.85 % 1,000

60 0.9805 1.0108 101 10.42 % 69.68 % 1,000

100 0.9787 1.0100 6 15.21 % 52.18 % 100

200 0.9821 1.0029 4 19.06 % 99.60 % 100

Table 7.3: Comparison of Algorithm 7.5 with the best MIP solution when we allow the solver the same

time limit.

7.8 Discussion

As mentioned in Section 7.4, the unconstrained assortment problem to the optimal stopping time on a

Markov chain. In this problem, we need to decide at each state i whether to stop and get the reward

pi, or transition according to the transition probabilities of the Markov chain. Moreover, there is an

absorbing state 0 with price p0 = 0. The optimal stopping problem can be viewed as a special case

of Markov Decision Process (MDP). A standard methodology for solving a MDP is by solving a set
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of optimality equations, whose solution dictates the optimal action to take when in each state (in our

case, to stop or to continue transitioning). Solving the optimality equations is a well studied problem

in the MDP literature. The value iteration algorithm as well as the linear program used in [25] are

related to some of the standard algorithms used for solving the optimality equations (see e.g. Chapters

6 and 7 of [124]). It is worth mentioning that Algorithm 7.3 gives an alternative procedure to solve

the optimal stopping problem. Our algorithm is fundamentally different than the existing algorithm

as it is sequential in nature: it first decides on a state that it will stop at according to prices, and

subsequently modifies the problem in response to its decision and iteratively solve the subproblem.

This sequential exact algorithm resembles in spirit the Elimination algorithm presented in [115]. The

main difference is that the Elimination algorithm selects states that it will not optimal to stop at.

Whether there exists a sequential algorithm (building on our work and that of [115]) for solving a

general class of MDP is an interesting open question.

Building on our established connection further, the cardinality constraint assortment optimization

problem under the Markov Chain model is analogous to an optimal stopping problem where we impose

a constraint on the total number of states we can choose to stop at. To our knowledge, such a restriction

on the policy space has not been studied in the optimal stopping literature, and the tractability of

such problems is unknown until our work. For instance, the linear programming formulation given by

[25] turns into an integer program whose integrality gap is not bounded by any constant. On the other

hand, the approximation algorithms we present in Sections 7.5 and 7.6 can be adapted to solve optimal

stopping problems involving certain coupling constraints on the actions that a policy can take. Hence,

these algorithms are by no means limited to assortment planning problems, and may be of interest to

a much broader audience. Perhaps some of the ideas of our algorithms can be extended to solve other

MDPs with certain restriction on the policy space.

Another open research direction is to improve the approximation constant of Algorithms 7.5 and

7.7. For instance, our current algorithms use the same threshold α in constructing our consideration

set. One potential improvement would be to consider a threshold function that varies from iteration

to iteration. Unfortunately, we show in Appendix D.6 that no iteration varying implementation of

Algorithm 7.5 can improve the approximation constant using our current lines of analysis. Broadly

speaking, the criteria our sequential algorithm to select a new item in each iteration is a combination of

the incremental revenue that it brings (which indirectly incorporates the popularity of an item) versus
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its (adjusted51) profitability per unit of sale. Right now our algorithms account for this trade-off by

using the incremental revenue as a screening process to construct our consideration set and the adjusted

per unit profitability as the selection criteria. Note that we can potentially improve the approximation

ratio by considering other functions forms to address the trade-off between the two aforementioned

criteria.

51taking into account the externality it imposes on other items if we were to offer it
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Appendix A

Cake Cutting Algorithms for Piecewise

Constant and Piecewise Uniform

Valuations

Proof of Proposition 3.2

We begin with some notations. Let len(X) denote the length of X ⊆ [0, 1]. Since the value density

function is piecewise uniform, it suffices to consider the length of pieces of the cake that are desired by

each agent.

Let S ⊆ N be a coalition of agents who misreport their value density function.

Let I denote the instance where every agent reports truthfully and I ′ denote the instance where agents

in S misreport.

Let D1, . . . , Dn ⊆ [0, 1] denote the pieces of cake that are truly desired by each agent.

Let D′1, . . . , D
′
n ⊆ [0, 1] denote the desired pieces of cake that are reported by each agent. In other

words, D′i = Di if and only if i /∈ S.

Let X1, . . . , Xn ⊆ [0, 1] denote the allocation received by each agent under truthful reports.

Let X ′1, . . . , X
′
n ⊆ [0, 1] denote the allocation received by each agent when the agents in S misreport.

Let B1, . . . , Bk be the bottleneck sets of agents arranged in the order that they are being allocated by

the algorithm in instance I.

Let B′1, . . . , B
′
p be the bottleneck sets of agents arranged in the order that they are being allocated by
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the algorithm in instance I ′.

Moreover, since every agent belonging to the same bottleneck set receives an allocation of the same

length under CCEA for this special case. We let len(Bi) denote the length of the allocation each agent

receives in the bottleneck set Bi. Let

B+
l = {i ∈ Bl | len(X ′i ∩Di) ≥ len(Xi ∩Di) = len(Xi)}52,

and

B−l = {i ∈ Bl | len(X ′i ∩Di) ≤ len(Xi)}.

In other words B+
l is the subset of agents of Bl who weakly gain in utility when the agents in S

misreport, and B−l is the subset of agents of Bl who weakly lose in utility when the agents in S

misreport. We will show that for all l = 1, . . . , k, Bl = B−l . This would then directly imply that no

one in coalition S can strictly benefit by misreporting.

We will prove this result via induction on l. In order to carry on with the induction, we will show

that no agent in B1 appears in the coalition S. We begin with a lemma.

Lemma A.1. For every agent i, len(X ′i ∩Di) ≥ len(B1).

Proof. Suppose not, let i be an agent such that len(X ′i ∩ Di) < len(B1). It must be the case that i

reported his valuation truthfully. Consequently, the following set of inequalities hold for agent i:

len(X ′i) = len(X ′i ∩D′i) = len(X ′i ∩Di) < len(B1),

where the first equality follows the free disposal assumption. The second equality follows from Di = D′i.

Let B′l be the bottleneck set that i belongs to in the instance I ′. Then we have len(B′1) ≤ len(B′l) =

len(X ′i) < len(B1). This is because, the length of allocation of agents is non-decreasing with respect

to the index of bottleneck sets. We refer the readers to Lemma 3.4 of [44] for a proof of this fact. It

is clear that B′1 cannot contain an agent who misreports in I ′, since a misreporting agent in B′1 only

receives a piece of cake with length len(B′1) < len(B1), which is strictly less than what he would’ve

gotten had he reported truthfully. Hence, every agent in B′1 must report his true preference in I ′.

52The fact that len(Xi ∩Di) = len(Xi) makes use of the free disposal property, i.e. the allocation that the mechanism

gives agent i is a subset of the pieces desired by agent i under truthful reports.
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On the other hand, since B′1 is the first bottleneck set in I ′, we have that

len(B′1) =
len((∪j∈B′1D

′
j) ∩ [0, 1])

|B′1|
=
len((∪j∈B′1Dj) ∩ [0, 1])

|B′1|

≥ len((∪j∈B1Dj) ∩ [0, 1])

|B1|
= len(B1),

which leads to a contradiction.

Lemma A.2. It is the case that B1 = B−1 . In other words, no agent in B1 is strictly better off when

some subset of agents misreport their preference.

Proof. Suppose not, then there exists some j ∈ X1 such that len(X ′j ∩ Dj) > len(Xj). We also

established in the previous lemma that len(X ′i ∩ Di) ≥ len(B1) = len(Xi) for all i ∈ B1. Summing

over i ∈ B1, we get that

len(∪i∈B1(X ′i ∩Di)) =
∑
i∈B1

len(X ′i ∩Di) >
∑
i∈B1

len(Xi) = len(∪i∈B1Xi) = len(∪i∈B1Di),

where the first two equalities follow from the fact that the Xi’s and X ′i ∩Di’s are disjoint subsets and

the third equality follows from the way the algorithm allocates to the agents in the smallest bottleneck

set. But this set of inequalities contradict the fact that ∪i∈B1(X ′i ∩Di) ⊆ ∪i∈B1Di, which implies that

len(∪i∈B1(X ′i ∩Di)) ≤ len(∪i∈B1Di). Hence, it must be the case that for every i ∈ B1, we have that

len(X ′i ∩Di) = len(Xi), which implies that i ∈ B−1 .

Lemma A.3. No agent in B1 appears in the coalition S and B1 is also the first bottleneck set for I ′.

Proof. By the previous lemma, no agent in B1 is strictly better off by misreporting his preference.

Thus, if any agent in B1 is in S, then he makes himself no worse off and simultaneously make some

other agent in S strictly better off. Let’s examine the collective allocation of agents in B1 in the

instance I ′. We get that

len(∪i∈B1X
′
i) ≥ len(∪i∈B1(X ′i ∩Di)) ≥ len(∪i∈B1Xi),

where the last inequality follows from Lemma 1. This implies that the agents in B1 collectively obtain

an allocation that is no smaller than the allocation they would get had they reported truthfully. Thus,

having a subset of agents in X1 misreport will not benefit the other agents in the coalition S. Hence,

without lost of generality, we may assume that no agent in B1 appears in the coalition S. Provided
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that every agent in B1 also reports truthfully in I ′, there is no incentive for an agent that belongs to

a subsequent bottleneck set in I to misreport and prevent B1 from being the first bottleneck set in I ′

since that would make the misreporting agent strictly worse off.53

Since no agent in B1 appears in the coalition S and B1 is also the first bottleneck set for I ′, we

can remove B1 from N and ∪i∈B1Xi from [0, 1] and induct on the set of remaining agents N\B1 and

the remaining piece of cake [0, 1]\ ∪i∈B1 Xi to be allocated. The proof is complete by invoking the

inductive hypothesis with B2 being the first bottleneck set in the new instance.

Proof of Proposition 3.4 The first impossibility result assumes that the algorithm disposes the

intervals desired by no agent. Consider the following two agent profiles.

Profile 1:

v1(x) = 1 if x ∈ [0, 0.2], v1(x) = 0 if x ∈ (0.2, 1]

v2(x) = 0 if x ∈ [0, 0.6], v2(x) = 1 if x ∈ (0.6, 1]

The interval (0, 2, 0.6] is discarded because no agent desires it. The uniform allocation rule gives us

the allocation:

X1 =
1

2
[0, 0.2] ∪ 1

2
(0.6, 1]

X2 =
1

2
[0, 0.2] ∪ 1

2
(0.6, 1]

where p[a, b] for some 0 ≤ p ≤ 1 denotes a subinterval of [a, b] with length p times that of [a, b]. Let

A ⊂ (0.6, 1] be the allocation that agent 2 receives in this case.

Now consider profile 2:

v1(x) = 1 if x ∈ [0, 0.2], v1(x) = 0 if x ∈ (0.2, 1]

53Note that the lexicographical tie breaking rule for bottleneck sets is needed in this case.
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v2(x) = 0 if x ∈ [0, 1]\A, v2(x) = 1 if x ∈ A

In this case, all intervals other than [0, 0.2] and A are discarded because no agent desires them.The

uniform allocation rule gives us the allocation:

X1 =
1

2
[0, 0.2] ∪ 1

2
A

X2 =
1

2
[0, 0.2] ∪ 1

2
A

Hence, agent 2 in profile 2 would misreport so that the reported profile is profile 1.

The second impossibility result assumes that the algorithm does not dispose the intervals desired

by no agent. Consider the following two agent profiles.

Profile 1:

v1(x) = 1 if x ∈ [0, 0.2], v1(x) = 0 if x ∈ (0.2, 1]

v2(x) = 1 if x ∈ [0, 0.2], v2(x) = 0 if x ∈ (0.2, 1]

The uniform allocation rule gives us the allocation:

X1 =
1

2
[0, 0.2] ∪ 1

2
(0.2, 1]

X2 =
1

2
[0, 0.2] ∪ 1

2
(0.2, 1]

Let A ⊂ (0.2, 1] be the allocation that agent 1 receives in this case.

Now consider profile 2:

v1(x) = 1 if x ∈ [0, 0.2] ∪A, v1(x) = 0 otherwise

v2(x) = 1 if x ∈ [0, 0.2], v2(x) = 0 if x ∈ (0.2, 1]

The uniform allocation rule gives us the allocation:
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X1 =
1

2
[0, 0.2] ∪ 1

2
A ∪ 1

2
(0.2, 1]\A

X2 =
1

2
[0, 0.2] ∪ 1

2
A ∪ 1

2
(0.2, 1]\A

Hence, agent 1 in profile 2 would misreport so that the reported profile is profile 1.

Proof of Proposition 3.5

We first prove that MCSD is well-defined and results in a feasible allocation in which each agent

gets 1/n size of the cake. Let J ′ = {J1, . . . , J`} be a partitioning of the interval [0, 1] induced by the

discontinuity points in agent valuations and the cake cuts in the n! cake allocations. We make a couple

of claims about J ′ that following from the way J ′ is constructed.

Claim A.1. An agent is completely indifferent over each subinterval in J ′.

Claim A.2. Let Xπ
i denote a maximum preference cake piece of size 1/n chosen by agent i in the

serial order π. For each J ∈ J ′ either Xπ
i contains J completely or it does not contain any part of J .

Now consider a matrix of dimension n! × `: B = (bij) such that bij = 1 if Jj ⊂ Xπ
i and bij = 0 if

Jj 6⊂ Xπ
i . Since for each π ∈ ΠN , each agent i ∈ N gets 1/n of the cake in Xπ

i , then it follows that∑n!
i=1

∑`
j=1 bijlen(Jj) = n!/n. Hence,

∑̀
j=1

n!∑
i=1

bijlen(Jj)

n!
=

1

n
.

Also consider a matrix of dimension n× `: P = (pij) such that pij denotes the fraction of Jj that

agent i gets in Yi. From the algorithm MCSD, we know that pij =
count(i,Jj)

n! where count(i, Jj) is the

number of permutations in which i gets Jj . It is immediately seen that each column sums up to 1.

Hence each Jj is complete allocated to the agents. We now prove that each agent gets a total cake

piece of size 1/n. We do so by showing that
∑`

j=1 pijlen(Jj) = 1/n.

1/n =
∑̀
j=1

n!∑
i=1

bijlen(Jj)/n! =
∑̀
j=1

(

n!∑
i=1

bij)len(Jj)/n! =
∑̀
j=1

(count(i, Jj))len(Jj)/n!

=
∑̀
j=1

(
count(i, Jj)

n!
)len(Jj) =

∑̀
j=1

pijlen(Jj).



APPENDIX A. CAKE CUTTING ALGORITHMS FOR PIECEWISE CONSTANT AND
PIECEWISE UNIFORM VALUATIONS 174

Hence X = (X1, . . . , Xn) the allocation returned by MCSD is a proper allocation of the cake in

which each agent gets a total cake piece of size 1/n.

Proof of Lemma 3.1

Define v̄i = vi for a ≤ x ≤ b and v̄i(x) = v̄i(x + (b − a)) recursively for x outside of [a, b] (i.e.

replicating the function vi on [a, b]). Since v̄i is periodic, then it suffices to show that

EU [Vi(A)] =

∫ b

a

∫ x+α(b−a)

x
v̄i(y)dy

1

b− adx = α

∫ b

a
v̄i(x)dx = αVi([a, b]).

Since v̄i is periodic, we have that

1

b− a

∫ b

a

∫ x+α(b−a)

x
v̄i(y)dydx =

1

b− a

∫ b

a
v̄i(y)

∫ y

y−α(b−a)
dxdy = α

∫ b

a
v̄i(x)dx,

which proves the lemma.

Proof of Proposition 3.8

a = [0, 0.25], b = (0.25, 0.5], c = (0.5, 0.75], d = (0.75, 1]

Consider the following two profiles of valuations.

Profile 1:

v1(x) = 4 if x ∈ a, v1(x) = 3 if x ∈ b, v1(x) = 2 if x ∈ c, v1(x) = 1 if x ∈ d

v2(x) = 3 if x ∈ a, v2(x) = 4 if x ∈ b, v2(x) = 1 if x ∈ c, v2(x) = 2 if x ∈ d

Running MCSD gives us:

X1 =
1

2
a ∪ 1

2
b ∪ 1

2
c ∪ 1

2
d

X2 =
1

2
a ∪ 1

2
b ∪ 1

2
c ∪ 1

2
d

Profile 2:

v1(x) = 4 if x ∈ a, v1(x) = 2 if x ∈ b, v1(x) = 3 if x ∈ c, v1(x) = 1 if x ∈ d
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v2(x) = 2 if x ∈ a, v2(x) = 4 if x ∈ b, v2(x) = 1 if x ∈ c, v2(x) = 3 if x ∈ d

Running MCSD gives us the allocation:

X1 = a ∪ c

X2 = b ∪ d

Note that agents with true valuation in profile 1 would misreport together to profile 2, which gives

them a higher utility of 1.5 each as opposed to 1.25 had they reported truthfully. This means that

MCSD is not group strategyproof even for 2 agents. MCSD is not strategyproof because its allocation

in profile 1 is Pareto dominated by its allocation in profile 2.

Proof of Proposition 3.9

Consider a profile of three agents, each with piecewise uniform valuation function.

v1(x) = 1.5 if x ∈ [0, 2/3], 0 otherwise

v2(x) = 1.5 if x ∈ [0, 1/3] ∪ (2/3, 1], 0 otherwise

v3(x) = 1.5 if x ∈ (1/3, 1], 0 otherwise

Let a = [0, 1/3], b = (1/3, 2/3], c = (2/3, 1].

We adopt the following implementation of MCSD: when it is agent i’s turn to pick, out of the pieces

of the remaining cake that he likes, he takes the left-most such piece with length 1/n, where n is the

number of agents.

If the priority ordering were 1, 2, 3, then a feasible assignment that respects the preferences is 1 ←
a, 2 ← c, 3 ← b.

If the priority ordering were 1,3,2, then a feasible assignment that respects the preferences is 1← a,

3← b, 2← c.

If the priority ordering were 2, 1, 3, then a feasible assignment that respects the preferences is 2← a,

1← b, 3← c.

If the priority ordering were 2, 3, 1, then a feasible assignment that respects the preferences is 2← a,

3← b, 1← c.

If the priority ordering were 3, 1, 2, then a feasible assignment that respects the preferences is 3← b,

1← a, 2← c.
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If the priority ordering were 3, 2, 1, then a feasible assignment that respects the preferences is 3← b,

2← a, 1← c.

Then, the MCSD allocation is as follows.

X1 =
1

2
[0, 1/3] ∪ 1

6
(1/3, 2/3] ∪ 1

3
(2/3, 1]

X2 =
1

2
[0, 1/3] ∪ 1

2
(2/3, 1]

X3 =
5

6
(1/3, 2/3] ∪ 1

6
(2/3, 1]

Clearly, agent 1 envies agent 3 in this case.
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Appendix B

Approximately Optimal Mechanisms

for Strategyproof Facility Location:

Minimizing Lp Norm of Costs

B.1 An Alternative Definition of Individual Cost

Let g be a strictly increasing and convex C1 function on [0,∞) with g(0) = g′(0) = 0. Note that

g(x) = xp satisfies this description for all p > 1. We consider a scenario where the cost of agent i

is C(xi, y) = g(|xi − y|) when the mechanism is deterministic and locates the facility at y. Similarly

C(xi, π) = Ey∼π[g(|xi − y|)] when the mechanism is randomized and locates the facility according to

distribution π. The social cost function h(|x1 − y|, |x2 − y|) is only assumed to be (1) anonymous

(h(d, d′) = h(d′, d)) and (2) satisfy that for all a ∈ (min {x1, x2},max {x1, x2}) where x1 6= x2, h(|x1 −
a|) + h(|x2 − a|) < h(|x2 − x1|). Note that for p > 1, the Lp norm of the distances and the Lp norm

of the costs (for the general g above) both satisfy these conditions. We show that in this case, no

randomized strategyproof mechanism satisfying shift invariance, scale invariance and ex-post Pareto

efficiency for n = 2 can help us improve the approximation ratio relatively to the median mechanism.

Theorem B.1. Let f be a randomized mechanism satisfying shift invariance and scale invariance,

and ex-post Pareto efficiency for n = 2. Assume f is strategyproof with respect to the individual cost

function C(xi, y) = g(|xi − y|), where g is a strictly increasing and convex C1 function on [0,∞) with
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g(0) = g′(0) = 0. If the social cost function satisfies (1) and (2), then the approximation ratio of f is

at least as large as the median’s.

Proof. Using a proof similar to that of Lemma 4, we may assume without loss of generality that f is

symmetric. Consider a profile where n = 2 and x1 = 0, x2 = 1. Let Y = f(0, 1). We would like that

P(Y ∈ (0, 1)) = 0. Suppose for the sake of contradiction that there there exists x ∈ (0, 12) such that

P(Y ∈ (x, 1 − x)) = q > 0. Now suppose agent 2 now misreports his location to 1 + ε for some small

ε > 0 such that 1
1+ε > 1− x. By shift and scale invariance, f(0, 1 + ε) = (1 + ε)Y . Then the difference

in cost for agent 2 between the two profile of reports is

E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
] = −

∫ 1
1+ε

0
(g(1− y)− g(1− (1 + ε)y))dF (y)

+

∫ 1

1
1+ε

(g((1 + ε)y − 1)− g(1− y))dF (y)

≤ P(Y ∈ [
1

1 + ε
, 1])g(ε)− q

(
g(1− x∗)− g(1− (1 + ε)x∗)

)
where x∗ ∈ arg miny∈[x,1−x] g(1− y)− g(1− (1 + ε)y). The inequality follows from the fact that g((1 +

ε)y−1)−g(1−y) ≤ g(ε) for all y ∈ [ 1
1+ε , 1] and that g(1−y)−g(1−(1+ε)y) ≥ g(1−x∗)−g(1−(1+ε)x∗)

for all y ∈ [x, 1− x]. Note that

lim
ε→0+

E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
]

ε
≤ lim

ε→0+
P(Y ∈ [

1

1 + ε
, 1])

g(ε)

ε
− q g(1− x∗)− g(1− (1 + ε)x∗)

ε

≤ P(Y = 1)g′(0)− qg′(1− x∗)x∗ < 0

The third inequality follows from g′(0) = 0 and g′(1−x∗) > 0 (since g is strictly convex). This implies

that E[g
(
|1− (1 + ε)Y |

)
]−E[g

(
|1− Y |

)
] < 0 for ε sufficiently small, implying that there is a profitable

deviation for agent 2.

B.2 Omitted Proofs from Section 4.2

Proof of Lemma 6. First, let us prove that the two conditions imply strategyproofness. By shift in-

variance and anonymity, it suffices to check strategyproofness for profiles where x1 = 0 and x2 ≥ 0.

Moreover, any scale invariant mechanism is trivially strategyproof with respect to the profile (0, 0)

since scale invariance implies f(0, 0) = 0, which means that no agent has incentive to misreport his

location.54 Thus, we can assume that x2 > 0. It suffices to show that agent 2 cannot benefit by

54f(0, 0) = 0 follows from, say, f(0, 0) = f(0 · 1, 0 · 1) = 0 · f(1, 1) = 0, where the second equality is by scale invariance.
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deviating from his true location if the two aforementioned conditions hold. Since x2 > 0, we can

denote agent 2’s deviation x′2 as cx2 for some c ∈ R. Moreover, we can assume that c ≥ 0. This

can be justified as follows. Assume c < 0. Note that by symmetry, in any fixed profile z, the closer

a point is to mz, the smaller the expected distance of the facility is from that point. In particu-

lar, this implies that C(x2, f(0,−cx2)) ≤ C(−x2, f(0,−cx2)). But also note that by scale invariance,

C(−x2, f(0,−cx2)) = C(x2, f(0, cx2)). Thus, C(x2, f(0,−cx2)) ≤ C(x2, f(0, cx2)). Consequently, if

reporting cx2 is a profitable deviation for agent 2 for some c < 0, then reporting −cx2 is also a prof-

itable deviation for the agent.

When agent 2 reports his location to be cx2, where c > 1, the change in cost incurred by agent 2

is (where Corig is the expected cost of agent 2 under truthful reporting and Cdev is the expected cost

of agent 2 under misreporting):

Cdev − Corig = −(c− 1)

∫
(−∞,x2

c
)
ydF (y) +

∫
[
x2
c
,x2)

((c+ 1)y − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)+

+ (c− 1)x2P(Y = x2)

= −(c− 1)

∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)

+ (c− 1)x2P(Y = x2)

≥ −(c− 1)

∫
(−∞,x2)

ydF (y) + (c− 1)

∫
(x2,∞)

ydF (y) + (c− 1)x2P(Y = x2).

Hence, when condition 1 holds, we have that −(c − 1)
∫
(−∞,x2) ydF (y) + (c − 1)

∫
(x2,∞) yF (y) + (c −

1)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0.

Similarly, when 0 ≤ c < 1, the change in cost incurred by agent 2 is:

Cdev − Corig = (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − (c+ 1)y)dF (y)− (1− c)

∫
(
x2
c
,∞)

ydF (y)+

+ (1− c)x2P(Y = x2)

= (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − 2cy)dF (y)− (1− c)

∫
(x2,∞)

ydF (y)

+ (1− c)x2P(Y = x2)

≥ (1− c)
∫
(−∞,x2)

ydF (y)− (1− c)
∫
(x2,∞)

ydF (y) + (1− c)x2P(Y = x2).
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Hence, when condition 2 holds, we have that (1− c)
∫
(−∞,x2) ydF (y)− (1− c)

∫
(x2,∞) ydF (y) + (1−

c)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0. Hence, the mechanism is strategyproof for

any profile x with x1 = 0 < x2.

To prove the other direction, suppose condition 1 does not hold for some profile x with x1 = 0 < x2.

Then there exists ε > 0 small enough such that −
∫
(−∞,x2) ydF (y)+

∫
(x2,∞) ydF (y)+x2P(Y = x2) ≤ −ε

for some x2 > 0. We choose c > 1 s.t. P(Y ∈ [x2c , x2)) <
ε

4x2
, then we have that

Cdev − Corig = −(c− 1)

∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)

+ (c− 1)x2P(Y = x2)

≤ (c− 1)(−
∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2x2)dF (y) +

∫
(x2,∞)

ydF (y) + x2P(Y = x2))

< −(c− 1)
ε

2
< 0,

which contradicts strategyproofness of the mechanism.

Similarly, suppose condition 2 does not hold for some profile x with x1 = 0 < x2. Then there exists

ε > 0 small enough such that
∫
(−∞,x2) ydF (y)−

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≤ −ε for some x2 > 0.

We choose 0 < c < 1 s.t. P(Y ∈ (x2,
x2
c ])) < ε

4x2
, then we have that

Cdev − Corig = (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − 2cy)dF (y)− (1− c)

∫
(x2,∞)

ydF (y)

+ (1− c)x2P(Y = x2)

≤ (1− c)(
∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2x2)dF (y)−
∫
(x2,∞)

ydF (y) + x2P(Y = x2))

< −(1− c) ε
2
< 0,

which contradicts strategyproofness of the mechanism.

Proof of Lemma 7. Let f be as given above. Assume f violates both (1) and (2) on some profile

x (otherwise, there is nothing to prove: we can take g = f). By shift invariance we may assume

without loss of generality that x1 = 0. We may assume by anonymity and shift invariance that
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x1 = 0 < x2. Let Y ∼ f(x). Let p1 = P(Y ∈ (mx, x2)) + P(Y=mx)
2 = P(Y ∈ (x1,mx)) + P(Y=mx)

2 ,

p2 = P(x2,∞) = P(−∞, x1), z1 = E[Y 1(Y ∈(x1,mx))]+mxP(Y=mx)/2
p1

, and z′1 = E[Y |Y ∈ (−∞, x1)],
z2 = E[Y 1(Y ∈(mx,x2))]+mxP(Y=mx)/2

p1
, z′2 = E[Y |Y ∈ (x2,∞)].55

Consider a random variable Y ′′ obtained from Y as follows: P(Y ′′ ∈ {z′1, x1, z1, z2, x2, z′2}) = 1,

P(Y ′′ = z′1) = P(Y ′′ = z′2) = p2, P(Y ′′ = z1) = P(Y ′′ = z2) = p1, and P(Y ′′ = x1) = P(Y ′′ = x2) =

P(Y = x1) = P(Y = x2). Clearly, Y ′′ is symmetric about the midpoint mx. Since the social cost

function is convex, it follows that E[sc(x, Y ′′)] ≤ E[sc(x, Y )].

Now, consider a random variable Y ′ obtained from Y ′′ as follows. We construct Y ′ from Y ′′ by

shifting parts of the probability mass at z1 and z′1 to x1 as well as by shifting parts of the probability

mass at z2 and z′2 to x2 while ensuring that E[Y ′] = E[Y ′′]. Specifically, since z1 < x1 < z′1, we

can write x1 = λz1 + (1 − λ)z′1 for some 0 < λ < 1. One way to shift the probability mass is to

subtract probability λp and (1 − λ)p from z1 and z′1 respectively and add probability p to x1 for p

sufficiently small (do the same transformation for points z2, z
′
2, and x2). This transformation ensures

E[Y ′] = E[Y ′′] because

(p1 − λp)z1 + (p2 − (1− λ)p)z2 + (P(Y ′′ = x1) + p)x1 = p1z1 + p2z2 + P(Y ′′ = x1)x1.

In order to maximize the shift in probability mass, we choose the largest p possible or p = min(p1λ ,
p2
1−λ).

If p = p1
λ , then P(Y ′ ∈ {z′1, x1, x2, z′2}) = 1, as P(Y ′ = z′1) = P(Y ′ = z′2) = p2 − (1 − λ)p, and

P(Y ′ = x1) = P(Y ′ = x2) = P(Y ′′ = x1) + p. Else if p = p2
1−λ , then P(Y ′ ∈ {x1, z1, z2, x2}) = 1,

P(Y ′ = z1) = P(Y ′ = z2) = p1 − λp, and P(Y ′ = x1) = P(Y ′ = x2) = P(Y ′′ = x1) + p. It is clear

from construction that Y ′ is symmetric about mx. Convexity implies E[sc(x, Y ′)] ≤ E[sc(x, Y ′′)], and

so E[sc(x, Y ′)] ≤ E[sc(x, Y )].

Now, let g be a mechanism that locates the facility according to Y ′ given profile x. Note that there

is a unique way to extend the definition of g to all other two-agent profiles such that g is shift and scale

invariant as well as symmetric; let us extend the definition of g that way. Furthermore, this extension

is easily seen to imply the following:

55Note that if P(Y = mx) = 0, then z1 is the conditional expectation of Y given that Y ∈ (x1,mx). When P(Y =

mx) > 0, imagine that whenever Y = mx, we flip a fair coin; then z1 is the conditional expectation of Y given that

Y ∈ (x1,mx) or Y = mx and the coin lands on heads. z2 can be defined in a similar manner (replace (x1,mx) with

(mx, x2) and heads with tails). From this description it is clear that z1 ∈ (x1,mx], z2 ∈ [mx, x2), and that they are

symmetric about mx.
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1. Since E[sc(x, g(x))] ≤ E[sc(x, f(x))] for the profile x, the social cost obtained by mechanism g

via the extension is no more than the one obtained by mechanism f for all two-agent profiles.

2. If P(g(x) ∈ (x1, x2)) = 0, then P(g(q) ∈ (q1, q2)) = 0 for all two-agent profiles q. Similarly,

if P(g(x) ∈ (−∞, x1) ∪ (x2,∞)) = 0, then P(g(q) ∈ (−∞, q1) ∪ (q2,∞)) = 0 for all two-agent

profiles q.

Thus, all that is left for us to do is to show strategyproofness of g. We can do so by verifying the

conditions in Lemma 6 (the fact that it holds for all the required profiles is then again immediate by

shift and scale invariance). When p = p1
λ , we claim that it suffices to show that:

−z′1(p2−(1−λ)p)+z′2(p2−(1−λ)p)+x2(P(Y ′ = x2)+p) ≥ −z′1p2−z1p1−z2p1 +z′2p2 +x2P(Y = x2),

and that

z′1(p2− (1− λ)p)− z′2(p2− (1− λ)p) + x2(P(Y ′ = x2) + p) ≥ z′1p2 + z1p1 + z2p1− z′2p2 + x2P(Y = x2).

To justify this claim, we need to show that the right hand sides are always greater than or equal to 0.

But note that z1, z2, p1, z
′
1, z
′
2, and p2 were defined so that the right hand sides amount exactly to the

conditions of Lemma 6 for f on the profile x, and thus must be greater than or equal to zero. After

some algebra, the two inequalities above reduce to:

z′1(1− λ)p− z′2(1− λ)p+ x2p ≥ −z1p1 − z2p1, (B.1)

and

−z′1(1− λ)p+ z′2(1− λ)p+ x2p ≥ z1p1 + z2p1. (B.2)

To show (B.1), we know that

z′1(1− λ)p+ z1p1 = (z′1(1− λ) + z1λ)p = x1p = 0, that is z′1(1− λ)p = −z1p1,

and that

x2p = (z′2(1− λ) + z2λ)p ≥ z′2(1− λ)p− z2p1, that is x2p− z′2(1− λ)p ≥ −z2p1.

Combining the two above expressions gives us the desired result. Similarly, (B.2) follows from the fact

that z′1(1− λ)p+ z1p1 = 0 and that x2p = (z′2(1− λ) + z2λ)p ≥ −z′2(1− λ)p+ z2p1. The proof for the

case where p = p2
1−λ is similar and so will be omitted.
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B.3 Alternative Assumptions in Section 4.2

Theorem 4 holds if we replace the assumption of shift invariance with symmetry. It is clear from the

structure of the proof that it is enough to replace Lemma 4 with the following lemma:

Lemma B.1. Given any strategyproof, symmetric and scale invariant mechanism, there exists a strat-

egyproof, symmetric, scale and shift invariant mechanism with a weakly smaller worst-case approxima-

tion ratio.

Proof. Given a mechanism f , define g(x) = f(0, x2 − x1) + x1. Assume f is strategyproof, symmetric

and scale invariant. We claim that g is strategyproof, symmetric, scale and shift invariant with a

weakly smaller worst-case approximation ratio. The fact that g is shift invariant and has a weakly

smaller worst-case approximation ratio than f is immediate. Let Yx1,x2 ∼ f(x) and Y ′x1,x2 ∼ g(x); the

relevant equalities below are in distribution.

1. g is symmetric: let x ∈ R2, and let b ∈ R. Then P(Y ′x1,x2 ≥ mx+b) = P(Y0,x2−x1 ≥ mx+b−x1) =

P(Y0,x2−x1 ≥ m(0,x2−x1) + b) = P(Y0,x2−x1 ≤ m(0,x2−x1) − b) = P(Y0,x2−x1 ≤ mx − b − x1) =

P(Y0,x2−x1 + x1 ≤ mx − b) = P(Y ′x1,x2 ≤ mx − b).

2. g is scale invariant: let x ∈ R2 and let c ∈ R. Then Ycx1,cx2 = Y0,c(x2−x1)+cx1 = cY0,x2−x1 +cx1 =

c(Y0,x2−x1 + x1) = cY ′x1,x2 . The second equality follows from scale invariance of f .

3. g is strategyproof: let x ∈ R2, b, x′2 ∈ R. There are two cases:

(a) Assume E[|x2−Y ′x1,x2 |] > E[|x2−Y ′x1,x′2 |]. Note that E[|x2−Y ′x1,x2 |] = E[|(x2−x1)−Y0,x2−x1 |]
and E[|x2−Y ′x1,x′2 |] = E[|(x2−x1)−Y0,x′2−x1 |]. Thus, it follows that when agent 1’s location

is 0 and agent 2’s location is x2 − x1, agent 2 can benefit under f when reporting x′2 − x1
instead, violating strategyproofness of f . Contradiction.

(b) Assume E[|x1 − Y ′x1,x2 |] > E[|x1 − Y ′x1+b,x2 |]. Note that E[|x1 − Y ′x1,x2 |] = E[| − Y0,x2−x1 |] =

E[|(x2−x1)−Y0,x2−x1 |], where the last equality follows from symmetry of f . Also note that

E[|x1 − Y ′x1+b,x2 |] = E[| − b− Y0,x2−x1−b|] = E[|(x2 − x1)− Y0,x2−x1−b|], where again the last

equality follows from symmetry of f . Thus, when agent 1’s true location is 0 and agent 2’s

true location is x2 − x1, then agent 2 benefits under f by reporting x2 − x1 − b, violating

strategyproofness of f . Contradiction.
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Appendix C

Approximation Algorithms for the

Incremental Knapsack Problem

C.1 Proof of Proposition 6.2

We will define a greedy algorithm, like that of value-to-weight ratio greedy algorithm for the standard

knapsack. The algorithm ensures that the solution it constructs till time t satisfies the following two

properties for all t:

1. the total value of items packed in the knapsack at time t′ has value at least half of the optimal

solution to the LP relaxation of the standard knapsack problem with capacity Bt′ for every t′ ≤ t.

2. the solution respects the precedence constraints at each time.

Index the items in non-increasing ratio order (break ties arbitrarily). Let Wi =
∑i

i′=1wi. Note that

whenever the knapsack capacity is B, where Wi−1 ≤ B < Wi (with W0 = 0), the greedy solution either

choose the set of items {1, . . . , i− 1} or {i}, depending on which set gives a higher objective value. We

will construct a sequence of nested solutions S1 ⊆ S2 ⊆ . . . ST as follows. Suppose we want to construct

a 1/2-approximation solution for time t given a sequence of nested solutions S1 ⊆ S2 ⊆ . . . St−1

inductively. If Wi−1 ≤ Bt < Wi for some i. If Wi−1 ≤ Bt−1 < Wi, then we can set St = St−1 and

still maintain a 1/2-approximate solution. So suppose Bt−1 < Wi−1, then it can be shown through our

construction that St−1 ⊆ {1, . . . , i− 1}. There are two cases to consider.
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1. Ratio greedy picks {1, . . . i − 1} in time period t. Since St−1 ⊆ {1, . . . , i − 1}, setting St =

{1, . . . i− 1} maintains the precedence constraint for time t.

2. Ratio greedy picks {i} in time period t. Since item i fits into the knapsack initially, we can reset

S1 = S2 = . . . St−1 = St = {i} and still maintain a 1/2-approximate solution.

This completions the proof. Note that the approximation is valid for all possible set of discounting

factors.

C.2 Proof of Lemma C.2

For every nonempty polyhedron Qσ,h, we begin by showing (6.13) holds for every Sk,h with the help

of the following auxiliary LP. The auxiliary LP has constraints similar to those governing the feasible

region of Qσ,h, except that we only focus on the variables from the value class Sk,h. Instead of the

knapsack capacity constraint, we require that the total weight of items from value class Sk,h packed

into the knapsack in each time period is no more than that of x̄.

max
T ′∑
t=1

∆t

|Sk,h|∑
i=1

v′kixki,t (C.1)

s.t.

|Sk,h|∑
i=1

wkixki,t ≤
|Sk,h|∑
i=1

wki x̄ki,t ∀t

xk1,t = xk2,t = . . . = xk|Sk,h|,t = 0 ∀(k, t) s.t. σkt = 0

xk1,t = xk2,t = . . . = xk
σkt
,t = 1,

xk
σkt

+1,t = . . . = xk|Sk,h|,t = 0 ∀(k, t) s.t. 1 ≤ σkt < J and σkt < |Sk,h|

xk1,t = xk2,t = . . . = xk
σkt
,t = 1 ∀(k, t) s.t. σkt = J and σkt < |Sk,h|

xk1,t = xk2,t = . . . = xk|Sk,h|,t = 1 ∀(k, t) s.t. σkt ≥ |Sk,h|

xki,t−1 ≤ xki,t ∀ki, and t = 2, 3, . . . , T ′

xki,t−1 ∈ [0, 1] ∀ki, t.
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Lemma C.1. For every Sk,h, there exists an optimal solution to the auxiliary LP that contains at

most one fractional variable xki,t in each time period t.

Proof. We only need to focus on the case when there exists t such that σkt = J and J < |Sk,h|, otherwise

the LP feasible region has at most one feasible point, which is an integer.

Let t? be the first (smallest) period in which we are in the case σkt = J and σkt < |Sk,h|. Ignoring

the precedence constraints for a moment, then the auxiliary LP can be broken up into T − t?+ 1 single

period LPs of the following form, one for each t ≥ t?.

LPt = max

|Sk,h|∑
i=1

v′kixki,t

s.t.

|Sk,h|∑
i=1

wkixki,t ≤
|Sk,h|∑
i=1

wki x̄ki,t (C.2)

xk1,t = xk2,t = . . . = xk
σkt
,t = 1 (C.3)

xki,t−1 ∈ [0, 1] ∀ki.

Notice that in the modified instance of the problem, all items have the same value within a value

class Sk,h. Hence, an optimal solution to LPt is simply to pack the items in increasing order of their

weight, starting from the smallest weight item first. Moreover, notice that this set of optimal solutions

satisfy the precedence constraints.

Lemma C.2. Let x̄ be an optimal solution to the optimization problem max{∑T ′

t=1 ∆t
∑

i∈Sh v
′
ixi,t :

x ∈ Qσ,h} over a non-empty Qσ,h for some σ ∈ {0, . . . , J}T ′K and suppose h ∈ S. There exists an

integer feasible solution xσ,h to the auxiliary LP such that

T ′∑
t=1

|Sk,h|∑
i=1

v′kix
σ,h
ki,t
≥ (1− ε)

T ′∑
t=1

|Sk,h|∑
i=1

v′ki x̄ki,t, (C.4)

for every Sk,h and

T ′∑
t=1

∆t

∑
i∈Th

v′ix
σ,h
i,t ≥

T ′∑
t=1

∆t

∑
i∈Th

v′ix̄i,t −∆T εvh. (C.5)
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Proof. We first show the validity of inequality C.4. Without lost of generality, let x̂ be the optimal

solution to the auxiliary LP (C.1). For a time period t where σkt < J and σkt < |Sk,h| or when

σkt ≥ |Sk,h|, we don’t need to round the variables x̂ki,t since they are already integral. Hence, we set

xσ,hki,t = x̂ki,t for all the variables these periods, which implies that

|Sk,h|∑
i=1

v′kix
σ,h
ki,t

=

|Sk,h|∑
i=1

v′ki x̂ki,t ≥
|Sk,h|∑
i=1

v′ki x̄ki,t

for such a period t.

For a time period t where σkt = J and σkt ≥ |Sk,h|, by Lemma C.1, there is at most one fractional

x̂ki,t in such a time period. Consequently, we round down this fractional variable while keeping others

the same. Since all the variables have the same value within a value class Sk,h, we have that

∑|Sk,h|
i=1 v′ki x̂ki,t −

∑|Sk,h|
i=1 v′kix

σ,h
ki,t∑|Sk,h|

i=1 v′ki x̂ki,t
=

∑|Sk,h|
i=1 x̂ki,t −

∑|Sk,h|
i=1 xσ,hki,t∑|Sk,h|

i=1 x̂ki,t
≤ 1

J
< ε,

which implies that

|Sk,h|∑
i=1

v′kix
σ,h
ki,t
≥ (1− ε)

|Sk,h|∑
i=1

v′ki x̂ki,t ≥ (1− ε)
|Sk,h|∑
i=1

v′ki x̄ki,t.

Summing up the above inequalities over all time periods gives us the desired result.

Now we show the validity of inequality C.5. Consider the following auxiliary LP:

max

T ′∑
t=1

∆t

∑
i∈Th

v′kixi,t

s.t.
∑
i∈Th

wixi,t ≤
∑
i∈Th

wix̄i,t ∀t

xi,t−1 ≤ xi,t ∀i ∈ T h, and t = 2, 3, . . . , T ′

xi,t−1 ∈ [0, 1] ∀i, t.

An optimal solution of the LP above would be to greedily pack items in the order of non-increasing

value-to-weight ratio. Let x̂ be such an optimal solution. It is clear that x̂ has at most one fractional
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variable in each time period. We round down such a fractional variable in each time period to 0 to

obtain an integer solution xσ,h. Consequently, we have that

T ′∑
t=1

∆t

∑
i∈Th

v′ix̂i,t −
T ′∑
t=1

∆t

∑
i∈Th

v′ix
σ
i,t ≤

εvh
T ′

T ′∑
t=1

∆t ≤ ∆T ′εvh,

where the first inequality follows from the fact that every item in T h has value no more than εvh
T ′ , and

the second inequality follows from the fact that ∆t is non-decreasing in t. Rearranging the terms, we

get

T ′∑
t=1

∆t

∑
i∈Th

v′ix
σ
i,t ≥

T ′∑
t=1

∆t

∑
i∈Th

v′ix̂i,t −∆T ′εvh ≥
T ′∑
t=1

∆t

∑
i∈Th

v′ix̄i,t −∆T ′εvh.

C.3 Proof of Proposition 6.5

We prove each of the three cases via an interchange argument. Suppose there exists an optimal schedule

OPT that does not follow the index rule. Then there will be a pair of adjacent items i and j (not

belong to the same indifference class) that disobeys the index rule, i.e. σ−1(i) < σ−1(j) but i is

scheduled after j in OPT. Consider a schedule MOD that switches the order between i and j while

keeping the ordering of the rest of the jobs the same. We measure V (MOD)−V (OPT ) and show that

the difference is positive, contradicting the optimality of OPT. Let w be the total capacity of items

packed into the knapsack right before both items i and j.

• When ∆(s) = 1,

V (MOD)− V (OPT ) = vi(T −
1

c
(w + wi)) + vj(T −

1

c
(w + wi + wj))

− vj(T −
1

c
(w + wj))− vi(T −

1

c
(w + wi + wj))

= viwj − vjwi > 0

• When ∆(s) = e−rs,
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V (MOD)− V (OPT ) = vi

∫ T

1
c
(w+wi)

e−rsds+ vj

∫ T

1
c
(w+wi+wj)

e−rsds

− vj
∫ T

1
c
(w+wj)

e−rsds− vi
∫ T

1
c
(w+wi+wj)

e−rsds

= vi

∫ 1
c
(w+wi+wj)

1
c
(w+wi)

e−rsds− vj
∫ 1

c
(w+wi+wj)

1
c
(w+wj)

e−rsds

=
e−rw

r

(
vi(e

−rwi − e−r(wi+wj))− vj(e−rwj − e−r(wi+wj))
)

=
e−rw

r

(
vie
−rwi(1− e−rwj )− vje−rwj (1− e−rwi)

)
> 0

• When ∆(s) = (1 + r)−s, since we can rewrite (1 + r)−s as e− ln(1+r)s, the same derivation follows.

C.4 Proof of Proposition 6.4

Proof. Assume w.l.o.g. that b1 ≥ b2 ≥ . . . ≥ bq. We proceed via induction on p+ q.

Base case: the result holds true for p = 1 and any q trivially as a1 =
∑q

i=1 bi.

Inductive step: since a1 ≥ maxi=1,...,q bi, there exists m ≥ 1 such that a1 ≥
∑m

i=1 bi and a1 <
∑m+1

i=1 bi.

Write bm+1 = bm+1,1 + bm+1,2 such that a1 =
∑m

i=1 bi + bm+1,1. Note that

a21 = (
m∑
i=1

bi)
2 + b2m+1,1 + 2(

m∑
i=1

bi)bm+1,1 ≥ (
m∑
i=1

bi)
2 + b2m+1,1 + 2bm+1,2bm+1,1, (C.6)

as
∑m

i=1 bi ≥ b1 ≥ bm+1,2. Now, we apply the inductive hypothesis on the sets {a2, . . . , ap} and

{bm+1,2, bm+2 . . . , bq} (note that these two sets satisfy the assumptions of the lemma) and get

p∑
i=2

a2i ≥ b2m+1,2 +

p∑
i=m+2

b2i . (C.7)

Adding both sides of equations (C.6) and (C.7) gives us the desired result.
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Appendix D

Capacity Constrained Assortment

Optimization under the Markov Chain

based Choice Model

D.1 Proofs of Theorems 7.1 and 7.2

Proof. Proof of Theorem 7.1. Consider an instance I of VCC, consisting of a cubic graph G = (V,E)

on n vertices V = {v1, . . . , vn}. We can assume that k > |E|/3, or otherwise, the distinction between

the two cases above is easy. We construct an instance M(I) of Cardinality-Assort as follows. Each

vertex vi ∈ V corresponds to an item i of N . In addition, we also have the no-purchase item 0. For

each vertex v ∈ V , let N(v) denote the neighborhood of v in G, i.e., N(v) = {u : (u, v) ∈ E}, consisting

of exactly 3 vertices. Now, for all (i, j) ∈ N ×N+ the transition probabilities are defined as

ρij =

 1/4 if vj ∈ N(vi) or j = 0

0 otherwise.

Finally, for all items i ∈ N , we have an arrival rate of λi = 1/n and a price of pi = 1. Out of these

items, at most k can be selected.

The goal in VCC is to choose a minimum-cardinality set of vertices such that every edge is incident

to at least one of the chosen vertices. Let U∗ ⊆ V be a minimum vertex cover in G. We show that the

instance M(I) satisfies the following properties:
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(a) |U∗| ≤ k ⇒ R(S∗) ≥ 3

4
+

k

4n
,

(b) |U∗| ≥ (1 + α)k ⇒ R(S∗) ≤ 3

4
+

k

4n
− α

16
,

where S∗ is the optimal assortment for M(I). This implies that Cardinality-Assort cannot be approx-

imated within factor larger than 1 − α
16 , unless P = NP. To see this, note that the ratio between

3
4 + k

4n − α
16 and 3

4 + k
4n is monotone-increasing in k, meaning that the maximum value attained is

1− α
16 .

Case (a): |U∗| ≤ k. In this case, we can augment U∗ with k − |U∗| additional vertices chosen

arbitrarily from V \ U∗, and obtain a (not-necessarily minimum) vertex cover U with |U | = k. Now,

consider the assortment S = {i : vi ∈ U}, which is indeed a feasible solution. Since all prices are equal

to 1, we can write the expected revenue of this set as

R(S) = P(S ≺ 0) =
∑
i∈S

λi +
∑
i/∈S

λiPi(S ≺ 0) =
k

n
+

1

n

∑
i/∈S

Pi(S ≺ 0). (D.1)

When starting at any state i /∈ S, the Markov chain moves to 0 with probability 1/4 and gets absorbed.

With probability 3/4, the Markov chain moves from i to one of the vertices in N(i). Since U is a vertex

cover, it follows that N(i) ⊆ S. Therefore, Pi(S ≺ 0) = 3/4 for all i /∈ S. Based on these observations

for the optimal assortment S∗, we have

R(S∗) ≥ R(S) =
k

n
+

3(n− k)

4n
=

3

4
+

k

4n
.

Case (b): |U∗| ≥ (1 + α)k. Let S be some assortment consisting of k items. In this case, equa-

tion (D.1) is still a valid decomposition of R(S), and we need to consider two cases for items i /∈ S. If

N(i) ⊆ S, then Pi(S ≺ 0) = 3/4 as in case (a). However, when N(i) * S, there exists j ∈ N(i) such

that j /∈ S. Therefore, there is a probability of 1/16 that starting from i the Markov chain moves to j

and from there to 0. Consequently, for such items, Pi(S ≺ 0) ≤ 3
4 −

|N(i)\S|
16 . Therefore,

R(S) =
k

n
+

1

n

∑
i/∈S,N(i)⊆S

3

4
+

1

n

∑
i/∈S,N(i)*S

Pi(S ≺ 0)

≤ 3

4
+

k

4n
− 1

16n

∑
i/∈S,N(i)*S

|N(i)\S|.
(D.2)

To upper bound the latter term, let V (S) be the set of vertices of V corresponding to S, i.e., V (S) =

{vi : i ∈ S}. Let Ē(S) be the set of edges that are not covered by V (S). We have (2 · |Ē(S)|) =
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∑
i/∈S,N(i)*S |N(i)\S|. The important observation is that |Ē(S)| ≥ αk. Otherwise, V (S) can be

augmented to a vertex cover via the addition of fewer than αk vertices, contradicting |U∗| ≥ (1 +α)k.

Now,

|Ē(S)| ≥ αk ≥ α

3
· |E| = αn

2
,

where the second inequality follows from k > |E|/3, and the last equality holds since |E| = 3n/2, as G

is cubic. By inequality (D.2), we have

R(S) ≤ 3

4
+

k

4n
− |Ē(S)|

8n
≤ 3

4
+

k

4n
− α

16
.

Since the above upper bound on R(S) holds for any assortment S of k items, this must also be true

for the maximum-revenue one, S∗. �

Proof. Proof of Theorem 7.2. Aouad et al. [7] show that unconstrained assortment optimization over

the distribution over permutations model is hard to approximate within factor O(n1−ε) for any fixed

ε > 0 even for the case where the number of preference lists is equal to the number of items, i.e.,

K = n.

We consider an instance I of the assortment optimization problem over distribution over permu-

tations model with n preference lists: L1, . . . , Ln. We construct a corresponding instanceM(I) of the

assortment optimization under the Markov chain model as follows. Each of the original items in N
has a separate copy as a state in M(I) for every list that contains it. More precisely, for every list Li

and for every 1 ≤ j ≤ |Li|, we have a state (j, i) corresponding to the j-th most preferred item in Li.

In addition, there is a state 0 corresponding to the no-purchase option. Therefore, the set of states is:

S = {0} ∪ {(j, i) : i = 1, . . . , n, j = 1, . . . , |Li|}.

The transition probabilities between these states are given by:

ρ((j,i),s) =


1 if j < |Li| and s = (j + 1, i)

1 else if j = |Li| and s = 0

0 otherwise.

In other words, for each list there is a directed path (with transition probabilities 1) over its corre-

sponding states in decreasing order of preference, ending at the no-purchase option. This is illustrated
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in Figure D.1. Finally, the arrival rates are defined by

λ(j,i) =

 ψi if j = 1

0 otherwise,

where ψi is the probability of list Li. With this construction, each row corresponds to a list, and each

column correspond to an item.

λ(1,1) = ψ1

λ(1,2) = ψ2

λ(1,4) = ψ4

1, 1 2, 1 3, 1 4, 1

1, 2 2, 2

1, 4

1, 3

2, 4

2, 3

3, 2

3, 4

0

λ(1,3) = ψ3

Figure D.1: Sketch of our construction for an instance on 4 items, where L1 = (1 � 2 � 3 � 4),

L2 = (1 � 3 � 4), L3 = (2 � 3), and L4 = (1 � 2 � 4). Note, for example, that the state (2, 2)

corresponds to the second item of L2, but actually corresponds to item 3.

In order to obtain a one-to-one correspondence between the solutions to I andM(I), it remains to

ensure that, when item i is offered in I, all of its corresponding copies (appearing in the same column)

are offered inM(I), and vice versa. This restriction can be captured by the constraints x(j,i) = x(k,`),

for every i, ` ∈ {1, . . . , n} such that j ≤ |Li|, k ≤ |L`| and such that the jth item in Li is the kth item

in L`. This way, we guarantee that each column is either completely picked or completely unpicked

in the instance M(I). The resulting set of inequalities specifies a constraint matrix with a single

appearance of +1 and −1 in each row, where all other entries are 0. Such matrices are well-known to

be totally-unimodular (see, for example, [107]).

To complete the proof, note that the original instance I consists of n items and n preference lists

and therefore, the Markov chain instance M(I) has O(n2) states. Since the former problem is NP-

hard to approximate within factor O(n1−ε), for any fixed ε > 0, it follows that TU-Assort cannot be

efficiently approximated within O(n1/2−ε), unless P = NP . �
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D.2 Proof of Lemma 7.2

This result is an immediate corollary of the following (more general) claim: Let Sg be the solution

returned by Algorithm 7.1, and let S be any subset of states. Then,

R(Sg) ≥ R(S)

|S| .

To prove this claim, let g be the first item selected by Algorithm 7.1, which necessarily exists as long

as there is an item i with pi > 0. Then, by definition of the greedy algorithm, we have R({g}) ≥ R({i})
for every item i ∈ S. Therefore,

R(Sg) ≥ R({g}) ≥ 1

|S| ·
∑
i∈S

R({i}) ≥ R(S)

|S| ,

where the last inequality follows from the sublinearity of the revenue function (Lemma 7.9).

D.3 Proof of Lemma 7.4

Let Sgu be the set of states selected by Algorithm 7.2. Note that for every i ∈ Sgu, we have that

P(i ≺ Sgu+ \{i}) ≥ P(i ≺ U∗+\{i}) since Sgu is a subset of U∗. Thus,

R(Sgu) =
∑
i∈Sgu

P(i ≺ Sgu+ \{i})pi

≥
∑
i∈Sgu

P(i ≺ U∗+\{i})pi

≥ k

|U∗|
∑
i∈U∗

P(i ≺ U∗+\{i})pi

=
k

|U∗|R(U∗)

≥ k

|U∗|R(S∗),

where S∗ is the optimal solution to Cardinality-Assort. Here, the second inequality holds due to pick-

ing the top k states in terms of P(i ≺ U∗+\{i}) values. The last inequality holds since the optimal

unconstrained revenue provides an upper bound on the optimal revenue in the constrained case.
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D.4 Proof of Lemma 7.6

It suffices to verify that (pS1
i )S2 = pS1∪S2

i for all S1,S2 and i /∈ S1 ∪ S2, as the above identity clearly

hold for the transition matrix updates. We have

(pS1
i )S2 =pS1

i −
∑
j∈S2

PS1
i (j ≺ S2+\{j})pS1

j

=pi −
∑
l∈S1

Pi(l ≺ S1+\{l})pl︸ ︷︷ ︸
A

−
∑
j∈S2

PS1
i (j ≺ S2+\{j})pS1

j︸ ︷︷ ︸
B

.

Using the definition of the updated prices,

B =
∑
j∈S2

PS1
i (j ≺ S2+\{j})pj −

∑
j∈S2

PS1
i (j ≺ S2+\{j})

∑
l∈S1

Pj(l ≺ S1+\{l})pl

=
∑
j∈S2

Pi(j ≺ (S2 ∪ S1)+\{j})pj −
∑
j∈S2

PS1
i (j ≺ S2+\{j})

∑
l∈S1

Pj(l ≺ S1+\{l})pl︸ ︷︷ ︸
C

.

We can now combine A and C,

A− C =
∑
l∈S1

Pi(l ≺ S1+\{l})−
∑
j∈S2

Pi(j ≺ (S2 ∪ S1)+\{j})Pj(l ≺ S1+\{l})

 pl

=
∑
l∈S1

(Pi(l ≺ S1+\{l})− Pi(S2 ≺ l ≺ S1+\{l})) pl

=
∑
l∈S1

Pi(l ≺ (S2 ∪ S1)+\{j})pl.

Putting everything together, we get

(pS1
i )S2 = pi −

∑
j∈(S2∪S1)

Pi(j ≺ (S2 ∪ S1)+\{j})pj = pS1∪S2
i .

�

D.5 Application of Algorithm 7.3 to MNL

In the MNL model, we are given a collection of items, 1, . . . , n, along with the no-purchase option,

which is denoted by item 0. Each item i has a utility parameter ui and a price pi. Without loss of
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generality, we can assume that
∑n

i=0 ui = 1. For any given assortment S, each item i ∈ S is picked

with probability

π(i, S) =
ui

u0 +
∑

i∈S ui
,

making the expected revenue

R(S) =
∑
i∈S

ui
u0 +

∑
`∈S u`

pi.

Blanchet et al. [25] prove that the MNL choice model is a special case of the Markov chain model.

More precisely, when ρij = uj for all j and λi = ui for all i, the choice probabilities of the two models

are identical. In this special case, our local ratio updates can be written as

pSi =


0 if i ∈ S

pi −
∑
j∈S

uj
u0 +

∑
`∈S u`

pj otherwise.

Note that in the above update, the subtracted term is independent of i. Therefore, the ordering of the

prices does not change after each update. Since we are picking the highest adjusted price item at each

step, it follows that the optimal assortment is nested by price, i.e., consists of the top ` priced items,

for some `. This is a well known structural property that we recover here as a direct consequence of

our algorithm. Moreover, the updated prices provide a criteria for when to stop adding items to the

assortment.

D.6 Algorithm 7.5 with Varying Threshold

Recall the consideration set used in Algorithm 7.5:

Ct =

{
i ∈ N\St−1 : RSt−1({i}) ≥ αR(S∗)

k

}
.

Now instead of using the same threshold constant α, we allow it to vary with the iteration t. In

other words, let threshold of the consideration set Ct in iteration t be αt,k
R(S∗)
k for some αt,k ≥ 0 for

all t = 1, . . . , k.

Proposition D.1. No choice of αt,k can give an approximation ratio better than 1/2 +O(1/k) using

our current line of analysis, i.e. relying on direct implications of Lemmas 7.9 and 7.11.

Proof. Suppose the algorithm terminates on an instance after some k′ ≤ k iterations because the

consideration set empties. By Lemma 7.9, we get an approximation bound of R(S∗)
k

∑k′

t=1 αt,k. On the
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other hand, one can strengthen Lemma 7.11 to say that the lost in incremental revenue of any individual

item in S∗\Sk′ is upper bounded by αmaxk′ ,k
R(S∗)
k , where αmaxk′ ,k = maxt=1,...,k′ αt,k. Together with

Lemma 7.9, we get

R(Sk′) ≥ R(S∗)− |S∗\Sk′ | · αmax,k ·R(S∗)/k ≥ (1− αmax,k)R(S∗).

Putting the two bounds together, for a fixed k′ ≤ k, we get an approximation bound of

max
(R(S∗)

k

k′∑
t=1

αt,k, (1− αmaxk′ ,k)R(S∗)
)

Thus, the worst case bound is

min
k′≤k

max
(R(S∗)

k

k′∑
t=1

αt,k, (1− αmaxk′ ,k)R(S∗)
)
.

We would like to show that the above expression is at most 1/2 +O(1/k).

Given a sequence of α1,k, ..., αk,k. Take k∗ denote the smallest t ≤ k such that αt,k ≥ 1/2. (If k∗

does not exist, then in the event that the consideration set is not empty after iteration t, our current

analysis leads to an approximation factor worse than 1/2.) Now, we have

R(S∗)

k

k∗∑
t=1

αt,k ≤ R(S∗)(1/2 + 1/k),

and

(
1− αmaxk′ ,k

)
R(S∗) =

(
1− αk∗,k

)
R(S∗) ≤ R(S∗)/2

Thus, we get

min
k′≤k

max
(R(S∗)

k

k′∑
t=1

αt,k, (1− αmaxk′ ,k)R(S∗)
)
≤ R(S∗)(1/2 + 1/k),

as desired.
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