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ABSTRACT

The effects of model motion on the forces acting on
a two-dimensional cylinder are investigated for application
to the prediction of ground wind loads on Jlaunch vehicles.
The wakes behind stationary and oscillating circular cylin-
dersare studied with the aid of a hydrogen bubble flow visual -
izationtechnique., The paths of wake vortices are examined
for a cylinder with a small amplitude negatively-dampedos-
cillation, alarger amplitude dampedoscillation, and an os-
cillation of intermediate amplitude with approximately zero
damping. A multiple-vortex analytical model is devised with
which it is possible to calculate the periodic motion of the
wake vortices and the resulting forces on a stationary cylin-
der. Possible extensions of the method to the case of an os-

cillating cylinder are indicated.
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LIST OF PRINCIPAL SYMBOLS

amplitude of cylinder oscillation

- amplitude of free oscillation

QD N

amplitude of free oscillation in the absence of structural

damping

a cylinder radius; downstream distance from center of
cylinder to vortex

. hydrodynamic damping coefficient

Gp drag coefficient on stationary cylinder

G,( amplitude of lift coefficient

cylinder diameter; drag on cylinder

~

N, N

nondimensional diameter of cylinder repre senting neighboring
structure

lateral hydrodynamic force

amplitude of lateral hydrodynamic force

natural frequency of cylinder and support system
Strouhal frequency

imaginary unit, -7/

total impulse

Soah od gk oph

Z
““m  imaginary part of
4 lift (lateral force) on cylinder

£ nondimensional distance between cylinders (see Sketch G)
7. virtual mass (= mass of fluid displaced by cylinder)

&/ nondimensional velocity at vortex 4, 4/ i 4)/‘}— f‘.é}k'

Le Reynolds number; real paft of

r nondimensional rate of vorticity generation
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SECTION I

INTRODUCTION

In their report on a ground wind loads program at the Langley
Research Center, Foughner and Duncan (Ref. 1) show a photograph of
a surplus Thor vehicle which has been toppled by a wind storm. Since
this Thor was being used at the time in a study of ground wind loads
on erected launch vehicles, its destruction may have served a useful
purpose. The possibility of a similar catastrophe causing the sudden
demise of an expensive space mission, however, is somewhat disquieting.

While an erected launch vehicle (such as that depicted in Fig. 1)
might conceivably be blown over by a sufficiently violent gust of wind,
an oscillating side load presents a more dangerous threat. An oscilla-
tory load accompanies the alternate shedding of vortices from the
sides of a cylindrical body. The wake forms the so-called Karman
vortex street, Such oscillatory loads have been responsible for failures of
tall chimneys and are also the causes in the somewhat related problems
of galloping transmission lines and collapsing bridges (most notably the
Tacoma Narrows Bridge); but these latter situations arise primarily
from aerodynamic nonsymmetry and body motion.

When a vortex ''peels off' from one side of a stationary circular
cylinder* , the lateral symmetry of the flow pattern is destroyed so that
a net pressure force appears on the body. This force generally has a
small component in the downstream (drag) direction and a much larger
lateral (lift) component. A short time later a vortex is released from
the opposilte side of the cylinder, reversing the direction of the side force.
This alternating lateral load is sometimes referred to as the ''Strouhal
force!, named after the man who first investigated the phenomenon in

1878 (cf. Ref. 2).

%
Or a cylinder symmetric about a line parallel to the stream.
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The antisymmetric wake behind a stationary circular cylinder
in two-dimensional flow and the accompanying lateral forces have a
dimensionless frequency which is nearly constant when the flow is
laminar. This particular reduced frequency, called the Strouhal number
and designated as St, is close to 0,2 over a Reynolds number range of
approximately 100 < Re < 100, 000 for smooth cylinders. In this
subcritical Reynolds number range then, the vortex shedding frequency

7{; » is approximately 7{)5/" 22l » Where 2 is the cylinder diameter,
and V] the flow velocity. Thus, for a given diameter, the frequency is
directly proportional to the velocity ¥}

Launch vehicles are susceptible to 'large excitations'' at low wind
speeds because of their low natural frequencies and low structural dampings.
This point becomes apparent when one considers the vehicle as a second
order linear system in a simplified analysis. It is a well-known result
that for small damping ratios, the sinusoidal responses are maximum
when the forcing frequency is near the natural frequency of the system.
Since low frequencies imply low speeds, it is not difficult to foresee
(from very approximate calculations using ranges of typical parameters)
possible large lateral motions of these vehicles at relatively low wind
velocities. Furthermore, since the damping coefficients are small, even
oscillatory aerodynamic forces of moderate amplitudes can result in
sufficiently large stress peaks to cause destruction of the launch vehicle.

A complete description of the Strouhal force on a stationary cylinder
in two-dimensional flow is not sufficient to prescribe the lateral aero-
dynamic force on an actual launch vehicle. For example, three-dimen-
sional effects, particularly around the nose of the missile, can be
significant, as pointed out by some investigators (cf. Buell, Ref. 3 and
Blackiston, Ref, 4). Among other complicating three-dimensionality
features are the effects of ground wind velocity gradients and variations
in vehicle cross-sectional dimensions. The ground wind also varies
randomly in space and time, having in its spectrum gusts with frequencies
in a range including the natural frequency of the structure. Some effects
of random gusts were studied some years ago by Fung (Ref. 5) and his

colleagues. Another important consideration is the effect of cylinder's
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own motion on the aerodynamic forces, and this area has been studied

by Meier-Windhorst (Ref. 6) and Bishop and Hassan (Refs., 7,8). The
present investigation is also an attempt to contribute to the understanding
of the latter problem,

The aerodynamic analysis may become even more formidable when
the situations encountered occur at higher Reynolds numbers. The
periodicity present at subcritical Reynolds numbers breaks down, and
random vortex shedding appears in the so-called critical range
(IO5 < Re < 3.5 x 106). At still higher Re’s, Roshko's tests (Ref.9) re-
vealed reappearance of the periodic shedding, although partially obscured
by turbulence. In the latter range, Roshko found the Strouhal number to
be approximately 0.3. During transition from laminar to fully turbulent
flow (i.e., in the critical range), the Strouhal forces are '"elusive' and
the dominant reduced frequency in the spectrum of the random forces
varies, apparently decreasing in some cases to a low value of 0.1,
Photographs of wake patterns at various Reynolds numbers and a dis-

cussion of their characteristics may be found in Ref. 10.

Because of the potentially destructive effects of these oscillatory
loads, much effort has been expended in analytical and experimental
aeroelastic simulation techniques. Scruton (Ref. 11) and Whitbread (Ref. 12)
summarize much of the available data in their aeroelastic studies of wind-
driven structures {such as towers, chimneys, masts). In their analyses,
they utilize experimentally-determined forms for the effect of structural
motion on the Strouhal forces. Reid (Ref. 13)‘follows a somewhat
similar approach in an analog-computer solution of the problem. The
last reference is also one of many reporting on wind tunnel experiments
simulating the effects of ground wind loads and experiments on full-scale
vehicles in natural winds (cf. Refs. 3, 14, 15 which were papers presented
at a Meeting on Ground Wind Load Problems in Relation to Launch

Vehicles, held at NASA Langley Research Center on June 6-7, l966>:< )e

o

" The proceedings of this meeting contain in addition other papers pertinent
to this subject,
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These findings emphasize the importance of the aerodynamic
excitations and the desirability of understanding their origin and develop-
ment, Strouhal forces on stationary cylinders have been measured by
Keefe (Ref. 16), Macovsky (Ref, 17), Humphries (Ref. 18), Gerrard
(Ref. 19), who also measured pressures. These measurements at sub-
critical Re's show sinusoidal variations in the lateral force at the
Strouhal frequencies, with dimensionless (single) amplitudes of approxi-
mately 0.6 based on cross-sectional area and free-stream dynamic
pressure. The Strouhal oscillations in some instances were superimposed
on signals of other frequencies. The results differ, from one experi-
menter to another, even within this relatively simpler range of Reynolds
number. The oscillatory loads were found to be very sensitive to end
conditions, such as gap effects, and other seemingly insignificant devices
or conditions needed to support the cylinder and measure the forces,

Since the present investigation is concerned with the effects of
motion, measurements of the lateral forces on oscillating cylinders are
more directly applicable., An importanf early experiment is described
by Meier -Windhorst (Ref. 6). He measured the amplitude and frequency
of elastically-supported cylinders in a water channel flow. Slowly raising
the flow velocities, he found large increases in response amplitudes
when the Strouhal number coincided with the reduced natural frequency
of the model and its support. The large amplitudes persisted beyond
this point, however, even rising slightly over the next 10 percent in-
crease in velocity. Furthermore, the frequency of the model?s oscillation
was not observed to vary in direct proportion with the velocity, a variation
expected from the Strouhal frequency 7{'5 . Thus, the oscillatory motion,
once established, tended to stabilize the frequency of the vortex shedding
to some value near the natural frequency of the system* . The instantaneous
pressure measurements of Bishop and Hassan (Ref. 7) on sinusoidally-

driven circular cylinders verify this "frequency-locking' phenomenon.

" For higher mass ratios, ¥ , (see Section II), the vortex shedding frequency is
expected to stay closer to the natural frequency of the system.
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Other investigations, dealing with force measurements on oscillatory
cylinders that should be mentioned, are those of Parkinson and Ferguson
(Ref. 20) at subcritical Re's and Cincotta et al (Ref, 21) at higher Re's.

An understanding of the nature of the flow about an oscillating
cylinder is essential to arrive at answers to the following important
questions:

1. How are the periodic, two-dimensional Strouhal forces
on a stationary circular cylinder modified by an oscillating
motion of the cylinder near the Strouhal frequency.

2. Under what circumstances, if any, might an oscillatory
motion of the cylinder removed from the Strouhal frequency
alter the flow field so as to introduce periodic aerodynamic
forces which tend to abet the motion. If such forces are
"stabilizing'', to what extent do they damp the motion if all
other excitation forces are removed.

The present investigation substantiates in some areas the extensive
exploratory work of Bishop and Hassan (Ref. 7). It also compliments the
latter in the area of wake visualization. Clues to the character of the
vortex wake are provided by streaklines made visible by paths of
hydrogen bubbles. Analytical descriptions of the flow have been
formulated on the basis of these observations. These formulations
arc then used to predict vortex paths and forces on the stationary cylin-
der and to compare them with experimental data.

In this initial atiempt, the case of the stationary cylinder was
analyzed in detail since considerable computer programming and numerical
work were found to be required even without the complication of cylinder
motion. Actually, two mathematical models were pursued, one based on
an extension of Bryson's theory (Ref. 22) for the symmetric vortex shedding,
and the other representing a simplification of Ujihara's model (Ref. 23).
Possible procedures for oxtending the methods to the case of the oscil-
fAting cylinder are indicated.

The cxperimental arrangements and results are described in the

next section. Details of the flow behind stationary and oscillating cylinders

TR 130 5



are given, These visual data are supplemented with force and displace-
ment measurements on both free and driven cylindrical models. The
influence of a neighboring structure, such as an umbilical tower, was
also studied and some limited data are presented.

Two analytical models are described in detail in Section III.
Machine calculations based on one of the formulations are compared with
the experimental forces and vortex positions for the stationary cylinder.
Possible extensions to the oscillatory case are indicated,

The final section presents a summary of the results and the

corresponding conclusions.
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SECTION II

EXPERIMENTAL TECHNIQUES AND RESULTS

In his experiments, Meier-Windhorst (Ref. 6) observed the free
oscillations of an elastically-mounted cylinder in an 18-cm deep water
channel flow, for various combinations of cylinder mass, cylinder natural
frequency and of built-in viscous damping, For each case he tried to es-
tablish the dependence of amplitude and frequency of oscillations on the
free-stream velocity. Some features of his results of interest to the
present study are:

(1) When the velocity was increased slowly, a critical velocity was
reached where the amplitude rose sharply. This point corresponded to a
motion frequency equal to the natural frequency of the system in still

(CSE)V,
D

water, /'/V » and also equal to the Strouhal frequency 7.[,5' ["' :+ Where
V, is the free-stream velocity, 22 the diameter and (St) the Strouhal
number] .

(2) As the velocity was increased somewhat further, the amplitudes
of motion increased slowly. The motion frequency was found to be some-
where between the Strouhal frequency and the natural frequency, being
closer to the latter for higher mass ratios. For still higher velocities,
amplitudes dropped gradually,

(3) The mass ratio, ¥ , defined as

¥ - Mass of the cylinder + reduced mass of oscillating arm +1
Mass of displaced fluid !

varied from about 2.3 to 8.8 . With increasing ¥ , the width of the
amplitude vs. I curve, the maximum amplitude, and the difference be-

tween motion frequency and natural frequency decreased.

In the experiments to be described later, y’ was estimated to be around
300-400.
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It is apparent from these results that the cylinder response to the
hydrodynamic forces is not strictly speaking due to a resonance effect,
Stated alternatively, the cylinder motion alters the flow field significantly,
and the vortex shedding frequency is generally different from both 7%, and 7{’5 .
One would also expect changes in the equivalent hydrodynamic damping
force. For present purposes, it is adequate to express the total hydro-

dynamic force #a as a function of the displacement 7 by
Fa:—may“eqy (1)

where €4 is the hydrodynamic damping coefficient, and 7 is the virtual
mass defined as the mass of fluid displaced by the cylinder. The two
terms represent the parts in phase with acceleration y and with velocity
4 respectively. Scruton (Ref. 11) has adopted this type of division in
his analysis and presentation of experimental results on aerodynamic
derivatives. It's use can be justified only when the amplitudes are large
and the dominant forces are of the same frequency as the motion. At
lower amplitudes, unless motion and Strouhal frequencies are very close,
the force signal will contain both frequencies, and Eq. (1) is no longer
useful. At reduced frequencies sufficiently close to the Strouhal number,
@a will have a negative sign at low amplitudes. With increasing amplitude,
@4 will increase and reverse in sign at some amplitude which will be de-
noted here by 40 + In the absence of structural damping forces in the
system, 4,, would be the maximum attainable amplitude in free oscillation.
One important objective in the present investigation was to deter-
mine approximately the hydrodynamic zero-damping boundary as a function
of reduced frequency, or equivalently the lines where G, =@ in an amplitude
versus reduced frequency plot. Having established the regions of negative
¢, the next task was to examine by flow visualization the wake pattern
(the shedding process) in such cases. The results of the flow-visualization
study were then used in an attempt to formulate a simple analytical model
capable of predicting the aforementioned éd=0 -boundaries, as well as the

magnitudes of the oscillatory forces,
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11.1 APPARATUS
1II.1.1 Water Table

The watcr table used in the present experiments*(Fig. 2)

had a flow channel 36 inches long and 12 inches wide in which water depths
of up to 0.9 inches could be obtained. The floor of the channel was made
of 1/4 inch plate glass so that the hydrogen bubbles could be properly
illuminated during flow visualization runs. The velocity of the tests ranged
from about 5.0 in/sec to 11.5 in/sec, with corresponding Reynolds numbers
(based on the cylinder diameter) of approximately 4.8 x lO3 to 11 x 103,
At the lower portion of the velocity range, a small dam, 1/4 inch in height,
was used to raise the water level. It did not cause any observable dis-
turbance in the velocity profile in the test section.

The free stream velocity was calibrated by Roshko's method
(Ref. 25) which needs only the vortex shedding frequency, 7{’5 » behind a
stationary circular cylinder. Experimental data have shown that the
Strouhal number, St, is nearly independent of Reynolds number in the range
300 < Re < 105. According to Roshko, this Strouhal number is equal to
0.212, with maximum deviations amounting to about 4 percent for Re 104.
The procedure was checked approximately by timing a pulse of hydrogen
bubbles travelling a premarked distance.

In the course of this experiment, surface waves were observed
especially when the model was oscillating at high amplitudes and/or at
high frequencies. They were eliminated by placing a piece of plexiglas on
top of the water. However, the plexiglas imposed another undesirable
boundary layer on the flow. An estimate, based on a flat plate analogy,
indicated that about 70 percent of the water depth was inéide the boundary
layers along the plexiglas and channel floor, and at the test section. This
did not provide a good two-dimensional flow. Gaps had also a large in-

fluence on the flow. The surface effect (and possibly the gap effect) could

have been reduced by increasing the water depth in the channel.

ES
Some of the results given here are treated in more detail in Ref. 24.
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11I.1.2 Pendulum

A model support and drive system was required to drive the model
sinusoidally. It was also nccessary to provide a means for measuring
the hydrodynamic forces associated with the oscillatory motion of the
model. After some investigations and trials, a flexure-supported pendulum
was adopted. It had the following advantages:

(1) It provided a smooth low noise sinusoidal motion at or near its
natural frequency.

(2) It could be driven easily by an eccentric weight.

(3) Ithad negligible friction, allowing free oscillations of appreci-
able amplitude to develop even with the small hydrodynamic forces
present (~ 2x 10-31b) .

(4) It was comparatively easy to construct.

(5) It provided a wide range of frequency (approximately 0.7 cps
to 5.0 cps).

The pendulum (Fig. 3) was made of a 15 1b steel rod, 5 feet 2 inches
in length and one inch in diameter. The upper end of the rod was connected

to an 8 inch long flexure.

om
rame
h
. 2
Pendulum
Sketch A

The flexure was supported by a rigid frame (see Sketch A), The upper
end of the frame was fastened to a beam in the building and its lower
end held firmly the flexure. The effective length, A , (the portion

of the flexure below the frame), which could be varied by raising or
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lowering the flexure, controlled the natural frequency of the pendulum.
The pendulum was caused to oscillate by an eccentric weight
which rotated in a plane perpendicular to the free stream of the water
table. The platform which supported the driving gears was located
approximately at the center of percussion of the pendulum so as to limit
the oscillations to the fundamental mode of the pendulum. The eccentric
weight was, in turn, driven by a DC motor through a series of belts. By
varying the power input to the motor, one could control the rpm of the
motor and hence the speed of the cccentric weight, As a result, both
the frequency and the amplitude of the motion could be adjusted to obtain
desirable ranges.
The modcl] was clamped to the lower end of the pendulum. Forces
on the model were measured by a strain gage balance systern which will be
described in the next section, while it's displacements were obtained from

the deflection of a light ray reflected from mirrors mounted on the support.

1I.1.3 Model Description

The model (Fig. 4) consisted of two identical hollow 1/16
inch thick brass cylinders connected by a 3/64 inch thick and 7/32 inch
wide rectangular aluminum bar. The cylinders were 1.5 inch in diameter
and 1.1 inch in height. The rcason for mounting the two cylinders sym-
metrically with respect to the support was to subtract the inertia force of
the top cylinder from that of the bottom one such that the net recorded force
on the bottom cylinder was due solely to the hydrodynamic forces. Strain
gages werc used to measure these forces and were mounted symmetrically
above and below the point at which the aluminum bar was supported.

The aluminum bar was required to remain rigid, but at the same
time to have sufficient deflection so that the response in the strain gages
could be traceable on an oscilloscope. Its natural frequency (=~ 50 cycle sec)
was much higher than the frequency of the entire system (less than 5 cycle/sec).
The lower cylinder was sealed at the ends to avoid water splash against its

inside wall during oscillations,
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Board

Light
Source _A
-7
-~
/ 7 \
/ - LN
/ _ .
/ ~
/ - \
/ // N
e \
/ @ FIV @
Water Table Camera
Sketch B

II.1.4 Instrumentation

Two 3/16 inch diameter concave mirrors were mounted on
the model-supporting frame of the pendulum. The upper one provided a
means of indicating the phase relationship between the force and the dis-
placement of the cylinder. The lower one provided the amplitude measure-
ments., These mirrors reflected light from a source onto a board with
point images because the board was located at the focal distance (see
Sketch B). As the pendulum oscillated the (moving) lower point on the board
was photographed by a rotating camera., Thus, the instantaneous deflection
was recorded. A damped oscillation trace obtained in this manner is
shown in Fig. 5a.

A photocell was placed below the neutral position of the upper point,

A small current was induced whenever the point crossed the photocell.
The signal was fed into a dual-beam oscilloscope together with the input
from the strain gages on the model. Figure 5b shows a typical oscillo-
scope trace, The sinusoidal curve represents the force as a function of
time (the noise is electrical and was present with no signal), The 'blips"
on the displacement trace occur at times when the light ray crosses the
photocell, One extreme of the displacement is noted halfway between the

close pair of "blips', and the other extreme midway between the other

I'R 130 12



pair. This unsymmetrical arrangement makes it possible to identify
the direction of the displacement. Hence the phase angle between the
force and the displacement was obtained.

The hydrogen bubble technique was used for flow visualization.
This technique, which utilizes bubbles generated by the electrolysis of
water, has been used by Geller (Ref. 26); Clutter, Smith and Brazier
(Ref. 27); Schraub, et. al. (Ref. 28); and Friberg (Ref, 29). As shown
by previous experience, it is best suited in the speed range of approxi-
mately 1 in/sec to 1 ft/sec. The generating probe was the same as
described previously in Ref., 28, Sodium chloride was added to the water
as an electrolyte to speed up the generation of hydrogen bubbles which had

a tendency to disperse at about 2~ 3 diameters behind the model (depend-

ing on the velocity).

II.. MEASUREMENTS
I1.2.1 Damping

In interpreting the flow visualization studies, to be des-
cribed later in this section, it is important to know when the hydrodynamic
forces are driving the oscillating cylinder and when they are damping the
motion. By measuring the instantaneous hydrodynamic force on and the
displacement of the cylinder simultaneously, it is possible to determine
the sign and magnitude of the damping coefficient.

The relationship of the phase angle ¢5 (between force and displace-
ment) to the coefficient of damping and apparent mass of the immersed

cylinder is needed for the interpretation of the data, and it can be derived

once /& is assnmed to have the form of Eq. (1).
Since it was observed that the /‘Z_ -signal was a fairly clean

sinusoid, it may be accurately approximated by

/§_=r§_ s wt (2)

When the cylinder is forced into a sinusoidal motion, its displacement may

be expressed by

4=4Hsm (wt * $) (3)
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Substituting Eqs. (2) and (3) into (1), one obtains, after some manipulations

-/
= tan Ca
? 7 @ @

Thus, % is also a measure of the damping due to the flow. By estimating
"% and knowing & and ¢ , an approximate value of (5 may be calculated,
if desired, As /GQ/ is appreciably smaller than 74« i.e., damping
forces are small compared to forces due to the virtual mass for sizable
amplitude, p will be small. To improve the accuracy of measuring the
point 4, (the amplitude of oscillations where ¢ =&), one can artificially
reduce /7, by placing small masses on the dummy cylinder and thus
canceling part of the inertia of the apparent mass as well as that of the

cylinder. Let the added mass be f”?a_ (where 774/ ), then

petarn %

/- &) w (3)

Equation (5) was qualitatively verified by experiments in which #* was
varied. Although the angle ¢/changes faster than # , the £30 and P AL
points share the same 4, since % (#)= o does not depend on 77, .

Results of the phase angle measurements are shown in Fig. 6,

For these tests, the following procedure was followed: the natural fre-
quency of the pendulum and the free stream velocity were fixed, thus fixing
also the reduced frequency. The forced amplitude was varied, and the ¢
vs. # data were taken. When the excitation was shut-off, the motion would
die out or would stabilize at some noticeable amplitude, depending on the
closeness of the reduced frequency to the Strouhal number, In the tests,
reduced frequencies were varied over a range of approximately 0.15 to
0.29. Free oscillations (steady oscillations without external applied forces)
were observed at reduced frequencies of about 0.20 to 0.22.

Figure 6c shows data taken during two runs. In one run the
pendulum was forced to oscillate at fixed amplitude while in the second
run it swung freely so that the plotted amplitude is an instantaneous value.
All data exhibit one common feature. When the amplitude increases, the

phase angle /é approaches asymptotically 90° (the ma~x.mum damping),
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This is as expected, because for a large amplitude oscillation (i.e., of
the order of the diameter) the transverse velocity is large compared
with the free stream velocity and the hydrodynamic resistance to trans-

verse motion becomes a dominant force.
4

A -Damping + Damping

Ao

———
—
——

-90° 0 90":
é Sketch C

The results of the phase angle measurement can be summarized

as follows:

(1) The force is essentially sinusoidal,

(2) Free oscillations are observed at reduced frequencies of
approximately 0.20 to 0.22.

(3) The magnitude of the force increases with increasing amplitude.

(4) At the same reduced frequency range (.20 to .22), the angle #
is directed towards (-90°) and (+90°) for the low and high amplitude
oscillations, respectivély.

(5) With the reduced frequency in this range the constant amplitude
of the free oscillations,lqc,_, indicates the neutrally-stable condition (sece
Sketch C). For 47'40,, the motion would damp when the excitation force is
released, with the amplitude A decreasing toward the stable value /46,. .
For A< 46", the motion would build up.wheh the constraint is removed,
with the amplitude increasing toward Acr . Structural damping caused
the amplitude Acr of the free oscillation.to be a little smaller than the
amplitude at %50 . In other words, after the hydrodynamic forces were
neutrally damped (phase angle @ =0 ) the free-swinging pendulum would
oscillate at decreasing amplitudes until the negative hydrodynamic damping

would just compensate for the structural damping at amplitude Aer,
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(6) It is significant that the amplitude near ﬂ’—’&was nearly the
same over the reduced frequency range of .20 to .22. The Strouhal
force apparently '"locks in'' to the frequency of the motion in this range.
This phenomenon has also been observed by Meicr-Windhorst and Bishop

and Hassan.

I1.2.2 Lift and Drag

I1.2.2,1 Stationary Cylinder
The strain gage force measurements provided lift
(force normal to stream direction) as well as phase information. Further-
more, the support could be rotated by 90° to give the force in the drag
direction. Because of gap and free surface effects, the force data can
not be considered quantitatively accurate, but would prove useful as a
guide in the formation of analytical models.

On the stationary cylinder, the amplitude of the sinusoidally varying
two-dimensional lift coefficient, C¢ (based on the cylinder diameter and
free stream water depth), was found to be nearly constant (about.,58) in
the Reynolds number range from 4.8 x 103 to 7x 103 (see Fig. 7). At
higher Reynolds numbers (up to 104) the lift amplitude decreased, con-
trary to the trend observed by other investigators (Refs. 8 and 16, for
example), Variations in the gap width between the bottom of the channel
and the cylinder affected the € measurements. As the gap was varied
from about .005 inches to .015 inches, the oscillating lift force decreased.
The change was not sufficient to account for the total decrease in el . How-
ever, at the higher water velocities, the water surfaces rose in front of the
model and fell below the free stream level toward the rear as shown in
Sketch D

CYLINDER
¥ \
/\\ . ¢ 0
—‘——'—>-Vo *
7 7 7 7 WATER ~
CHANNEL

Sketch D
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This phenomenon was first casily observable at Re = 7 x 103,
and the condition was increasingly pronounced at higher Reynolds
numbers and correspondingly higher velocities. The change of level, /}(, s
increased to an estimated 30 percent of the free stream water depth at
Re = 104. When a plexiglas sheet was placed on the water surface, the
drop of C’l was considerably slowcr, from about 0.58 to 0.4 in the Reynolds
number range of approximately 7x 107 to 1.1x 104. However, the dis-
crepancy of the downward trend as compared with Kecefe's result can not

be explained with either the gap or the surface effects. It may conceivably
be a boundary layer effect since the water was so shallow,

The drag on a stationary cylinder was also measured for com-
parison with existing data. The drag coefficient Gp, was approximately
1.0 in the Reynolds number range of about 6 x 103 to 1.2x 104 as shown in
Fig. 8. At low flow velocities, a dam was placed well downstream of the
model to maintain the water depth in the channel. It did not significantly
affect the drag coefficient, but it may have influenced the lift. The value
of the drag coefficient is in agreement generally with other measurements
on circular cylinders. Although the drag fluctuates slightly (at twice the
Strouhal frequency), the alternating component is not a significant fraction

of the steady drag force.

11.2,2.2 Oscillating Cylinder
During the measurements of amplitude against phasec
angle, the magnitude of the lift force on the oscillating cylinder was
observed to increase with amplitude of oscillation. This result is in
agreement with that obtained by Bishop and Hassan. The measurements

have not been analyzed further since they are only qualitatively reliable.

II.3 FLOW VISUALIZATION STUDIES
11.3.1 Wake Behind Stationary Cylinder

From wake observations an analytical model of the flow field about
an oscillating cylinder was to be formulated, Therefore the studies
centered on the development and trajectories of concentrated vortices

appearing in the wake of the cylinder, The flow about the stationary cylinder

TR 130 17



was examined first to form a basis for comparison with the oscillatory
case. The hydrogen bubble technique, described previously, was used
to make visible streakiines in the flow, Still and motion-picture
photographs of these lines provided the data from which vortex trajectories
were deduced.

The vortex positions were measured from film frames taken at
1/16 second intervals (Fig. 9). The velocity was such that the period
for shedding was approximately 9/8 second and thus, 10 consecutive

points constituted half a period.

Sketch E

The vortex position f was defined as the center of concentration of
vorticity near the end of the shear layer emanating from the cylinder
surface (see Sketch E). This is somewhat arbitrary because one may
argue that f can be anywhere inside the concave streakline. However,
qualitative results are needed for the formulation of the physical model and
this definition will, it is believed, provide an adequate picture of the flow
field., With this definition, the vortex first appeared about one diameter
behind the cylinder. The vortex, gaining strength as it drifted downstream,
was not strong enough to collect enough bubbles so as to be visible before this
point. Beyond this point, it moved toward the centerline. After travelling
downstream along the centerline for a short distance, it appeared to
separate from the feeding sheet. Finally it seemed to move away from
the centerline as it drifted further downstream. Figure 9 shows the vortex
path on one side. There is a similar path on the opposite side, but with
the timings half a period apart.

From observations, the vortex distance (sec Sketch E) when it
first appeared was a function of velocity., The distance 4 decreased

with increasing velocity.
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A movement of the scparation point associated with the vortex
shedding phenomenon was also observed. Again, the separation point

was not well defined.

<Defined Separation

|
\V; Poin

(b)

Sketch F

It was chosen, for convenience, to be the point closest to the wake in the
bubble region (see Sketch F). As the vortex appeared and started to

move toward the centerline, the separation point began to move rear-

ward from about 8 = 90° to 8 = 60° approximately. When the vortex reached
the center and drifted downstream, the separation point appeared to be
stationary, After the discharge of the vortex, the separation point started
to move forward toward 8 = 90°, under the influence of the vortex from

the other side of the cylinder.

I1.3.2 Wake Behind Oscillating Cylinder

'~ When the cylinder oscillated transverse to the stream, the
resulting flow field was observed to change considerably. However,
many distinct features appeared there which were also seen in the flow
field about a stationary cylinder (and discussed in the previous scction).

The flow field behind an oscillating cylinder was photographed by
a movie camera, Figure 10 presents selected frames from the movies.
The reduced frequency was approximately .21, and the relation between
damping and phase angle corresponds to that shown in Fig. 6c. In these
three sets of photographs, all parameters but the amplitude were kept
constant, In each set, the middle photograph corresponds to the median
position of the cylinder, while the two end photographs correspond to the
extremities of cylinder travel. In (a), the amplitude was small (about

0.2D) corresponding to negative hydrodynamic damping. The wake
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looked much like that of the stationary cylinder. In (b), the amplitude
was 0.5D, the case of neariy zero damping. Since the frequency was
0.78 cps and the velocity was about 5.7 in/sce, the transverse velocity
had an amplitade of 3.5 in/sec which was comparable to the free-strecam
velocity, One notes significant lateral movement of the vortex in these
photographs. Tn (c), the case of a forced oscillation with a large amplitudc
(0.7D) and large hydrodynainic damping is depicted; it shows a continuation
of the trend from (a) to (). 1In this set, the vortex first appeared closer
to the cylinder than before. This observation was also made in the study
of the stationary case with increasing stream velocity, Howeve r, the in-
crease of transverse velocity also forced the hydrogen bubbles to dis-
perse earlier than before and the paths of the vortices could be followed
for a downstream distance of only one diameter.

The vortex position bhehind an oscillating cylinder is presented in
Fig. 11 as a function of time, at intervals of 1/12 scc for the high amplitude
case. The instantancous cylinder lateral position is included. In each
case, the location of the vortex is relative to the cylinder possessing the
same index, i.e.,, vortex labeled 1 means it is to be considered with
cylinder position 1, ctc., Arrows at the center indicate directions of motion,

Position 5 corresponds nearly to the location of the clockwise
vortex when it was first notcd. The vortex had its origin at an earlier
time, say at 1, Tt is interesting to note this position with respect to the
cylinder 5, considering the relative wind direction at that time. Instanta-
neously, the pattern looks like that of the stationary cylinder when the
vortex first appeared. At later times,; the vortex moves towards the
centerline, as in positions 6, 7, 8, Although the path of the vortex with
respect to the cylinder and the instantaneous relative wind direction does
not follow exactly the trajectory of the stationary case, the amplitude of
the vortex motion on this quasi-steady basis is about the same as for the
stationary case, The positions 9, 10, 11 were obtained from the observed
locations la,Za, etc. of the alternate (counterclockwise) vortex emanating
from the other side of the cylinder, Postion 8 of the top vortex corresponds

nearly to position la of the lower vortex,
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The trajectory of the vortex shed from side A is shown in Fig, 11b,
The cylinder is fixed in the stream direction in this case, but when the
vortex has traveled from position 5 to 5a, the cylinder has moved down
to its lowest position, The trajectory of the counterclockwise vortex
from side B can be drawn as the image of that from side A about
the motion centerline, Both trajectories cross the centerline at a fixed
downstream point, but of course, at different times (half a period apart).
In comparing these trajectories with those drawn in Ref, 6, one finds
disagreement for positions 6 and beyond. As far as it can be determined
from Ref. 6, Meier-Windhorst observed the vortex movement for times
corresponding to earlier positions 1-5, and extrapolated on these results
for later positions.

The movement of the separation point in the oscillating cases was
observed. Let f, denote the instant when the cylinder was at its median
position and travelling downward as seen in Fig. 11 (near position 5); the
cylinder crossed the same position travelling upward half a period later,
The separation point on side A moved from a position ahead of A (68 > 90°)
at time L‘, to a position nearer to the rear stagnation point (6 < 90°) in half
a period, This is expected, if one considers the direction of the stream
relative to an observer on the cylinder., The separation point indicated for
position 5 in Fig. lla illustrates this situation. The quasi-steady motion
of the separation point is then similar (but not identical) to its motion on

the stationary cylinder.

I1,3.3 The Umbilical Tower Representation

A launch vehicle is usually accompanied by its umbilical tower
which may influence the flow field and thus the forces which cause
free oscillations, Generally, the towers have complicated cross-sections.
For the present qualitative study, simple circular towers were investigated,
The three basic parameters, describing a simulated tower are its diameter
_D,, the angular position 8 and the separation .£ with respect to the model
(see Sketch G). All lengths are nondimensionalized with respect to the

diameter of the model, D .
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Sketch G

Due to the symmetry of the configuration, it was sufficient to
study only half the range of 8 (from & to 7 ). The freec stream velocity
was about 6 in/sec (Re ~ 6 x 103, based on the model diameter) and the
Strouhal frequency for the model was approximately 0.9 cycle/se¢ which
was the asymptotic value for vanishingly small interference (corresponding
to £—¥ o0 orDl—’ 2 ). The diameter of the model was 1.5 inch, and, for
practical considerations, the ranges for € and Dl were restricted as

follows:
O ¥4 £ 2
:D/= /MJ 2. 83/ 9. 50

At 8 = 0, the influence of the tower, which was weighted by its
disturbance on the alternate vortex shedding pattern behind the model,
was most significant. For’= 1, no vortex shedding was obscrved for
A < 2 and the flow field consisted of one straight trailing wake, At
A~ 2, a small oscillatory motion was noted in the wake. For D/ = 1/2,
the alternate vortex shedding appeared behind the tower for the range £ - 0
to £ ~ 0.7, with frequency increasing toward the asymptotic valuc. Be-
tween £ ~ 0.7 and £ >~ 1.7, the vortex disappeared, since the towoer
occupied the position where the vortex would have been, However, for
A > approximately 1.7; the alternate vortex shedding was noted once morec
between the model and the tower, with frequencies closer than before to the

asymptotic value.
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At 8 = 7 /4, the influence appeared to be different. Alternate
vortex shedding was observed behind the tower, but not the model.

At 2 =0.5and 4 ~ 2, the oscillatory motion of the wake behind the
model appeared. Generally, the flow field is as shown in Fig. 12.

At 8 = 7/2, strong vortex shedding was generated when the tower
touched the model (€ = 0) because the two structures formed effectively
an equivalent ellipse (Fig. 13), As shown in Fig. 14 the maximum fre-
quency was reached at £ =~ 0.7 and then decreased toward the asymptotic
value as the interaction faded away, The fluid which was accelerated
through the gap, was subjected to the vortex sheddings from both the
model and the tower, WhenP/= 1, continuous vortex shedding was ob-
served. However, when the diameter of the model and the tower were
different (Pl# 1), the interaction of the two different vortex shedding
frequencies caused the vortex behind the model to diminish and reappear
in a periodic manner. At 6 = 37/4, the vortex shedding was observed
only behind the model and the frequency was generally below the
asymptotic value (Fig, 15). The flow field was similar to the case of
8 =74,

At 8 = 77, the flow field configuration was similar to that for
8 = 0 and a straight wake was observed to trail behind the model. For
2’=0.5and 4 > approximately 1, the wake started to have an oscillatory

motion.
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SECTION I

ANALYTICAL MODELS

IIT.1 GENERAL

This section describes the formulation of two simple mathematical
models of the flow field and calculations of the aerodynamic forces on a
stationary circular cylinder exposed to a steady free stream. It repre-
sents the initial effort towards the ultimate objective of deriving a
method capable of predicting adequately the forces on an oscillating
cylinder. Means of extending the formulation to small amplitude oscilla-
tions are also offered and briefly discussed.

The analyses are based on the following important assumption:

The flow field is potential, but possesses singularities at
vortex points and cuts along the so-called feeding sheets (i.e., the
infinitesimally thin, free shear layers) which join the cylinder with the
two nearest vortices, one on each side of the cylinder.

Previous investigators have adopted potential flow models for the
separated flow behind circular cylinders with various degrees of success.
Bryson (Ref. 22) treats the case of the lift on a slender cone at high angles
of attack in the subsonic to the moderately supersonic velocity range, by
analyzing the symmetric vortex separation on the leeward sides of such
bodies. His analysis utilizes the "lumped vorticity" approximation of
Edwards and Hill (Refs. 30,31). In a recent report (Ref. 23), Ujihara
discussed the initial phases of the wake development behind a circular
cylinder set into motion impulsively. This problem was also treated by
Bryson who used a different model. Ujiharals calculations could, in
principle, be extended for longer periods of time (at the expense of much
increased computer time) and be interpreted as results for the "'steady"
periodic vortex shedding problem.

In Bryson'!s model, vorticity is released by the boundary layer

to the wake through feeding sheets which are assumed attached to the
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cylinder at the fixed points &7 &, and =7~ &, (sce Fig, 16a), These
points are stagnation points. Their selection is based on observations
and trial analyses., A further simplifying assumption in this modcl is
that all the shed vorticity is carried instantaneously from the boundary
layer to a 'center of concentration' which is taken to be the location of
the single vortex representing the entire layer. In recality, of course,
the vorticity is distributed all along the shear layer, but, as brought out
by the elaborate calculations of other investigators, with heavier con-
centration near the end of the vortex sheet, particularly when it is re-
moved from the cylinder. In the present case of antisymmetric shedding,
each vortex is assumed to be fully developed and to break away from its
feeding sheet after a certain period following its inception, leaving the
boundary layer to supply a newly-formed vortex near the cylinder. This
period is related to the well-known Strouhal number.

This simplified representation of the shear layer requires that

there be zero force exerted by the flow on the attached vortex and its

feeding sheet. Two expressions imposing this requirement for the two
attached vortices* » along with certain kinematic relations describing the
locations of the stagnation points and the induced velocities at the vortices,
constitute the basic equations of the problem.

An objection to this model is that nowhere in the analysis is the
rate of vorticity generation related explicitly to the boundary layer
variables. It is dependent in a somewhat indirect manner, in that the
stagnation points chosen following experimental observations are in-
fluenced by the boundary laver development.

In Ujihara’s model, the shear layer is replaced not by a single
vortex with an attendant feeding sheet but with a large number of very
small discrete vortices shed at very short and equal intervals. The
rates and strengths of these small vortices are somewhat dependent on

the choice of the feeding point location. Ujihara takes this location to

* . -
In the symmetric problem of Ref, 22, only one equation need be con-
sidered.
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coincide with the firsl minimum pressure point (which varies with time)
aft of the forward slagnation point. The rate of vorticity generation
depends on the fluid velocity at the edge of the boundary layer and at the

"feeding point''.

I11.2 ANALYTICAL MODEL I

The model first considered and tested follows that of Bryson, but
with modifications to extend to the antisymmetric problem. Figure 16b
depicts the sitnation of a stationary cylinder in a simplified flow field.
The center of the cylinder is at the origin of the complex coordinate
system §=y7‘4'2 , and the free stream velocity V5 is directed along
the iz-axis. /,’ and G represent the strengths of the two nearby vortices
with feeding sheet attachment points at &, and 7—- 6, respectively. /7,
and /Z/ are detached vortices which constitute the rest of the antisym-
metric wake. The boundary condition of zero velocity normal to the
cylinder is met by introducing image vortices inside the cylinder.

A more complete though still idealized picture would have the
antisymmetric array of vortices continuing to infinity (with corre sponding
image vortices), with a center vortex to account for the 'unsteady
conditions' at the beginning of the motion. From practical considerations,
however, it is necessary to limit the analyses to a few of the vortices.
This is not a severe limitation in the case of the lift force predictions,
for the effects of the neglected vortices can be adequately approximated
by those due to a single vortex /g at " Sé—*(bo " (and its image at
"é(."'o"). Some caution must be exercised in the manner of effecting
this approximation. The inclusion of the image vortex at ' §é(-—>0" is a
necessity even though it has no effect on the boundary condition; without
/Z" , the situation would be quite different with the inclusion of an even
number of wake vortices from that with an odd number. This point will
be clarified in subsequent discussions for the case with four outside
vortices.

Since the flow is periodic (of period tﬂ, , say), the mathematical
models should be completely antisymmetric at the end of the half period.

Sketch H shows the position of the three vortices at selected times.
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In (a), the situation is for time €= Z‘é which corresponds to the instant
just after /; is fully developed and breaks away from its feeding sheet

to allow growth of /7 . Just before the end of the half period, i.c.,

t= /é C‘; "Z‘é , the vortices are in the positions indicated in (c). At

this time, /} is sufficiently removed to be Yswitched'' to the far wakc
(which is approximated by /g ). At time T* 7.? z(,at * €4 , the switching

is carried out, and the resultant pattern is illustrated in (d). This is
acceptable if /c’ is takento bhe equal to /é/j; . For then /3 and /e
(which are of opposite direction) combine to give a new /é in the opposite
direction; and their images also combine at the center to yield a new e’
of opposite direction . The conditions in (d) are completely antisym-
metric with respect to those in (a).

The two vortices /;7 and ﬁ,z are unequal in magnitude and vary
with time, being constantly strengthened by the feeding sheets emanating
from the stagnation points §;/ and Qi,z == ga,)** . /% (and beyond)
are fully developed and detached, and are therefore of constant strength.

The period of the oscillatory flow is easily determined in terms
of the Strouhal number (St) for the stationary cylinder** * . For practical
purposes, St may be taken equal to 0.2 in the subcritical Reynolds number
range of interest. Since St = %QZ , where @ is the cylinder radius

and '/,S the vortex shedding frequency, the period pr turns out to be

L=/ - 22 - /oa 6
~ Oz st Ly ) e

The complex velocity potential & receives contributions from
(a) a doublet at the origin and the free stream to simulate the flow about
a cylinder, (b) the four vortices 7/, /.27 , /; and /7 , and (c) the image
vortices /,7‘ R /_Z(' s /;(- and /674' . This potential at any point ¥ is

& . . . . . .

A five-vortex approximation, i.e., with a /7</ included, would require that
the vortices /{ and /Z; be of the same strength as in the four-~-vortex
approximation but of opposite sense.

Al At

"7 A bar over a complex variable indicates its conjugate.
N sk ok . . . “
For the oscillating cylinder, with a reduced frequency of motion

sufficiently close to the Strouhal number, the period would be related
to that reduced frequency.
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expressed in terins of the locations g,) fc of the four vortices as

follows:

ar:ft('f~—z7/ /;’— a- )

S

b Lo b (8-8) -

-ZW" (7)

The dimensionless complex velocity, 5'1/), follows immediate!y

o
from (7), noting that the /Z -vortex is far removed and /fc/—" 0

/ (Z{' (‘1/) = _/ 7%

—

v L 7

J
) -2 . iy . s
=—C S A () ?/—/) /
v )i Ol ’ﬁ»?"yj_;/jf_(m

s=/
Ay
In the last expression, the dimensionless variables )
A=_5  an/ y=_E (9a. 1)
7all a
have been introduced for convenience. Since Ve (= %o ) and - 70 anve
stagnation pomts,_ﬁ_ (&< V} must be zero there; and Eq. (8) yields
after some algebra, rcalizing that /} 70 ,
2 s
7— _,{ r"Z (/-/) / )74 — '70
o < S Jn-y A
=/ o s Yo 7s
(10a, D)

A } j//)/l/ *'Z/f

Equations (10a, b) constitute a set of two real equations, because the

quantities in the curly brackets are all real, as evidenced by the identitics
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Ghth =2 ()= 20os 8 = E

YV _ o =.z€e/ 7o -/ =4, (1la,b, c)
70'75 70"'—_/'— 79_75
s
b T -2 0 ) /=4
AT AT 5

The strengths /Z/, and /{? are related to /{3 and /zc in terms of the position
variables 7, --. 73 ; according to Eqs. (10a,b),

i€

ECA Bo)idy Ay 8,00 As B, 8,4, 8,) _ 4

/(/
4, 6.2"4—2 8 D

(12a,b)
1 - ~EArB)rd. (A-8)*A34, 83_43 é) = Ya
2 48, - 4 & 2

The velocities%@' (:(z(,c(yé.) of vortices 1 and 2, excluding the "infinite

self-induced velocitics"*, are obtained directly as the conjugates of a/;f’
from Eq. (8):
L 7 ") e “'—/) (7 Sf:/ / - ("/)? 4 G=42)
Geferi Des g S S e forn ) S 0 )i
: S=v / s 5=/ 4 %
p _ (13)
The prime in/Z) indicates that the term £ =5 is to be omitted in the
summation. The condition of zero net force on the vortex and its
connecting sheet yields the relations (see Ref. 22)
"+ (7 - ))/,—@' BXCRLD. PR (14a,b)
)7/ 77 7 - 72 7,2 °” 73 - Ta a,
/ A

" These velocities should be excluded, since the velocity at the center
of the vortex due to itself should be zero.

TR 130 31



i
where { ) denotes differentiation with respect to the dimensionless time

2-:%{‘ . Equations (l4a,b) are two complex (or equivalently four rcal)
simultaneous, nonlinear, [irst-crder differential equations. Coupled
with Eqgs. (12a,b), they form a set of six equations which are to be solvid
for the strengths /8/ ) /2’? and the positions %, =7, "(.7,") 72 = Pr ""-'/;('
of the growing vortices as functions of time. How the strength and the
position of the third vortex /33 » and the stagnation points ¥, and — 7;
are introduced in the calculations will be discussed later,

Once the strengths, locations and velocities of all the vortices
are determined, the forces acting on the cylinder may be found by
summing contributions from the rates of change of the impulse from
each pair of vortices (i.e., vortex plus its image)* . The total impulse

is given by (see Ref, 22)

2
I=—d/£ /—/)5/'5’ ({;— 42)7‘00/({ g~ /) (15)

om(

g, 5
S=r s ¢
and its rate of change by
2 3 P ) ’2
. . s 2 .
AL =l P =P S0 (6 2 )P V) g &
a/f S’ 5 LY f-l
s=/ s S=/ s
i . / — 16 s sk
— P =5 g ) (16)
C
where fc is the velocity of the vortex repre senting the wake beyond /f'; .

Taking the lateral force positive in the y-direction, the lift coefficient

per unit cylinder length, and based on cylinder diameter, turns out
to be (with /Z = —gé)

" See Appendix A.
%

" " The conditions that the “hird vortex is of constant strength, i.e.,

/{3: = ¢ , and that /gf; /> oo arc imposed to produce this equation,
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¢ L a7 ﬁu‘zqf_4_f//”-;_‘q/
SRIILD ) A A 7 &

=/

#/3(///,: 7.~ /73'—.%;_/3_ )7;’/ (17)

A corresponding expression may be written down for the drag (see
Appendix A)".

The strengths, locations and velocities of the vortices are
determined in the following manner: When r{, ) X,‘l from Eqs. (12) and
their derivatives /{/’ s /2/ are substituted into Eqs. (14a,b), there
results a set of four real, simultaneous differential equations. The first

two, for example,

G * Tp o) f 22 2 = 6,

(18a,b)

ﬁ+%f@7f¥§¥=@

are associated with /{/ . To start the numerical integration of these
nonlinear equations, the following additional information is required:

(a) The locations of the stagnation points (assumed fixed), 7,
or equivalently &, since %ze('e’. As stated earlier, the choice of G,
is guided by experimental results and trial analyses. To be realistic,
&, should be in the range 0% &, £ 777. rad.

(b) The starting positions of ,{/ , /{? and ,{3 , 1. €4y )7/ , 73 and 73
at 7-= 2:5 s Where Z‘Z is a suitable starting time.

(c) The strength of the third vortex /{3 .

(d) An expression describing the movements of »13 and /\/ .

Since /{3 s /zc remain constant, and the forces on these vortices are

" The error due to the "far wake" approximation (i.e., replacing all
vortices beyond /{5 by the single vortex at ' (e@ ! of magnitude /7 = -
would be much larger in the drag than in the lift, and the drag <

computed in this manner would be very inaccurate.
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zero, the additional conditions of {since /Vc/ﬁ o)

/ .

75 :473)‘ )7;:( {19a,b)
corresponding to Egs. (18a,b) may be imposed. This would add four
real differential equations to the previously derived four. A simpler
alternate to Eq. (19a), which should be adequate and is used here, is

. 7
to assume a constant velocit ‘= /_ /?‘=?' =/ ) with the
Y )ZB’ 73( 5) 73( é

result that

7, Tl "ty ) (z-2,) (20)

This means that specification of (’73)5 and (’73: )é is sufficient
to describe the position of //3 at any time. Also, in this analysis, the
condition stated by Eq. (19b) has not been imposed. 'fcl does not enter
into the equations describing the vortex movements, but appears in
the force expressions (cf. Eq. (17)). Furthermore, since Xc and 'ZC/
are both constants, they add only a constant term to the lift; rather than
taking VC’ =¢ in the numerical calculations, 'fc’ is assigned that value
which makes 9 have equal magnitudes (but opposite in direction) at
times ?2 and (?2 * /‘1?;}

The solution is started at that time "-2 "= ?2) just after vortex
3 "breaks away'' from its feeding sheet. This time corresponds also
to the introduction of vortex 1. Fixing the starting time in this manner
is convenient for imposing the antisymmetry conditions at the later
time Zté "/%)_ {or ?”=ZZ 75 ). Let subscript 4 and € denote res-
pectively conditions at Z°= 24 and e ZZ 75" . The antisymmetry

conditions are then expressed as:

QY Gl s ade=dy = | 04) ¢
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All these relations should be satisfied if the flow is to be periodic. This
requires an iterative technique wherein certain parameters and initial
values, 54 s Ur s 7/ 72#’ 7'21-, 173}_, 73(. , /3 , )73"_, 73(/., are adjusted
repeatedly to fulfill ultimately the stated conditions.

It should be noted that (4,4 #J in Eq. (19b), i.e., the first
vortex starts initially with a finite strength. This also implies that
when a vortex breaks away from its feeding sheet, it ''returns a small
portion of its strength' to the point where it originally started and where
a new vortex begins. This fictitious condition must be accepted in the
approximation, for ,{/ can be zero only when )7/ =%, , a result deducible
from Eqgs. (11) and (12). Bryson points out that the feeding point %,
is an unstable equilibrium point for the vortex, and that it is necessary
to start the numerical integration at a point (7,)0 located a short distance
£ from )7, and along a preferred direction, namely, at an angle of

7 rad. to the downstream tangent to the cylinder at é “90 , 1. €4y

c(4-F)

(7,{ =(yp ) Pe

Parallel steps for the present antisymmetric case show that the pre-

ferred direction is again as in Bryson’s case. Therefore /7”% and (7,4')0

may be fixed by choosing the single parameter A in the initial conditions.
Certain complications do arise, however, in the numerical pro-

cedure. A critical question to be answered is how large should # be.

If it is too small, it would take A

/
and proceed downstream to the point of ’{1 at the end of the half period.

too long a period to attain any ''speed"

It cannot be too large either, for then difficulties arise in matching other
antisymmetry conditions. This problem is intimately associated with
the choice of éé . |

One possible alternative, which has been tried with very limited
success, is to start the solution at time =0 (or ¢-=0) prior to 'fé R
assuming initial positions (’7,,)0) """ , (73,_%. The solution is carried
for £ 2 £ 7, atime span somewhat greater than the half period
(Zz ?'p,“'.ﬁ') . Ty s treated as one of the adjustable parameters, variations
of which allow satisfaction of the antisymmetry conditions between times
ZZ and ?'6 #4 . The uscful results are then extracted from the solution
for ’Z‘é < £ ?'é +5 .
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This sort of iterative technique, with many variables to be adjusted
so as to satisfy an equal number of stated conditions, becomes pro-
hibitively long and costly, even with high speed computers, This would
be the case even if the initial assumed values of the variables are "rea-
sonably" close to the actual values . One then inquires as to the
possibility of relaxing those antisymmetry conditions which are relatively
unimportant for the cylinder lift calculations. Experience indicates that
the conditions imposed by Egs. (21a,b) and (22a,b) are the most important,
The remaining conditions can then be checked for ''gross errors', espe-
cially Eqs. (23a-b) which pertain to the near vortices,

It should be realized however that such a procedure, wherein
there are more variables than conditions, leads to nonunique solutions
in a strict sense, On the other hand, if the influence of certain of these
variables is small, the obtained solution may be sufficiently close to the
actual to be acceptable practically, especially if checks on the other

conditions reveal no serious errors.

1.3 ANALYTICAL MODEL II

In the previous model, the strengths of the nearby vortices are
determined by taking 5’:46(9‘ and f’de{.(r-%)as the stagnation points.
The solution turns out to be quite sensitive to the locations of these
stagnation points. Experimentally, they are difficult to define for (a)
they are not stationary during the cycle, and (b) they are clouded by
"large' regions of near-zero velocity,

In Model 1II, the specification of stagnation points is replaced by
the following assumptions:

(a) The nearby vortices are fed at a constant rate,

(b) The feeding points are at two stationary points )7/: and - ’7:(7
which are slightly removed from the cylinder. Otherwise the vortex

pattern is as in the Previous model (see Fig, 16b), Assumption (a)

There is the further consideration that the iteration may diverge with
poor initial guesses on &, Ty etc.
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leads to

I - Ia =.,?7N—7/o'2 (24a)
P43 ot

where & is a dimensionless rate of vorticity generation. Equation (Z24a)
may be recast into the useful form
dA, - dA o (24b)
T ST

also, one may write for /(,) " Ae

- L
A=+ (), A, cr(Treyr N )
{(25a-c)
c Tl Ay =/

Xc 2 Ay 2 F (P
In Eqs. (25a-c), the first vortex starts with a finite strength /{,"’ 7 at
the point 7¢ , and after being fully developed, returns this amount to its

*
successor . The manner of determining 7 and # will be discussed
later. Equations (25a,b) are then the counterparts of Eqs. (12a,b) for
Model I, whereas {25c) fixes the final strength of each vortex, removing
the necessity of assuming /(c .

The condition of no net force on each nearby vortex and its feeding

sheet leads to the expressions

"t ) L =&
7, / £ (?“f?;.) /

, -
7, + (7t ) / - @
2 a 2
T Z;' 7‘//‘1 ?-/"
which are considerably simpler in form for solution than the corresponding
ones (Eqs. l4a,b) for Model I. The & and @2 are as before (see Eq. 13).

An objection may be raised against Model II. Ujihara's results

(26a,b)

show that both # and '7/; vary considerably during the cycle, whereas
they are assumed constant in the above. Whether the F-and 7p-variations

are severe enough to effect markedly the total oscillatory lift (particularly

“It is recalled that this artificial condition was also introduced in the
Model I analysis.
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when viewed over a cycle, rather than at discrete times) cannot be deter-
mined at the present. The final evaluation of the proposed model must
be made on the basis of comparisons of predicted loads with experiment,

The method of solution of Eqs. (26a,b) is very similar to the
previous case, with the added simplifications that: (a) each of the four
real equations (26a,b) contains only one derivative and this derivative
does not occur in the other equations, (b) the first two of the antisym-
metry conditions (Eqgs.2la, b) need no longer be checked, as they are
automatically satisfied by the introduction of the assumed forms for /(/
and A » Egs. (25a,b). The parameters and initial points that are varied
to satisfy the remaining antisymmetry conditions are: ¥ , (9% ,7,,/"2/‘, ),
,7”_/,74‘) , 72'_, V.u ] /?3’_, 6{. ) 73"_ ’ 73/(.* . There are more variables than
conditions, and once more the obtained solutions are not unique. As in
the previous case, it would be difficult to satisfy all the conditions of
Eqgs. (22) and (23); accordingly, only Eqs. (22a,b) and (23a,b) are im-
posed, as they are deemed to be the most important.

Calculations based on Model I and Model II approximations are now

presented to illustrate and to elaborate on some points made earlier.

II1.4 NUMERICAL RESULTS

In all calculations presented below, the numerical integration of
the differential equations were carried out using sufficiently small in-
crements 4T of the independent variable. The differential equations were

cast into the form

v, (%) =4 (g (), 7, (@9, e, 7, (7)) 27)**

* Also VC’ in the calculation of €, ; the expression for €, is once more
Eq. (17), but with ,{/) -=* 4. given by Egs. (25a-c).

*x In Model I calculations, it is necessary to solve a set of Eqs. (18a,b)

to arrive at the form of Eq. (27), because A and _D’ contain derivatives

of 7. . As pointed out earlier, for Model II the corresponding Eqs.{26a,b)
are initially of the same form as (27).
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and replaced by algebraic relations
/ . = ‘ . .o .
1) )b G (), g, 5,y ()

B (G )0 50 [ (5] o

The adequacy of this procedure was checked by taking successively smaller
values of 47, For all practical purposes, the same numerical results

were obtained once 4% was made equal to or less than /4,

111.4.1 Model I Calculations

To establish a reasonable set of initial values for the
itcrative scheme, a few trial runs were made starting with various values
of the initial parameters. The run which appeared closest to satisfying

the antisymmetry conditions started out with

Vi =354 P = 0_43) 72 =0 Q

(4 J
(72,_ f('g(.)a ==~ /0 *0.9¢, (73;-*()73("). = 0 *R F¢

’) = constmn? = 0.5¢; ’{c = (1{3/;{)=0-46’

I

CASYs
e 1
It yielded the ratios

J Aode-A)4 - fovs

¥, = ('J/)e = &.79’3/ /,
(,/_2)6 X.;

H

= ke - 0992, ny = Tule - o7

3
(7;&/5 (711')6

The quantities 4, *-* C/ should have assumed the value of unity if the most
important antisymmetry conditions Eqs. (22a, b; 23a, b) were to be satisfied
exactly. Taking this as the base case, additional series of runs were

made; in cach series, all but onc of the parameters were held fixed. For

+ . 3 3 r
instance, by varying ’(c , the quantities 2% (n=1,2,3,4) could be
c
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determined. Hopefully, having all these pertinent derivatives /& _9_}_"’)

267 247

the initial parameters could be so readjusted as to bring the ratios
closer to unity. This was found to be unsuccessful, because any of the
initial parameters, when varied a small amount in one direction, had
beneficial effects on some ratios, and detrimental effects on the rest,
The main difficulty seemed to arise from the choice of 7§ . The

ratios were found to be strongly dependent on this parameter. The
2tn

27y
easily obtainable. The original program allowed steps of 74 of 0.1

derivatives

were also noted to be sensitive to ?Z » and were not

or above only. For this reason, an iterative program was written in
which 74 could be varied at will; unfortunately, to this date, the latter
program has not produced a convergent iteration and no meaningful

numerical results based on the Model I approximation are available.

II1.4.2 Model II Calculations

Model I — calculations have not been pursued further becausc
of their heavy demand in machine time. Also, the simpler calculations
based on Model II have shown more promise.

The following tables describe two sets of solutions according to

the latter method.

Initial

Parameters A (’7/(')0 ('7.1)')0 ('72(')0 ('73;-)0 ('7.3{)0 (Valr% (’75/(‘)4

Set 1 1.00 |0.158 | -0.5 1.80{0.941 |4.013 | 0. |0.7057
Set 2 0.846 | 0.592 | -0.367 2.3010.740 |5.210 | 0. |0.697
Other . p
Parameters r T T4 a¢ Hec Remarks
T
Set 1 0.080 | 0.20 |0.50 | 0.025 |0.584 |2+ Lower values of 4%did
not change results,
b. ’76"- so;hosen as to
Set 2 0.073 | 0.144 |0,50 | 0.025 |0.460 make €¢ have equal

and ¥4 * S0

magnitudes for times T4
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/ L4
o (7/1-)6 b= ('Z(Je bx=- (7:’l€ Q=/'7/(£ Remarks
8 (’741*)5 v (Yacls (7.2 )-)5 (’7.1(')5
Set 1 1.000 1.000 0.999 1.000 Parameters varied to
o e bring /3 , . . . ¢ inc.
Set 2 1.000 1,000 1.001 1.000 close to unity
| : )
/—7=_(7.v-)e ;],:_/'Zoﬁe_’. (7:“_) }?=L”—€ Remarks
(Var)b (731')5 e (7.3(')5
Set 1 0.308 0.920 -0.066 0.650 Conditions not imposed,
but checked here. @’k
Set 2 0.284 0.877 -.055 0.695 assumed zero,

One notes from the last table that, in both instances, the antisymmetry
conditions pertaining to vortices 1 and 2 (Eqs. (22a-b) and (23a-b)) are
satisfied for all practical purposes, as /3 ~#% are nearly unity. How-
ever, the ratios /7 , 7, 5 » and the velocity component /)7'7/")(:' ,
dealing with vortices 2 and 3, show that Eqs, (22c-d) and (23c-d) are not
met, The worst violations are associated with the real components
which are expected to have little influence on the lift component. Much
improved values for /} "‘¢ and /yl’,_i could have been attained if the
relation (Eq. 19a)

)73’ ¥ 43

had been imposed in lieu of assuming the constant velocity
13 I N4 . ’
= cep’ =0t (.. )
)73 73/- 73( Zsc é

The variations in the lift coefficient ng during a period are
presented for both sets in Fig. 17, and the corresponding trajectories
are shown in Fig. 18. 8Set 2, which represents the case with the
further aft feeding points, exhibits smaller lift than Set 1. The maximum
qg is about 0.26, and is substantially different from the experimentally-
determined SZ -amplitude of ~ 0,60. (This value of f’é is chosen from
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Figure 7 becausec it is murce representative of the Cfe -values in the
absence of surface offccts and for the low Re-range considered),

Set 1 gives a maxinuun @j_ of 0.56 which is in reasonable fgreement
with the present as wecll as Keefe!s experiments {(Ref. 16) . PBoth sets
of calculations yicld vortex trajectories which are in qualitative agree-
ment with observation for Re & 6, 000 shown in Fig.9. Comparison of
the trajectories in Fig. 18 with those of Fig. 9, shows that Set 2 gives
slightly better results for the downstream movement (i.e., in the
direction of the iz-axis) than Set 1; it also exhibits a trajectory closer
to the iz-axis, as it should according to the observations.

Set 1 is considered to be the better of the two overall, for it gives
closer agreement in G,C/’ and because its feeding point appears to be
nearer to the point where the shear layer was observed to separate from
the cylinder.

The calculations based on the Model II approximation show
sufficient promise to warrant further exploration of this technique. One
refinement may be offered for future studies; the introduction of the
equation describing the movement of the third vortex

/
’73 = 4)3
to replace the initial assumption of )73, should result in significant improve-
ment in the trajectories as well as in reducing the "kinks" in the E’( -curves,
However, an important question dealing with the nonuniqueness of the
solution remains to be resolved. It is related to the question of how well
one may be able to predict analytically or ""measure experimentally! the
locations of the feeding points which were seen to be so important in

establishing the & -levels.

IIL.5 EXTENSION TO OSCILLATING CYLINDERS

The stationary cylinder was studied first to develop and to test,
with least complicaticns, simple potential flow models capable of pre-

dicting loads due the antisymmetric vortex shedding behind such bodies.

The experience and the results gained from this phase, along with the

Ed . .
Note that in Ref. 16, Kecefe presents his results in terms of rms values

for (3(
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experimental observations described in the earlier sections, should be
helpful in extending the promising analytical models to the case of the
oscillating cylinder. The latter phase of the study has not progressed
to the point where fully-developed methods can be offered, and only a
possible approach is presented and discussed below.

It has been observed experimentally (cf. Ref. 6) that when the
cylinder performs a lateral sinusoidal oscillation, y =)/5'/” (wt * ?{a)
the vortex shedding '"locks in'" with the motion frequency /)-'-?erather
than with the (zero-amplitude) Strouhal frequency 7/; , provided the

reduced frequency of motion £D is sufficiently close (say approximately
within £ 5 percent) to the Strouhal number. Otherwise, the lift signals
show components in both frequencies # and 1{75 . It will be assumed
here that the former condition is met and that the single frequency
characteristics of the motion is known.

Discussed here is the situation when the ratio of amplitude to
diameter is quite small. To first order in amplitude, the relative wind

velocity V. is of magnitude ¥ throughout a cycle, i.e.,

7/;_ = ,/1;“.*/0))/205 (wc‘*#;o))a'ﬁ |74

but is oriented at an angle

oV o Cwobr B)| . syy~t ) Y eos ot rha)
A ,,/we;; p//_-;/);/w 72 ﬂ)

to the free-stream velocity K . To establish the phasing between motion
and lateral (lift) force, consider that time during a cycle which would

give on a quasi-steady basis the pattern behind the stationary cylinder

at the starting time L‘é . To this time 18 associated the orientation

angle, &4 ,

ay 55,,,"//60)&:05(4«/(5#@)) s wYecos /w?-{é#é,)
A 174
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which cannot be determined at the start without specifying % i the phase
angle g@ will have to emerge from the solution. However, one possible
way of starting the solution is to treat % as an additional initial para-
meter and to determine it by an iterative manner (in much the same

manner as the other parameters in the stationary case) which will have

to satisfy extended antisymmetry conditions (corresponding to Eqs. (21)-(23)
of the stationary case).

Part (a) of Sketch I refers to the starting time 7-2 . From the
stationary cylinder solution, initial conditions on vortices //7 s etc.
may be imposed, utilizing the instantaneous coordinate system with the
imaginary axis along the 'V; ~direction, For a short time ¢ » the
cylinder is assumed stationary, and the vortex growths and movements

are determined., At the end of this short interval, it is assumed that the
cylinder takes its new positionﬁ:}/g/”[w(z‘é +4¢) f/;a] » with the

relative wind being in the direction

A = cu)/’eas[w//é + 47 ) f/d,d]

((.1;2)

v / Mid-Position

{ M qra) Line

a, J)

‘ (Fl)tﬂ =
Gzv b (0) t=t,
>
2 r
33
Y /7 O\ Mid-Position
\a Line

o

/

V2V

( b) t slightly larger than ty,

Sketch I. Initial patterns of vortices according to the quasi-
steady approach for low amplitude oscillatory motion
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For the next interval of time 4“, the solution proceeds in a similar
manner, utilizing as initial conditions the results from the previous

time interval. At the end of the half period, ?-2 S ‘{J "_{@, the
conditions must once again become completely antisymmetr‘izc; if not gﬂ
(and possibly other initial conditions which were taken from the stationary
cylinder solution) will have to be revised.

Whether such a quasi-steady approach yields reasonable estimates
of the oscillating loads remains to be determined. There are some
modifications that may be introduced. One involves the satisfaction of
the boundary condition at the cylinder surface in its mid-position, rather
than on the same surface in its instantaneous position. This approximate
way of satisfying boundary conditions is frequently introduced in linearized
solutions of unsteady flow problems. With the introduction of the latter
approximation, it may be possible to abandon the quasi-steady approach,
and to formulate a '"linearized version', with linearization being with
respect to amplitude about the stationary case. To what levels of am-
plitude these results will be adequate practically is another question which

remains to be resolved.
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SIECTION IV

DISCUSSION OF RESULTS

Iv.l SUMMARY

The effect of model motion on the hydrodynamic forces acting on
a circular cylinder can be summarized, in a gencral way, by two
comments:

1. When the amplitude of oscillations is started at a noticeable
level, the modification (duc to motion) of the force is such as to damp
out the motion if the cylinder is left free, unless the reduced frequency
of oscillation is close to the Strouhal number.

(2) When operating at reduced frequencies within about +5 percent
of the Strouhal number and at a low but noticeable amplitude level, the
hydrodynamic driving force frequency becomes synchronized with the
motion frequency. This in turns produces excitation to increase the
motion amplitude to the point where structural damping and/or drag
(due to lateral motion) just balance the excitation.

For the high mass ratios considered here, and for a natural
frequency approximately equal to the Strouhal frequency, free oscillations
appear at the natural frequency, Measurements of force and displace-
ment in this situation show negative damping for low amplitudes. The
zero hydrodynamic damping boundary is noted only when amplitudes reach
the order of the diameter (in the tests reported here, the amplitude of
undamped motion was closer to one-half diameter). Thus higher ampli-
tude oscillations are hydrodynamically damped while smaller motions
tend to grow., When the natural frequency is not sufficiently close to the
Strouhal frequency, only very small self-sustained oscillations are ob-
served. The amplitude of the hydrodynamic force on the cylinder increases
with the amplitude of the motion,

The visual studies showed a periodic vortex shedding from alter-
nate sides of the cylinder corresponding to the alternating force. The

instantaneous positions of the vortex with respect to the moving cylinder
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do not correlate exactly with the positions with respect to a stationary
cylinder, even when the changing direction of the relative flow is taken
into account. Howevcer, the general trend is similar in the oscillating and
stationary cases. That is, a vortex first appears a short distance down-
stream of the side of the cylinder, moves downstream and toward the
centerline of the wake, and then; after separating from its feeding sheet,
drifts rapidly downstream and slightly outward. Thus, it appears that a
quasi-stationary analytical model might reasonably represent the flow
about the oscillating cylinder.

Preliminary studies of the effects of neighboring structures,
represented by cylinders of various diameters show few unexpected results.
When the two cylinders are far apart, their flow fields are independent
while, when they are very close together, they produce an oscillating
wake with a lower frequency associated with the larger body. However,
the transition from the lower frequency to the higher one is not monotonic;
the highest frequencies (mixed with other frequencies) occuring at inter-
mediate positions. When one cylinder was directly downstream of the
other, the Strouhal oscillations disappeared for some separation distances.
This observation may be an important clue in the search for methods of
elimingting destructive oscillations of launch vehicles.

Analytical models of the oscillating wake behind a stationary cylinder
allow calculations of the vortex motion and corresponding Strouhal forces.
For well chosen parameters, the computed results agree quite well with
experiment. Extension of this analysis by allowing the stream to change
direction relative to the cvlinder, in consequence of the cylinder?s motion,
and thereby representing the oscillating case has been indicated but not

completed.

IV.2 CONCLUSIONS

The observations lead to the following characterization of the effect
of motion on the Strouhal phenomenon at subcritical Reynolds numbers,
When a circular cylinder oscillates at a reduced frequency within *5 per-
cent of the Strouhal number, the motion is accompanied by an alternate

vortex shedding which produces a sinusoidal hydrodynamic force in phase
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with the motion over part of cach cycle. When the amplitude is small,
the work done by this force on the cylinder during the in-phase part of
the cycle exceeds that absorbed during the remainder of the period;
hence the motion is negatively damped., When the amplitude is greater
than about one half the cylinder diameter, the out-of-phase component
predominates, and the motion is damped. In the present measurements,
the damping is zero when the amplitude is of the order of one diameter
(somewhere between 5D and 1D),

The oscillating force on a stationary cylinder can be predicted
with fair accuracy by a discrete vortex model. Comparison of vortex
paths for stationary and oscillating cylinders indicates some hope for
success of a quasi-stcady extension of the analysis to the nonstationary
case.

Neighboring bodics, represented by additional cylinders com-
pletely alter the vortex-shedding phenomenon, It is not valid to neglect
the influence of a downstream body on its more upstream neighbor. The
mutual interaction may be very strong, and in some tandem arrangements

the usual oscillatory wake flow does not appear.

IV.3 FUTURE CONSIDERATIONS

It is obvious that furthcr studies of the launch vehicle problem
are needed since no procedure is available for designing, with complete
confidence, a satisfactory nonvulnerable structure. Extensions of the
present efforts to obtain an undcrstanding of the basic phenomena might
be classified under four categorics. One arca, certainly, would be the
completion of studics of the two-dimensional circular cylinder. Analysis
of the oscillating model would be included in this category and, perhaps,
extension to supcrcritical Reynolds numbers. A second addition should
be the consideration of structural properties. Although it may be easy,
in principle at least, to account analytically for structural responsc,
experimental checks with properly scaled aeroelastic models present
some difficultics,

One of the least understood and most important aspects of the

launch vehicle problem involves the corret application and extension of
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two-dimensional information to the real three-dimensional problem.

Wind profiles varying over the vehicle in both direction and magnitude
should be considered as well as variation in vehicle cross section including
the important nose effects.

Other geometrical problems might conveniently be regarded as
making up a fourth category for future study. The effects of umbilical
towers and other blocking structures deserve further consideration both
as necessary parts of the environment of the vehicle and as possible mcans
to alleviate the ground wind problem. Other geometrical fixes, such as
strakes, gaps, and tripping devices might also be examined.

In all cases, good results are likely to be achieved when controlled
but realistic experiments are combined with detailed examination of the

more important factors influencing the ground wind loads.
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APPENDIX

The forces on the cylinder may be computed using Blasius!?
theorem extended to cover unsteady flow or considering the rate of
change of the total impulse associated with all vortex pairs in the flow,
By introducing in the latter a slight modification necessitated by the
flow field approximations, it is shown that these two well-known methods

*
lead to the same force cxpressions .,

A, METHOD USING BLASIUS! THEOREM
Milne-Thompson (Ref. 32) gives the following expression for the

force on the cylinder (translated to the present notation):

(+éD)=~ P f Sl )y o I S .
((+(D) _—.:z—f/ﬁ) o/fcm‘fa/ (A.1)

where £ and 2 are lift and drag forces respectively. The complex
/e~
dE

integrations are carried out once around the cylinder surface. The

potential &~ and velocity are given by Eqs. (7) and (8). The

first of these is evaluated using contour integration and the theorem

of residues. In the second integral, logarithmic functions appear in the
integrand; this necessitates a separate branch cut between each vortex
and its image before the contour integrations are carried out. Observing

this precaution, the following relations are derived

w| PP )
:

b E
& (A.2)

" In Ref, 23, Ujihara experienced some difficulty in demonstrating the
equivalence of these two methods for his model.
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Utilizing Eqs. (A.2), the sccond integral in (A.1) is evaluated., After

much algebra, the expression for the force turns out to be

3
Lre D) =21V (-/)5/7 v d" 7z —ca (/)
“r ) )%l ) S (E) T Z
S=rs

’fs
= a
(gt S 4] [
ST = ""“/’5*”““"‘5%5 E A
2 ./3 ’ . s=/ d =/ s
S
/ 1) L7 / - / ) (A.3)
-/"-———Z s ' F L = a3
7T —az e, -
S= F=57/ g; r g gs

In the above, the conditions that /5:/ pproaches oo and /5’/15 finite

are utilized,

B. METHOD USING THE TOTAL IMPULSE
The total force on the cylinder, according to the impulse method,

is given by Eq. (16),

2 . _ B
(< v‘z'pgg’:/[_z'z -1)"77 8 —?gj)_z'g <% e 2t E )
&=/ 5

Before direct comparison can be made between Eqgs. (A.3) and
(A.4), certain substitutions must be introduced in {A4). These involve
the relations which impose zero net force on each growing vortex and

its feeding sheet (see Eqs. 14):
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These expressions, togothi:r with those for 4/ , and 4)1 from Eq. (13)

yicld the alternate form (o {(Axd):

. Sr/ 5
/4r<D{0=/ﬂﬂ//V(rffj)+ﬁ___’_f£/-/) & o fer L
m 5’; 2 5/’ $e23 7 g/‘- g; <

J
,c@/o//f_e-_‘,c/é__fw )R *Z(-/)s_/ls _
4 L - 7
g 7 g, £ 27 g % P ) | A
VA A S RV S S . P LV A A A YN A ¥
/ 4 g } - ( < > ) // g‘: 2 g;-l 3 g.” /

When making a comparison between (A.6) and (A,3) (i. e, testing the

identity Crep),, = Llren) ) , one finds that most of the terms in
2L T

both expressions agrce, but that there remain terms in each expression

which do not appear reconilable. However, if one introduces in (A.6)

the additional relations for the condition that no net force exists on each

detached vortex, Eqs. (19a-b),

=V, =L (A.7)

then the two sides of the "tested identity' show complete agreement.
Since conditions (A.7) have not been imposed in the solutions

which yield vortex positions;,(zf('p)@,l. and (G *¢ D{OMas given by

Eq. (A.3) or (A.4) will not agree exactly in numerical calculations.

The difference will then be attributed as part of the error in the

approximation which omits consideration of Eq. (19a-b). This is not as

serious in the calculation of the oscillatory lift, because the major

portion of the error turns out to be time-independent.

s / /
The dimensional form of Fq. (9), i.e., in terms of fs and /‘; rather
than 7 and Ay
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Figure 9. Vortex position behind a stationary cylinder
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(a} Small Amplitude (A = .25 inch)

{(c}) Large Amplitude (A = 1.05 inch)

Figure 10. Flow field behind an oscillating cylinder
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(b)2 =.17

Figure 12, Flow field behind the model with
an umbilical tower at 8 = 45° (D? =1)
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(c)2 =1

Figure 12. Continued
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(b) £ =1

Figure 13. Flow field behind the model with
an umbilical tower at 8 = 90°
(D?=1)
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