518 research outputs found

    A numerical study of detonation diffraction

    Get PDF
    An investigation of detonation diffraction through an abrupt area change has been carried out via a set of two-dimensional numerical simulations parameterized by the activation energy of the reactant. Our analysis is specialized to a reactive mixture with a perfect gas equation of state and a single-step reaction in the Arrhenius form. Lagrangian particles are injected into the flow as a diagnostic tool for identifying the dominant terms in the equation that describes the temperature rate of change of a fluid element, expressed in the shock-based reference system. When simplified, this equation provides insight into the competition between the energy release rate and the expansion rate behind the diffracting front. The mechanism of spontaneous generation of transverse waves along the diffracting front is carefully analysed and related to the sensitivity of the reaction rate to temperature. We study in detail three highly resolved cases of detonation diffraction that illustrate different types of behaviour, super-, sub- and near-critical diffraction

    A stability index for detonation waves in Majda's model for reacting flow

    Full text link
    Using Evans function techniques, we develop a stability index for weak and strong detonation waves analogous to that developed for shock waves in [GZ,BSZ], yielding useful necessary conditions for stability. Here, we carry out the analysis in the context of the Majda model, a simplified model for reacting flow; the method is extended to the full Navier-Stokes equations of reacting flow in [Ly,LyZ]. The resulting stability condition is satisfied for all nondegenerate, i.e., spatially exponentially decaying, weak and strong detonations of the Majda model in agreement with numerical experiments of [CMR] and analytical results of [Sz,LY] for a related model of Majda and Rosales. We discuss also the role in the ZND limit of degenerate, subalgebraically decaying weak detonation and (for a modified, ``bump-type'' ignition function) deflagration profiles, as discussed in [GS.1-2] for the full equations.Comment: 36 pages, 3 figure

    Modelling of non-ideal steady detonations

    Get PDF
    Steady state detonations of rate-stick explosives can be modelled via a streamline based approach. The Straight Streamline Approximation (SSA) is a method for predicting the shape of the shock front and sonic surface for an explosive rate-stick. The SSA model is implemented with different explosives models to verify its ability to accurately match high resolution Direct Numerical Simulations (DNS) beyond the simple polytropic EOS (equation of state) and power law reaction rate models. For explosive models using a reaction rate with an induction zone it shown that the SSA is unable to capture diameter effect curves when compared with DNS. The CREST model is implemented into the ZND and Wood-Kirkwood steady- state detonation models. Implementing the CREST model into the steady-state models required the development of a thermodynamic relation not published before. Rate- stick calculations are performed for the SSA model and compared with DNS for various explosive models. With a realistic equation of state there is a limit on the boundary that the SSA model can integrate to, beyond this the streamlines begin to converge and the model equations break down. This places a limit on the SSA’s modelling capabilities not previously reported. Equations for the post-shock streamline curvature with a reaction term are devel- oped. The streamline curvature is calculated for a polytropic EOS with and without reaction at the shock. It is shown that when reaction is a maximum at the shock the magnitude of the streamline curvature is reduced and, in some cases, changes the sign of the curvature. With no reaction at the shock the streamline curvature is signifi- cantly larger. Moreover DNS shows that the streamlines are more curved for reaction rates with induction zones when compared to simple power law reaction rates. The implications for the SSA’s validity are discussed

    Numerical modelling of steady detonations with the CREST reactive burn model

    Get PDF
    Watt et al. [J Eng Math 75(1):1–14, 2012] have shown that one can obtain good results for the propagation of detonation waves in cylindrical charges by assuming that the post-shock streamlines are straight. In this paper, we compare this Straight Streamline Approximation (SSA) to high-resolution Direct Numerical Simulations (DNS) for different models of explosives. We find that the SSA is less accurate for realistic explosion models than it is for polytropic equations of state with power-law reaction rates

    Collider and Gravitational Wave Complementarity in Exploring the Singlet Extension of the Standard Model

    Full text link
    We present a dedicated complementarity study of gravitational wave and collider measurements of the simplest extension of the Higgs sector: the singlet scalar augmented Standard Model. We study the following issues: (i) the electroweak phase transition patterns admitted by the model, and the proportion of parameter space for each pattern; (ii) the regions of parameter space that give detectable gravitational waves at future space-based detectors; and (iii) the current and future collider measurements of di-Higgs production, as well as searches for a heavy weak diboson resonance, and how these searches interplay with regions of parameter space that exhibit strong gravitational wave signals. We carefully investigate the behavior of the normalized energy released during the phase transition as a function of the model parameters, address subtle issues pertaining to the bubble wall velocity, and provide a description of different fluid velocity profiles. On the collider side, we identify the subset of points that are most promising in terms of di-Higgs and weak diboson production studies while also giving detectable signals at LISA, setting the stage for future benchmark points that can be used by both communities.Comment: 38 pages, 22 figures. Version published in JHE
    • …
    corecore