1,964 research outputs found
Investigating viscous damping using a webcam
We describe an experiment involving a mass oscillating in a viscous fluid and
analyze viscous damping of harmonic motion. The mechanical oscillator is
tracked using a simple webcam and an image processing algorithm records the
position of the geometrical center as a function of time. Interesting
information can be extracted from the displacement-time graphs, in particular
for the underdamped case. For example, we use these oscillations to determine
the viscosity of the fluid. Our mean value of 1.08 \pm 0.07 mPa s for distilled
water is in good agreement with the accepted value at 20\circC. This experiment
has been successfully employed in the freshman lab setting.Comment: 13 pages, 5 figure
An Integrated Design and Simulation Environment for Rapid Prototyping of Laminate Robotic Mechanisms
Laminate mechanisms are a reliable concept in producing lowcost robots for
educational and commercial purposes. These mechanisms are produced using
low-cost manufacturing techniques which have improved significantly during
recent years and are more accessible to novices and hobbyists. However,
iterating through the design space to come up with the best design for a robot
is still a time consuming and rather expensive task and therefore, there is
still a need for model-based analysis before manufacturing. Until now, there
has been no integrated design and analysis software for laminate robots. This
paper addresses some of the issues surrounding laminate analysis by introducing
a companion to an existing laminate design tool that automates the generation
of dynamic equations and produces simulation results via rendered plots and
videos. We have validated the accuracy of the software by comparing the
position, velocity and acceleration of the simulated mechanisms with the
measurements taken from physical laminate prototypes using a motion capture
system
An investigation of forces on an oscillating cylinder for application to ground wind loads on launch vehicles
Analysis of vortex flow behind stationary and oscillating circular cylinders for application to prediction of ground wind loads on launch vehicle
Kinematic measurements using an infrared sensor
The use of an infrared sensor as a new alternative to measure position as a
function of time in kinematic experiments was investigated using a
microcontroller as data acquisition and control device. These are versatile
sensors that offer advantages over the typical ultrasound devices. The setup
described in this paper enables students to develop their own experiments
promoting opportunities for learning physical concepts such as the different
types of forces that can act on a body (gravitational, elastic, drag, etc.) and
the resulting types of movements with good sensitivity within the
range. As proof of concept we also present the application of a prototype
designed to record the kinematics of mass-spring systems.Comment: 15 pages, 10 figure
Nonlinear Dynamics of Particles Excited by an Electric Curtain
The use of the electric curtain (EC) has been proposed for manipulation and
control of particles in various applications. The EC studied in this paper is
called the 2-phase EC, which consists of a series of long parallel electrodes
embedded in a thin dielectric surface. The EC is driven by an oscillating
electric potential of a sinusoidal form where the phase difference of the
electric potential between neighboring electrodes is 180 degrees. We
investigate the one- and two-dimensional nonlinear dynamics of a particle in an
EC field. The form of the dimensionless equations of motion is codimension two,
where the dimensionless control parameters are the interaction amplitude ()
and damping coefficient (). Our focus on the one-dimensional EC is
primarily on a case of fixed and relatively small , which is
characteristic of typical experimental conditions. We study the nonlinear
behaviors of the one-dimensional EC through the analysis of bifurcations of
fixed points. We analyze these bifurcations by using Floquet theory to
determine the stability of the limit cycles associated with the fixed points in
the Poincar\'e sections. Some of the bifurcations lead to chaotic trajectories
where we then determine the strength of chaos in phase space by calculating the
largest Lyapunov exponent. In the study of the two-dimensional EC we
independently look at bifurcation diagrams of variations in with fixed
and variations in with fixed . Under certain values of
and , we find that no stable trajectories above the surface exists;
such chaotic trajectories are described by a chaotic attractor, for which the
the largest Lyapunov exponent is found. We show the well-known stable
oscillations between two electrodes come into existence for variations in
and the transitions between several distinct regimes of stable motion for
variations in
Planetary science
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed
A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology
The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement
Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum
The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity
- …
