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Vulnerability Assessment and Re-Routing of Freight Trains under
Disruptions: A Coal Supply Chain Network Application

Ridvan Gedika, Hugh Medalb, Chase Rainwatera,∗, Ed A. Pohla, Scott J. Masonc

aDepartment of Industrial Engineering, University of Arkansas
bIndustrial and Systems Engineering, Mississippi State University

cDepartment of Industrial Engineering, Clemson University

Abstract

In this paper, we present a two-stage mixed integer programming (MIP) interdiction model in which

an interdictor chooses a limited amount of elements to attack first on a given network, and then an

operator dispatches trains through the residual network. Our MIP model explicitly incorporates

discrete unit flows of trains on the rail network with time-variant capacities. A real coal rail

transportation network is used in order to generate scenarios to provide tactical and operational

level vulnerability assessment analysis including rerouting decisions, travel and delay costs analysis,

and the frequency of interdictions of facilities for the dynamic rail system.

1. Introduction

Today, our society depends on its transportation systems more than ever. A large percentage

of the products we consume are transported long distances by road, rail, air, or a combination

of modes. In addition, many people travel on roads to go to work every day. One of the main

risks embedded in transportation systems is the failure of infrastructure elements such as bridges,

tunnels, and facilities (ports, rail yards, warehouses etc.). These elements can fail due to natural

disasters, terrorist attacks, or just because they are in bad condition. The impact of these failures

includes loss of life, economic loss, increased travel costs and congestion due to rerouting.

Rail transportation is an important and growing component of freight transportation in the

United States. The benefits of rail transportation are that it is cheaper and produces less carbon
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emissions than road transportation. It is also easier to transport heavy loads on rail than on truck.

Leaders in transportation are trying to increase the volume of goods transported by rail to alleviate

loads on the road network and reduce carbon emissions. Large freight companies also are moving

more of their transportation to a combination of rail and road.

There are several aspects of rail transportation that make it different than other transportation

modes. First, the operations of a railroad are more centrally controlled than in the road network.

That is, train operators have less autonomy to choose their own routes and schedules. Second,

compared to road transportation, there is not as much excess capacity in rail transportation. Thus,

it is important to consider capacity when routing and scheduling.

Disruptions have a large impact on rail transportation because there are less alternate routes

available when a disruption occurs. There are several reason for the lack of alternate routes. First,

rail is not as ubiquitous as roads. Second, much of the track in the United States is single line

track. Thus, only one train can be on the track at a time in either direction. This makes it more

difficult to reroute trains after a disruption. Third, the operation of a railyard can be complex and

therefore it is difficult for a railyard to accommodate excess capacity. Again, this must be taken

into consideration when rerouting.

In this paper, we present a mathematical model for estimating the consequence of a disruption

to a rail transportation network in which an interdictor optimally chooses a set of infrastructure

elements to attack in order to maximize the total disruption to the network. As a response, after

the disruptions, an operator reschedules and re-optimizes trains in such a way that all demands and

capacity restrictions are satisfied. In addition to modeling the threat of an interdictor, this model

is also used to determine critical elements of the network by identifying the set of elements of the

rail network whose unavailability causes the largest consequence. The consequence estimation of

disruptions are also taken into account in a unit train transportation system by modeling trains as

discrete demand units that stay intact from origin to destination. The model captures the movement

of trains in time and space over a finite time horizon. Tracks and railyards in the network have strict

capacity constraints for discrete time periods. Given these properties, the proposed mathematical

model can be utilized to solve any problem that requires multi-period transportation scheduling

under disruptions. Thus, the application is not limited to rail transportation.

Several events in the last 30 years illustrate that the freight rail transportation system in the

United States is vulnerable to disruptions. In 1993, flooding of the Mississippi and Missouri rivers
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caused several railroads to experience delays and cancellations. The estimated total cost of the

disruption was $ 182 million (Haefner et al., 1996). In 1996, a merger between Union Pacific and

Southern Pacific railroads led to delays for many of Union Pacific’s customers (Quillen, 1997). In

2005, a derailment on a main line in Wyoming near the Powder River Basin led to a shortage of

coal in many parts of the United States as well as price increases (Bleizeffer, 2005). Finally, after

the death of Osama Bin Laden, it was revealed that Al-Qaeda was planning an attack on the rail

infrastructure in the United States (Boyd, 2011).

Jespersen-Groth et al. (2009) demonstrates that there are 22 disruptions related to railway in-

frastructure failure in the Dutch railway network in a day due to technical problems, weather, third

parties and other causes, and on average, a single disruption lasts 1.7 hours. Preventive mainte-

nance is the first stage of mitigating the risks associated with any type of railway infrastructure

failure. It first assesses risks that might cause any damage to regular operations and then proposes

maintenance activities to minimize the total destruction. In order to identify the risks embedded

in railway infrastructure (usually tracks between two nodes), Åhrén and Parida (2009) develop

maintenance performance indicators via benchmarking for railway infrastructures in Norway and

Sweden. Different types of reliability functions are used in order to represent the reliability distri-

bution of the railway infrastructure components (see Chen et al. (2013), Podofillini et al. (2006) for

a case study in Norway) or to incorporate the potential delays/congestions due to infrastructure

breakdown (see Higgins (1998) for a case study in Australia).

The remainder of the paper is organized as follows. Section 2 summarizes basic properties of

coal transportation by rail. Then, Section 3 highlights the most relevant studies in the literature

focusing on disruptions in rail transportation networks. A formal problem description, the proposed

two-stage mathematical model formulation and our solution methodology are presented in Section

4. Section 5 demonstrates the analysis of the computational results obtained by using a real coal

supply chain network. Finally, conclusions and future work are described in Section 6 .

2. Coal transportation by rail

In this study, we consider rail transportation of bulk commodities such as coal, grain, and

scrap metal since they make up a large percentage of the volume transported on rail. In bulk

transportation, demand is in terms of entire trains; therefore, there is no need to switch cars at

intermediate classification yards. The demand for these commodities is also smoother than the
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demand for lower volume items. For example, several power plants in the southern United States

place a fixed-quantity order every month.

Coal combustion has been commonly used to generate electricity and provide power for many

kinds of operations in the United States. In 2008, it was announced that 48.2% of the electricity

consumed in the US was produced by the combustion of coal in coal power plants (U.S. Energy

Information Administration, 2010). The electricity generated in these plants is being used in many

areas such as: hospital operations, vaccine storage, security and surveillance systems, as well as

water treatment. Hence, in order to keep this source of electricity safe for such important services

in case of a disruption or disaster, operations in the coal supply chain must be secured. Moreover,

coal transportation is a good representative of bulk transportation by rail, and therefore a good

source of data to test the proposed model, since 70% of coal was transported by rail throughout

the U.S. in 2010 (U.S. Energy Information Administration, 2012).

After the coal is mined, it is sent to a processing facility where the coal pieces are crushed

into more manageable chunks. The trains typically consist of 125 to 150 cars loaded with between

110-120 tons of coal in each rail car. These trains are dispatched on their routes towards specific

power plants. Even though the primary objective in the coal supply chain is to meet electricity

demand, reducing the transportation and storage costs of coal as much as possible is also a major

consideration. Moreover, optimizing coal inventory control policies in plants might help reduce the

risk of electricity shortages, but that is not in the scope of this paper. We only aim to meet the

dynamic discrete demands of coal plants under disruptions. In this sense, the current approach can

be seen as a just-in-time approach.

Most power plants are designed in such a way that they can only use a single type of coal in

order to generate electricity. Hence, there could be serious results of a disruption or a disaster

that occurs in the coal supply chain, especially for the areas of the country that rely heavily on

electricity generated from the coal mined in Wyoming’s Powder River Basin (PRB). In this case

study, the sub-bituminous coal transportation network is used. Sub-bituminous is the most common

type of coal mined in PRB. The PRB accounts for about 40 % of all consumption within the US

(U.S. Energy Information Administration, 2012). This particular coal type has significantly lower

SO2 emissions and cannot produce high energy output. However, many energy companies are

automatically attracted by the low emissions level and the abundance of supply of this type of coal.

While transporting coal from mines to power plants, many important constraints are observed
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in the coal supply chain. The amount of coal that can be carried by a train is restricted by the

size of the trains used in the system. Also, depending on the sizes of these trains, some trains can

only travel on special tracks. The availability of coal in different time periods for loading/unloading

operations requires extra planning. Hence, there could be serious results of a disruption or a disaster

that occurs in the coal supply chain, especially for the areas of the country that rely heavily on

electricity generated from the coal mined in the PRB.

3. Modelling disruptions in rail transportation systems

Assad (1980); Ahuja et al. (2005); Nemani and Ahuja (2011) demonstrate variety of modeling

techniques that have been developed for the rail transportation systems. Crainic (2000) surveys

the research on freight transportation. He discusses three planning levels: strategic, tactical, and

operational. In the strategic level, long-term decisions are made such as where to locate yards and

where to build rail lines. At the tactical level, medium-term decisions are made such as the routing

of trains and aggregate scheduling. The operational level includes shorter-term decisions such as

crew scheduling and locomotive scheduling.

There are two types of rail transportation: merchandise trains and unit trains. Merchandise

trains are composed of cars with different destinations. Therefore, consolidation, or blocking, is

a crucial part of merchandise train operations. Partly due to the challenging problems associated

with the blocking process, most of the research on rail transportation from an operations research

perspective has considered merchandise trains (see Nemani and Ahuja (2011)). Unit trains are

composed of cars with the same destination; thus, blocking is no longer needed. There is not as

much research on unit train transportation. Lawley et al. (2008) present a time-space routing and

scheduling model for unit trains. Their model accounts for both loaded and empty trains. The

second stage of our formulation is similar to this model except that we do not account for empty

trains.

In this study, we provide decision makers with the tool they need to prepare a course of action

after disruptions occur. It determines the most vulnerable elements of the network and re-optimizes

the train movements on the network with available nodes and arcs. This is different from the prob-

lem of optimizing the response to a particular disruption. Because of the prevalence of disruptions

in transportation networks, there has been a significant amount of work on managing the recovery

from a disruption. Applications include machine scheduling (Qi et al., 2006), production-inventory
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systems (Xia et al., 2004), supply chains (Qi et al., 2004), passenger air transportation (Kohl et al.,

2007), passenger rail transportation (Jespersen-Groth et al., 2009), and project scheduling (Zhu

et al., 2005).

One way to study the vulnerability of a network is to identify the critical nodes and edges of

the network. Interdiction models identify critical nodes and edges by modeling a game between an

adversary and the operator of the network, who routes flow through the network after the adversary

makes his attack. Fulkerson and Harding (1977) are among the first to study how to interdict arcs

in a network to maximally increase the length of the shortest path; they are followed by others

(Israeli and Wood, 2002). Wollmer (1964) is among the first to provide a model for interdicting a

maximum-flow network. Others have extended this problem to consider probabilistically successful

attacks (Cormican et al., 1998; Janjarassuk and Linderoth, 2008) and multiple objectives (Royset

and Wood, 2007; Rocco et al., 2009, 2010). Researchers have also considered other objectives such

as minimizing the maximum reliability path (Pan and Morton, 2008) and minimizing the maximum

profit (Lim and Smith, 2007). Further, Church et al. (2004) present models for interdicting a set

of facilities.

Researchers have also begun to study the vulnerability of freight rail networks. Burdett and

Kozan (2014) propose an approach to prepare a robust train timetable that is capable of detecting

the critical operations and their impacts on others in case of any delay. In another study (Burdett

and Kozan, 2009), they propose techniques that can be used to schedule extra train services given

the existing schedule is left unchanged or re-scheduled. Peterson and Church (2008) describe models

for the impact of a disruption to the United States freight transportation network. They present

an uncapacitated model that is a modification of the shortest path problem. They also present a

continuous multicommodity network flow model that has line capacities. Babick (2009) models the

allocation of security resources to the rail network in the state of California as a defender-attacker-

operator problem, represented by a bi-level mixed-integer programming formulation. Both studies

treat the rail transportation as a continuous network flow problem with time invariant capacities.

In our work, we model the rail transportation system as a discrete dynamic network flow problem.

As mentioned above, there have been many studies on how to reduce network risks that can be

applied to transportation networks. However, the mathematical models employed in these studies

do not have enough detail to be applied directly to rail networks where disruptions are allowed.

For instance, existing models mostly model goods as continuous (divisible quantities). However, in
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most settings trains can only be realistically modelled using discrete units of flow. Moreover, the

flow of entities in current models is usually assumed to be static or time invariant, meaning that

the flow from origin to destination takes place iinstantaneously. Although real flows are almost

never static, modeling flows as static is appropriate for uncapacitated networks or networks in

which there are capacity constraints over long time periods (e.g., a month) but there are not strict

capacity constraints for shorter time intervals (e.g., day or hour). Even though static flow models

are also appropriate for strategic level decisions, they do not provide enough resolution to identify

the impacts of disruptions on rail networks with short term capacities on railyards and tracks.

Thus, this paper differs from previous studies in that it explicitly incorporates disruptions and

discrete unit flows of trains on rail networks with discrete time varying capacities. The factors

considered in our model result in realistic scenarios that lead to tactical and operational level

vulnerability assessment analyses including rerouting decisions, travel and delay costs analysis, and

the frequency of interdictions of facilities for a rail transportation system. Furthermore, decision

makers can utilize the proposed web-based decision support tool to monitor the changes in the rail

network.

4. Mathematical model development

In this section, we model the problem of identifying critical elements as a two-stage mathematical

programming model. An interdictor acts first and incapacitates a set of nodes and arcs. Once an

infrastructure is incapacitated, we assume that it will remain incapacitated in the entire planning

horizon. An operator follows the interdictor and chooses routes and schedules for trains given

network elements that have not failed. Routing and scheduling of trains is done given a network

with available nodes and arcs after disruption. Therefore, our second stage integer programming

(IP) model aims to satisfy the demands of plants with minimum cost and without eliminating the

capacity restrictions of network elements while dispatching trains from mines to plants through

predetermined routes. A time-indexed formulation captures the true capacity limitations of nodes

and arcs in any given period. The flexibility of being able to arrange the length of the planning

period provides great control on the scale of the problem as well. For the sake of simplicity, we

only consider the flow of identical unit trains that carry the same amount of coal regardless of the

origin destination pair they are assigned to. The model selects the cheapest route first and then

schedules trains according to capacity and demand requirements.
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Table 1 introduces the sets, parameters and decision variables that are used in the two-stage

integer-programming model.

Let y be a vector of interdiction variables in which yi is 1 if node i is destroyed and 0 otherwise.

Let fi be the cost of interdicting node i. The interdictor has a budget of b to spend on interdicting

nodes. Let Y be the feasible region of y defined by constraints (1b) and(1c). We propose the

following bi-level capacity-interdiction and routing model:

max `(y) (1a)

s.t. yi ∈ {0, 1} ∀i ∈ N (1b)∑
i∈N

fiyi ≤ b (1c)

where `(y) = miny∈Y
∑
r∈R

∑
t∈T

grXrt +
∑
r∈R

∑
t∈T

qltOrt (2a)

s.t. Ort +Xrt ≥ Or,t−4 ∀r ∈ R, t = 4,4+ 1, . . . , T (2b)∑
t∈T (d)

∑
r|i∈RN(r)

Xr,t−τri ≤ TCid(1− yi) ∀d ∈ D, i ∈ N (2c)

∑
t∈T (d)

∑
r|a∈RT (r)

Xr,t−τra ≤ TCad ∀d ∈ D, a ∈ A (2d)

∑
t∈T

∑
r|i=h(r)

Xrt ≥ hi ∀i ∈ P (2e)

∑
r∈R

(Xrt +Ort) ≤ n ∀t ∈ T (2f)

Xrt, Ort ∈ Z+ ∀r ∈ R, t ∈ T . (2g)

The objective function (2a) seeks to minimize the total cost incurred by 1) the total distance

traveled and 2) the total delay incurred when trains have to wait at their origin stations. Note

that the maximization problem `(y) is a function of the interdiction variables. The interdictor’s

objective function (1a) is to maximize the same total cost that is attempted to be minimized by the

operator. Constraints (2b) balance flow at the origin station of route r. For each planning period

(4) and route (r), the number of trains waiting at the origin node and departing the origin node

to travel on route r at time period t must be greater than number of trains available at the origin

node ∆ time units before, at time period (t−4). Constraints (2c) and (2d) guarantee that the flow
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Table 1: Notation

Sets
N set of all loading/unloading stations (nodes)
M ⊆ N set of mines
P ⊆ N set of plants
A set of all track segments
R set of feasible routes between all O–D pairs for all trains
RT (r) ⊆ A set of track segments included in the route of O–D pair r ∈ R
RN(r) ⊆ N set of nodes included in the route of O–D pair r ∈ R
T set of all time periods {4, 24, . . . , |T |}
D set of days making up the planning horizon
T (d) set of time periods in day d ∈ D

Parameters
4 ∈ Z+ duration of time period
K number of planning periods in planning horizon
o(r) ⊆M origin station of route r ∈ R
h(r) ⊆ P destination station of route r ∈ R (Plants)
TCat track capacity of segment a ∈ A at time t ∈ T
TCit track capacity of node i ∈ N at time t ∈ T
τr total travel time of route r ∈ R in multiples of 4
τra travel time on route r ∈ R to reach track segment a ∈ RT (r) in multiples of 4
τri travel time on route r ∈ R to reach node i ∈ RN(r) in multiples of 4
dr distance of route r ∈ R

c
cost per unit distance, which includes fixed costs (labor, equipment cost, etc.) and
variable costs (fuel, maintenance cost, etc.)

gr cost of moving one unit train on route r ∈ R
hi demand of station i over the planning horizon
lt length of the time period of t ∈ T
q cost incurred when 1 train is delayed one time unit
CR q/c

Decision variables
Xrt number of trains departing from o(r) on route r ∈ R in time period t ∈ T

Ort
number of trains waiting (or being loaded/unloaded) at o(r) of route r ∈ R in time
period t ∈ T
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of trains moving each day does not exceed the daily track segment and node capacity, respectively.

Moreover, the right hand side of constraints (2c) forces an interdicted node to have zero capacity.

Constraints (2e) state that the demand of each plant should be satisfied. Finally, constraints (2f)

ensure that the number of trains waiting at the origin node and departing that node must be less

than or equal to n, the number of trains, for each route and time period. The next section discusses

the solution methodology developed to solve this version of the bi-level interdiction model.

Our second stage routing problem is inspired by the train scheduling model in Lawley et al.

(2008). In their formulation (and ours), train movements (i.e. journey at intermediate locations)

are captured in similar manners. Decision variables (Xrt and Ort) keep track of the train movements

at intermediate locations with the help of parameters τri (travel time on route r to reach node i) and

τra (travel time on route r to reach track segment a). Thus, the model has the power to estimate

the congestion levels on any given nodes and arcs. Accordingly, constraints (2c) and (2d) limit the

daily train movements for each node and arc, respectively. Even though we consider broad time

periods in our experiments, the model has the capability of representing operational and tactical

level plans for train movements with the help of time related sets (T and D) and parameter 4.

4.1. Reformulation

The bi-level problem (2) is a max-min problem and therefore cannot be solved by standard

commercial solvers. In our approach, we take the dual of the inner minimization problem in order

to reformulate the model as a single level maximization problem. This conversion trick is a standard

approach in bi-level optimization. However, if we leave the second stage to be a pure integer problem,

the dual of the pure integer inner problem is not guaranteed to have a duality gap of zero. In other

words, Slater’s condition (sufficient condition for strong duality) does not hold. Furthermore,

Caprara et al. (2002) proves that the Train Timetabling Problem (TTP) that “considers a single,

one-way track linking two major stations, with a number of intermediate stations in between” is

NP-hard. Lawley et al. (2008) also shows that the complexity (the number of decision variables and

constraints) of the time-space train scheduling model such as (2) depends on the number of tracks,

routes between O-D pairs, plants, mines, intermediate railyards and user defined parameters such

as T , D and 4. We note that the number of decision variables and constraints in (2) increases

exponentially as these input parameters increase. As a consequence, in order to be able to satisfy

the sufficient condition for strong duality (which also makes transition from max-min to single level

max possible) and reduce the impact of the complexity by obtaining bounds via linear relaxation,
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we solve the problem using the following approach. We first fix the y variables and relax the

integrality restriction on the X and O variables. Then, the dual of the inner minimization is taken.

Since both levels are then maximization after taking the inner dual, the bi-level problem reduces

to a single level mixed-integer program (MIP).

Step 1: We relax the inner minimization problem:

max
y∈Y

˜̀(y) = min
∑
r∈R

∑
t∈T

grXrt +
∑
r∈R

∑
t∈T

qltOrt [duals] (3a)

s.t. Ort +Xrt ≥ Or,t−4 ∀r ∈ R, t = 4, . . . , |T | [αrt] (3b)∑
r|i∈N (r)

∑
t ∈ T (d)

t ≥ τri

Xr,t−τri ≤ TCid(1− yi) ∀i ∈ N , d ∈ D [βid] (3c)

∑
r|a∈A(r)

∑
t ∈ T (d)

t ≥ τra

Xr,t−τra ≤ TCad ∀a ∈ A, d ∈ D [γad] (3d)

∑
t∈T

∑
r|i=h(r)

Xrt ≥ hi ∀i ∈ P [ζi] (3e)

∑
r∈R

(Xrt +Ort) ≤ n ∀t ∈ T [φt] (3f)

Xrt, Ort ≥ 0 ∀r ∈ R, t ∈ T [δrt, ηrt] (3g)

Step 2: We now take the dual of the inner minimization. The resulting model is then:
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maxy∈Y
∑
i∈N

∑
d∈D

TCid(1− yi)βid +
∑
a∈A

∑
d∈D

TCadγad

+
∑
i∈P

hiζi +
∑
t∈T

nφt (4a)

s.t.
∑

i∈N (r)

I
{
βi,d(0+τri)

}
+

∑
a∈A(r)

I
{
γa,d(0+τra)

}
+ζh(r) + φ0 + δr0 ≤ gr ∀r ∈ R (4b)

αrt +
∑

i∈N (r)

I
{
βi,d(t+τri)

}
+

∑
a∈A(r)

I
{
γa,d(t+τra)

}
+ζh(r) + φt + δrt ≤ gr ∀r ∈ R, t = 4, . . . , |T | (4c)

−αr,1 + φ0 + ηr0 ≤ ql0 ∀r ∈ R (4d)

αrt − αr,t+∆ + φt + ηrt ≤ qlt ∀r ∈ R, t = 4, . . . , |T | − 1 (4e)

αr|T | + φ|T | + ηr|T | ≤ ql|T | ∀r ∈ R (4f)

αrt ≤ 0 ∀r ∈ R, t = 4, . . . , |T | (4g)

βid ≤ 0 ∀i ∈ N , d ∈ D (4h)

γad ≤ 0 ∀d ∈ D, a ∈ A (4i)

ζi ≥ 0 ∀i ∈ P (4j)

φt ≤ 0 ∀t ∈ T (4k)

δrt, ηrt ≥ 0 ∀r ∈ R, t ∈ T (4l)

where d(t) is the day of time period t, |T | is the last time period, I
{
βi,d(t+τri)

}
= βi,d(t+τri) if

t+ τri ≤ T and 0 otherwise, and I
{
γa,d(t+τra)

}
= γa,d(t+τra) if t+ τra ≤ T and 0 otherwise.

Notice that when we take the dual of the inner minimization problem, it changes the inner

minimization problem to a maximization problem. Eliminating the maximization sign for the inner

problem yields a single-level maximization model.

Also notice that our single-level model has now nonlinear terms yiβid. Since these nonlinear

terms are a product of a binary variable and a continuous variable, we can linearize them by applying

a technique described by Sherali and Alameddine (1992). First, substitute the non-negative variable
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κid = yiβid. Then, add the constraints:

κid − βidyi ≥ 0 ∀i ∈ N , d ∈ D (5a)

κid − βid ≥ 0 ∀i ∈ N , d ∈ D (5b)

with βid denoting a lower bound of βid.

This results in the following single-level MIP:

maxy∈Y
∑
i∈N

∑
d∈D

(TCidβid − TCidκid) +
∑
a∈A

∑
d∈D

TCadγad

+
∑
i∈P

hiζi +
∑
t∈T

nφt (6a)

s.t. (4b)–(4l)

(5a)–(5b).

5. Computational results

Note that we first relaxed the X and O decision variables of the second stage problem and then

took the dual of it to obtain a MIP formulation. In practice, it is possible that the solution of

the MIP can have fractional decision variables. However, our analysis shows that for our problems

the proportion of fractional X and O variables is observed to be no greater than 0.2% and 1%,

respectively.

In the following subsections, we first illustrate the basic properties of the networks used in model

(6). Then, we demonstrate how these different networks impact the interdictor’s and operator’s

decisions. Our two-stage interdiction program is solved by using IBM ILOG CPLEX 12.1 on a

single node (with two Intel six-core Xeon X5670 2.93 GHz processors and 24GB of memory) of a

high performance supercomputer (HPC). Alternatively, a standard desktop computer with 16GB

of memory can solve the model without any memory problems.

5.1. Network and data construction process

The North American railroad system provided by The Center for Transportation Analysis (CTA)

in the Oak Ridge National Laboratory (The Center for Transportation Analysis) is used to represent
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the U.S. rail network. In addition, the coal plants and coal mines are retrieved from the United

States Coal Activity (USCA) Map project (U.S. Coal Activity Map). Through focusing on large

suppliers and consumers of coal, the refined network provides an initial representative model of

the entire coal supply chain. There are 792 mines and 526 plants in the original USCA Map.

The average consumption rate for each mine is approximately 2,000K tons/year, while the average

production rate over all of the plants is 1,400K tons/year. There were a great number of mines

and plants to consider based upon these averages. Therefore, the number of mines and plants is

reduced by using the constraint that the average production and consumption rate at each mine

or plant has to be greater than 5,000K tons/year. This value is chosen as a threshold for network

reduction. There were 39 mines and 49 plants that fit the constraint. Then the mines and plants

are found in which sub-bituminous coal is being mined and burned, respectively.

Based on the rail network data obtained through the steps described above, we label 8 sub-

bituminous coal mines, 23 sub-bituminous coal plants and 37 rail yards as primary nodes. While

generating routes between each mine-plant pair, we observe that there are 135,655 nodes (mines,

plants, rail yards, tunnels, bridges and other connection points) and 172,888 arcs in the original

network. Thus, it is too difficult to enumerate all possible routes between every O-D pairs. Even if

all routes between all O-D pairs are known, the problem would be intractable due to the extensive

number of decision variables and constraints. Hence, in order to generate a manageable rail network

based on this dataset, we developed a trimming algorithm (see Algorithm Appendix A.1) which

explores K-shortest paths (Yen, 1971) between any combinations of mines and plants with K = 3

and K = 10 to obtain different sets of routes with sizes |R| = 552 and |R| = 1840, respectively.

By using this procedure, we produced a connected graph (every destination is reachable from every

origin) with 456 nodes which includes 8 mines, 23 plants, 37 yards, 388 critical elements (tunnels,

bridges, etc.) and 36,935 arcs. Using this route selection strategy, multiple routes (shortest paths)

between coal plants and mines are generated to be used as input routes for the model (6).

There are several studies that have developed approaches to assess railway capacity (see Kozan

and Burdett (2005); Burdett and Kozan (2006); Mattsson (2007); Abril et al. (2008)). Gorman

(1998) defines the link (track) capacity to be less than a fixed number of trains over some time

period without slowing the traffic due to excessive train movements on a track. Thus, we assign

a numerical value to represent the capacity of a track segment. Using smaller capacities might

increase the congestion whereas larger capacities might have no impact on train scheduling. In our
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experiments, we assume that railyards and tracks have the same discrete unit train capacity for

each time period in the planning horizon.

5.2. Impacts of network size and budget level

In this section, we assess the impacts of an interdiction budget (b), network size (|R|) and the

ratio of the cost of delaying a train for a single time period to the cost of operating a train per unit

distance (CR).

Note that there are three main costs included in the objective function of model 6. These cost

items are total transportation (operation), total delay, and total interdiction costs. fi gives us the

flexibility to model the cost of interdicting infrastructure i. However, regardless of which node is

interdicted, it is counted as one interdiction (fi = 1) in this current setting. Hence, the total cost

incurred by transporting coal from mines to plants and the total cost due to delays are the two

main costs that the defender wants to minimize, while the interdictor wants to maximize them.

(a) |R|=552 (b) |R|=1840

Figure 1: Cost components v.s. number of interdictions

Figures 1a and 1b demonstrate total transportation and delay costs on four different networks

where the total number of routes in the network (|R|) is 552 and 1840, respectively. Changes in these

cost terms are also observed by running model (6) for different cost ratios (CR) and interdictor’s

budget levels (b). It is commonly seen in Figure 1 that for each CR level, total transportation
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costs do not change significantly as the number of interdicted nodes in the network is increased.

However, delay costs increase dramatically compared to the total transportation cost as more nodes

are interdicted. This implies that as the interdictor manages to disable more routes and nodes in

the network, it yields extra delays but train transportation can be handled at similar cost levels

in each scenario. Similarly, total transportation cost remains almost at the same level despite

varying CR and b parameters. One expects to see similar transportation costs with different CR

values since CR is changed only by varying the cost of delaying a train for an hour not the cost of

operating a route. However, based on the cost terms in Figure 1, we can see that neither higher

budget levels nor larger CR values resulted in a significant increase of total transportation costs in

different networks. Model (6) finds similar minimum transportation costs regardless of which/how

many nodes are interdicted for different CR values. The main reason behind this phenomenon is

that if an element on a route is interdicted, other alternative routes are made available with similar

costs by the K-shortest path algorithm. Even though the cost of operating trains on several routes

remains nearly the same, disruptions cause significant increases in delay costs as b and CR increase.

Table 2: Interdicted nodes with varying CR when |R|=552

b CR=50 CR=100
1 74 74
3 72-74-80 73-81-187
5 70-72-74-79-81 70-72-74-80-187
10 69-70-72-74-78-80-86-88-91-187 68-70-72-74-78-80-86-88-103-187
15 51-69-70-72-74-78-80-82-84-86-88-91-93-103-187 51-68-70-72-74-78-80-83-84-86-88-91-93-102-187

b CR=150 CR=200
1 80 80
3 72-80-187 72-81-187
5 70-72-74-80-187 70-72-74-81-187
10 68-70-72-74-78-80-86-88-103-187 68-70-72-74-78-80-86-88-103-187
15 51-68-70-72-74-78-80-83-84-86-88-91-92-103-187 51-68-70-72-74-78-80-83-84-86-89-91-92-103-187

Tables 2 and 3 list the nodes that are interdicted in the scenarios provided in Figure 1. Most

of the nodes interdicted with smaller budget levels are also attacked when the budget levels are

increased. For instance, in Table 2, nodes 72, 74, and 80 are attacked when CR = 50 and b = 3.

These three nodes are also taken out from the network when CR = 50 and b = 10, or 15. For

the scenario with b = 5, two of these nodes (72, 74) are disabled by the interdictor. Similarly, the

frequency of interdicting a single or combinations of network elements in different networks with

different values of b and CR is reported. Based on the interdiction frequency levels in Tables 2

and 3, the decision makers can assess how vulnerable the network elements are under several input
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parameters.

Table 3: Interdicted nodes with varying CR when R=1840

b CR=50 CR=100
1 74 80
3 72-80-187 72-81-187
5 70-72-74-81-187 70-72-74-81-187
10 47-69-70-72-74-79-80-187-311-312 47-69-70-72-74-78-80-103-187-312
15 47-51-69-70-72-74-78-80-86-88-91-92-96-187-312 47-51-69-70-72-74-78-80-86-88-91-93-96-187-312

b CR=150 CR=200
1 81 80
3 72-80-187 72-80-187
5 70-72-74-80-187 70-72-74-81-187
10 47-68-70-72-74-78-80-103-187-312 47-68-70-72-74-78-80-103-187-312
15 47-51-68-70-72-74-78-80-86-88-91-93-187-311-312 47-51-68-70-72-74-78-80-86-88-91-92-187-311-313

Model (6) shows that similar network elements are interdicted under comparable b levels even

though the number of routes in the network (|R|) or cost ratios (CR) are different (i.e. see Tables

2 and 3). Even though solution times increase gradually as the interdictor’s budget (b) and the

number of routes (|R|) increase, our two stage model is solved to optimality within less than 6.3

seconds for the instance with |R| = 1840 and b = 15.

5.3. Rerouting decisions after disruption(s)

In the previous section, we demonstrated how total transportation and delay costs respond to

varying b, CR, and |R|. In this section, we introduce a Google Maps-based tool that displays the

routes along which the unit trains are moving (Xrt) and waiting (Ort) at different time periods 4.

Figure 2 shows mines, plants, and interdicted nodes, as well as the routes along which the trains

are dispatched and delays occurred due to interdictions at a specific time period (4). In order to

display the delays and movements of trains clearly, straight lines represent the routes between mines

and plants. However, in reality, those straight lines stand for shortest paths between selected origin

and destination nodes. Moreover, the more frequently a route is being used, the thicker the“red”

straight line becomes to represent the intensity of the route. Similarly, the more frequently delays

occur on a route, the thicker the “blue” straight line is drawn to highlight the intensity of the delays

on that route. It can be seen that some of the delayed trains represented by blue lines in Figure 2a

at 4 = 5 are dispatched along the routes they have been waiting on at 4 = 10 in Figure 2b and

therefore the color for those routes is changed to red. Finally, grey routes represent the routes that

are not being used or there is no delay being incurred on at that time period.
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(a) Monitoring delayed and moving trains on routes at 4 = 5

(b) Monitoring delayed and moving trains on routes at 4 = 10

Figure 2: |R| = 552, b = 5 and CR=100
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5.4. Impacts of capacity and demand levels

In Section 5.2, it was observed that the impact of an interdictor’s budget (b) has a negligible

impact on the total transportation cost. On the other hand, significant increases are observed

in total delay cost as the budget increases in all scenarios even within the same CR zones (see

Figures 1a and 1b). Being able to measure the capacity of each arc and node enables us to assess

the impacts of interdictions more precisely. Note that arc and node capacity constraints (3c) and

(3d) are already able to assess the capacity of nodes and arcs in terms of unit trains for a given

specific amount of time. For this case study, it is assumed that once a node is interdicted, then

the capacity of incoming and outgoing arcs is also set to zero as well as the capacity of the node

itself. On the other hand, in some situations, it is possible that the same interdiction might affect

the capacity of other non-interdicted nodes and arcs as well (huge explosion, flood etc.). Such

capacity adjustments can be made easily with the help of constraints (3c) and (3d). Moreover, the

same capacity reduction technique can be employed when other trains use the same tracks and rail

yards. In such circumstances, the capacity constraints should be adjusted so that the impacts of

congestion can be reflected in the model.

In order to account for the scenarios mentioned above, Figure 3 illustrates the impacts of inter-

dictions under different demand and node capacity levels for different network sizes when CR = 100.

(a) Increasing the demands of all plants by 100 % (b) Increasing both the demands of all plants and node capac-
ities by 100 % and 50%, respectively

Figure 3: Transportation and delay cost when CR = 100

Figures 3a and 3b illustrate the total transportation and delay costs with respect to the inter-
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dictor’s budget level when demands of all plant nodes are increased by 100 %. In addition, all node

capacities are raised by 50 % to reflect the changes in cost terms in Figure 3b. The effect of budget

level on total transportation cost is at the minimum level in Figures 3a and 3b. However, increases

in demand levels lead to a proportional increase in transportation costs since the number of unit

trains needs to be transported between origin destination pairs is increased.

Due to the increase in demand levels, delay costs also increase due to the congestion at rail

yards and tracks. Moreover, demand increases result in larger delay costs in such a way that the

delay costs for larger and smaller budget levels are brought close together as evidenced in Figure

3a. In addition to the 100 % increase in demand levels, increasing all node capacities by 50 %

reduces the delay costs for the cases when the interdictor’s budget is small (i.e. 1, 3) as shown in

Figure 3b. However, an increase in delay cost is observed when the budget level is high (≥ 5). This

is because increasing demands and/or node capacities enables an interdictor to interdict different

rail elements. Such differences can be seen in Tables A.1 and A.2.

6. Conclusions

This study aims to identify the impacts of vulnerable infrastructure elements in a real rail trans-

portation network. We describe the problem elements and boundaries and discuss the commonly

encountered model formulations in the literature where the vulnerability of the network is the point

of interest. Then, we introduce a new model that is dynamic, discrete, capacitated, and time vary-

ing, as opposed to previous models that are static, continuous, uncapacitated, and time invariant.

The required reformulation to reduce the bi-level max-min problem into a single level max problem

in case of disruptions to the real coal case transportation network is explained. Finally, we analyze

the results of the computational experiments.

One of the main contributions of this paper to the literature is that the proposed mathematical

model captures the movement of unit trains in time and space over a finite time horizon and

identifies the critical nodes in the network whose unavailability causes the largest destruction in

terms of total transportation and delay costs. For instance, Tables 2, 3, A.1 and A.2 list which nodes

are interdicted in different scenarios and therefore we can assess the vulnerability of nodes based

on these interdiction frequencies. The impacts of disruptions on objectives for different scenarios

are demonstrated and rerouting decisions are illustrated via a web-based tool which provides useful

insights for decision makers in planning further activities on the same rail transportation network.
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For each scenario, we are able to demonstrate the number of trains waiting for departure for route

r in time period t (Ort) and the number of trains moving on route r in time period t (Xrt) on a

map.

Another significant contribution is that our results point out that increasing the number of

disruptions has almost no impact on transportation cost whereas, the delay cost due to congestions

in rerouting unit trains dramatically escalates. This is because, the usage of the K-shortest path

algorithm to construct the initial set of routes provides almost identical paths between each origin

and destination pairs in terms of total distance. However, having multiple good alternative routes

is not enough to prevent the delays of unit trains as the number of interdiction increases. Our study

actually assesses the advantages of having multiple good alternative routes on the rail transportation

network to minimize not only the transportation cost but also the delay cost caused by disruptions.

There are several directions that should be considered as next steps in modeling the impacts of

disruptions on the rail network. First, we would like to incorporate the flow of unit trains in the

reverse direction (plants to mines) as well while considering the routing decisions. In the current

problem formulation, empty train flows from plants to mines are not considered. This is because,

in case of disruptions, the operator’s immediate objective is set to re-route the trains to plants with

minimum transportation and congestion cost. After the trains safely arrive in plants, it would be

more reasonable to send them back to the mines with some sort of infrastructure recovery process

models on the network that are not in the scope of this study but will be considered as an extension

to our work.

The second direction is to incorporate the uncertainty associated with the occurrence of disrup-

tions using a stochastic programming framework.

Appendix A. Appendix

Appendix A.1. Trimming Algorithm

Initially, we labeled 8 sub-bituminous coal mines and 23 sub-bituminous coal plants together

with 37 rail yards as primary nodes. The idea behind the trimming algorithm Appendix A.1 is

to label the physical infrastructure (tunnels, bridges etc.) elements as primary nodes. If there is

an infrastructure facility in between O-D pairs, the trimming algorithm makes sure that they are

represented in the set of enumerated routes with start node, end node and the distance in between

these two. Then, all primary components of the network (i.e. tunnels, bridges, plants, mines)
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included in the K-shortest path algorithm are added to the reduced network that is used to test

the two stage interdiction model.

Note that all adjectives (i.e. primary, elementary etc.) before “nodes/arcs” are just used to

differentiate between physical infrastructure elements and mines/plants, railyards on the network.

All nodes and arcs mentioned in this section exist on the network. The following notation describes

some definitions of the terms used in trimming algorithm Appendix A.1.

• Y =set of railyards

• N =set of nodes ”primary nodes”

• B =set of elementary edges without infrastructure element

• Q =set of edges that connect two nodes

• nkij= set of elementary nodes on the kth shortest path between i and j

• akij= set of elementary edges on the kth shortest path between i and j

• mij =the number of paths between i and j

• δkij =the length of the kth shortest path betweeni and j

• dij = length of edge (i, j)

The first two steps connect each primary node to its closest primary node. In the first step,

the algorithm checks if any two primary nodes are connected without any other primary node in

between. If so, the edge connecting that pair of primary node is added to the edge set E (step 1)

and for each member of this set, a dummy path is created (step 2). In step 3, If there is no other

primary node found in between, then the original path is preserved with its original components

(rail line distances, nodes etc.).

After step 2, the primary nodes become connected to one another. However, actual distances

and nodes in between primary nodes are still unknown. In the remaining steps, the algorithm

generates the K-th shortest paths for each O-D pairs connected by arcs in edge set E. During this

stage, infrastructure elements are embedded in the paths ∈ E. This is performed in the following

way. Let (m,n) be an infrastructure element with m as beginning node and n as end node between
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primary node i and j. Then we create and add edges (i,m), (m,n) and (n, j) to Q. Nodes defining

the primary element (m and n), are also added to N as well.

We use start and end node to represent an infrastructure node. This is because we want to make

sure that the nodes connected by links from both end and start nodes are also used to generate

K-shortest paths. At first, representing an infrastructure (bridge, tunnel etc.) by two nodes might

seem to have an impact on the best solution. However, our model makes sure that the interdictor

will never choose to interdict both of them since eliminating one of them is enough to make the

infrastructure not usable.
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Algorithm Appendix A.1 Procedure for constructing a connected network from USCA data

Set N = M ∪ P ∪ Y
Let E = ∅ be an empty set of edges.

1. Connect each node to its closest nodes

for each node pair (i, j) ∈ N such that i 6= j

IF n1
ij does not contain a node in the set N, THEN add (i, j) to E

2. Add dummy paths

for each arc (i, j) ∈ E

add a dummy path from i to j that is composed of the single edge (i, j)

set a
mij+1
ij = (i, j)

set δkij to a large number

3. Add alternates for routes that have vulnerable elementary arcs

for each arc (i, j) ∈ E
Set k = 1
Set interdictionCost=0

while k ≤ mij+1

for each (`, p) ∈ akij ∩B
interdictionCost+=f`m

IF akij ∩B 6= ∅ and interdictionCost≤ b
for each (`,m) ∈ akij ∩B
add (i, `), (`, p), and (p, j) to Q
add ` and p to N
set di` = δ1

i`, d`p = δ1
`p, and dpj = δ1

pj

ELSE

add (i, j) to Q
set dij = δkij
break from while loop

k = k + 1

4. Compute capacity of arcs

for each arc (i, j) ∈ Q

RETURN the graph defined by nodes N , edges Q, and distances (dij)(i,j)
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Table A.1: Interdicted nodes when CR=100 and demands of all plants are increased by 100 %

b |R|=552 |R|=1840
1 80 81
3 70-72-80 70-72-74
5 70-72-74-80-187 70-72-74-80-187
10 70-71-72-73-74-75-80-81-186-187 63-68-70-72-74-78-80-103-187-312
15 68-69-70-71-72-73-74-75-78-79-80-81-102-186-187 47-68-69-70-71-72-73-74-75-78-79-80-81-180-186

Table A.2: Interdicted nodes when CR=100 and demands of all plants and node capacities are increased by 100 %
and 50%, respectively

b |R|=552 |R|=1840
1 73 73
3 70-72-74 72-80-187
5 70-72-74-80-187 70-72-74-81-187
10 69-70-72-74-78-80-86-88-103-187 47-68-70-72-74-78-80-103-187-312
15 51-69-70-72-74-78-80-83-84-86-88-91-93-102-187 47-51-68-70-72-74-78-80-86-88-91-92-96-187-312
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