5 research outputs found

    Analysis of Delay Causes in Railway Passenger Transportation

    Full text link

    Vulnerability Assessment and Re-routing of Freight Trains Under Disruptions: A Coal Supply Chain Network Application

    Get PDF
    In this paper, we present a two-stage mixed integer programming (MIP) interdiction model in which an interdictor chooses a limited amount of elements to attack first on a given network, and then an operator dispatches trains through the residual network. Our MIP model explicitly incorporates discrete unit flows of trains on the rail network with time-variant capacities. A real coal rail transportation network is used in order to generate scenarios to provide tactical and operational level vulnerability assessment analysis including rerouting decisions, travel and delay costs analysis, and the frequency of interdictions of facilities for the dynamic rail system

    Determining operations affected by delay in predictive train timetables

    Get PDF
    Constructing train schedules is vital in railways. This complex and time consuming task is however made more difficult by additional requirements to make train schedules robust to delays and other disruptions. For a timetable to be regarded as robust, it should be insensitive to delays of a specified level and its performance with respect to a given metric, should be within given tolerances. In other words the effect of delays should be identifiable and should be shown to be minimal. To this end, a sensitivity analysis is proposed that identifies affected operations. More specifically a sensitivity analysis for determining what operation delays cause each operation to be affected is proposed. The information provided by this analysis gives another measure of timetable robustness and also provides control information that can be used when delays occur in practice. Several algorithms are proposed to identify this information and they utilise a disjunctive graph model of train operations. Upon completion the sets of affected operations can also be used to define the impact of all delays without further disjunctive graph evaluations

    A subjective capacity evaluation model for single-track railway system with δ-balanced traffic and λ-tolerance level

    Get PDF
    In this paper, we propose a method to measure the capacity of single-track railway corridors subject to a given degree of balance between the two directional traffic loads and a permitted overall delay level. We introduce the concepts of δ-balance degree and λ-tolerance level to reflect the subjective measures of the railway administrator for capacity evaluation. A train balance scheduling problem with initial departure time choice of trains is embedded into the measure of railway capacity. The combined scheduling and capacity evaluation method is formulated as a 0-1 mixed integer programming model, and solved using a simple dichotomization-based heuristic method. A highly efficient heuristic procedure based on the concept of compaction pattern is developed to solve the train balance scheduling problem, and the numerical results demonstrate that the method yields high-quality solutions close to the optimal ones using the CPLEX solver. The two-way traffic loading capacity of a single-track railway corridor is analyzed in detail under different tolerance levels and balance degrees. The transition regions of traffic loading capacity are identified, and provide a useful decision support tool for the railway administrators in dealing with train rescheduling requests under disturbance or disruption scenarios
    corecore