3,915 research outputs found

    The Diffraction of Electromagnetic Waves on the Periodic Heterogeneities and Its Use for Realization of Practical Technical and Electronic Devices of Millimeter and Submillimeter Wavelength Range

    Get PDF
    Among the open structures, which are used in millimeter and submillimeter (MSM) wave engineering, diffraction gratings (DG) made in different modifications (periodic metal and metal-dielectric structures (MDS)) are of primary importance along with open cavities and open waveguides. Such systems are basic in the design of electromagnetic oscillation sources and electronic components of different instrumentation of such wavelength range. If there is a diffraction of electromagnetic fields by DG, “two-act” wave transformation usually takes place. When homogeneous plane wave falls on the plane one-dimensionally periodic grating, scattered field can be considered as a spectrum of homo- and heterogeneous plane waves. In this case body (incident) plane wave is transformed into body (scattered) homogeneous plane and heterogeneous (surface) waves and, thus, “two-act” transformation occurs. This type of the boundary-value problems has been thoroughly studied in the work and partly realized in the experiment. In addition, processes of surface wave transformation of distributed sources into body waves by periodic heterogeneities are of special interest. Such phenomenon can be watched when an electron beam (EB) moves uniformly near the metal DG or periodic MDS. In this case self-surface field of the EB is scattered by DG and at least one of its harmonics is transformed into body wave of the diffraction radiation or Cherenkov radiation. It should be noted, that transformation of the surface wave of EB by DG into the diffraction radiation is also an example of the “two-act” diffraction process. In addition, phenomena, connected with the transformation of DG of the surface waves of a dielectric waveguide (DW), play a great role in MSM engineering. In this case surface waves of a DW are transformed by the DG into surface waves of the DW or into body waves separated from them. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3426

    Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids

    Full text link
    Se cree que la medicina in silico supondrá uno de los cambios más disruptivos en el futuro próximo. A lo largo de la última década se ha invertido un gran esfuerzo en el desarrollo de modelos computacionales predictivos para mejorar el poder de diagnóstico de los médicos y la efectividad de las terapias. Un punto clave de esta revolución, será la personalización, que conlleva en la mayoría de los casos, la creación de modelos computacionales específicos de paciente, también llamados gemelos digitales. Esta práctica está actualmente extendida en la investigación y existen en el mercado varias herramientas de software que permiten obtener modelos a partir de imágenes. A pesar de eso, para poderse usar en la práctica clínica, estos métodos se necesita reducir drásticamente el tiempo y el trabajo humano necesarios para la creación de los modelos numéricos. Esta tésis se centra en la propuesta de la versión basada en imágenes del Cartesian grid Finite Element Method (cgFEM), una técnica para obtener de forma automática modelos a partir de imágenes y llevar a cabo análisis estructurales lineales de huesos, implantes o materiales heterogéneos. En la técnica propuesta, tras relacionar la escala de los datos de la imágen con valores de propiedades mecánicas, se usa toda la información contenida en los píxeles para evaluar las matrices de rigidez de los elementos que homogenizan el comportamiento elástico de los grupos de píxeles contenidos en cada elemento. Se h-adapta una malla cartesiana inicialmente uniforme a las características de la imágen usando un procedimiento eficiente que tiene en cuenta las propiedades elásticas locales asociadas a los valores de los píxeles. Con eso, se evita un suavizado excesivo de las propiedades elásticas debido a la integración de los elementos en áreas altamente heterogéneas, pero, no obstante, se obtienen modelos finales con un número razonable de grados de libertad. El resultado de este proceso es una malla no conforme en la que se impone la continudad C0 de la solución mediante restricciones multi-punto en los hanging nodes. Contrariamente a los procedimientos estandar para la creación de modelos de Elementos Finitos a partir de imágenes, que normalmente requieren la definición completa y watertight de la geometrá y tratan el resultado como un CAD estandar, con cgFEM no es necesario definir ninguna entidad geométrica dado que el procedimiento propuesto conduce a una definición implícita de los contornos. Sin embargo, es inmediato incluirlas en el modelo en el caso de que sea necesario, como por ejemplo superficies suaves para imponer condiciones de contorno de forma más precisa o volúmenes CAD de dispositivos para la simulación de implantes. Como consecuencia de eso, la cantidad de trabajo humano para la creación de modelos se reduce drásticamente. En esta tesis, se analiza en detalles el comportamiento del nuevo método en problemas 2D y 3D a partir de CT-scan y radiográfias sintéticas y reales, centrandose en tres clases de problemas. Estos incluyen la simulación de huesos, la caracterización de materiales a partir de TACs, para lo cual se ha desarrollado la cgFEM virtual characterisation technique, y el análisis estructural de futuros implantes, aprovechando la capacidad del cgFEM de combinar fácilmente imágenes y modelos de CAD.Es creu que la medicina in silico suposarà un dels canvis més disruptius en el futur pròxim. Al llarg de l'última dècada, s'ha invertit un gran esforç en el desenvolupament de models computacionals predictius per millorar el poder de diagnòstic dels metges i l'efectivitat de les teràpies. Un punt clau d'aquesta revolució, serà la personalització, que comporta en la majoria dels casos la creació de models computacionals específics de pacient. Aquesta pràctica està actualment estesa en la investigació i hi ha al mercat diversos software que permeten obtenir models a partir d'imatges. Tot i això, per a poder-se utilitzar en la pràctica clínica aquests métodes es necessita reduir dràsticament el temps i el treball humà necessaris per a la seva creació. Aquesta tesi es centra en la proposta d'una versió basada en imatges del Cartesian grid Finite Element Method (cgFEM), una técnica per obtenir de forma automàticament models a partir d'imatges i dur a terme anàlisis estructurals lineals d'ossos, implants o materials heterogenis. Després de relacionar l'escala del imatge a propietats macàniques corresponents, s'usa tota la informació continguda en els píxels per a integrar les matrius de rigidesa dels elements que homogeneïtzen el comportament elàstic dels grups de píxels continguts en cada element. Es emphh-adapta una malla inicialment uniforme a les característiques de la imatge usant un procediment eficient que té en compte les propietats elàstiques locals associades als valors dels píxels. Amb això, s'evita un suavitzat excessiu de les propietats elàstiques a causa de la integració dels elements en àrees altament heterogénies, però, tot i això, s'obtenen models finals amb un nombre raonable de graus de llibertat. El resultat d'aquest procés és una malla no conforme en la qual s'imposa la continuïtat C0 de la solució mitjançant restriccions multi-punt en els hanging nodes. Contràriament als procediments estàndard per a la creació de models d'Elements finits a partir d'imatges, que normalment requereixen la definició completa i watertight de la geometria i tracten el resultat com un CAD estàndard, amb cgFEM no cal definir cap entitat geométrica. No obstant això, és immediat incloure-les en el model en el cas que sigui necessari, com ara superfícies suaus per imposar condicions de contorn de forma més precisa o volums CAD de dispositius per a la simulació d'implants. Com a conseqüéncia d'això, la quantitat de treball humà per a la creació de models es redueix dràsticament. En aquesta tesi, s'analitza en detalls el comportament del nou métode en problemes 2D i 3D a partir de CT-scan i radiografies sintétiques i reals, centrant-se en tres classes de problemes. Aquestes inclouen la simulació d'ossos, la caracterització de materials a partir de TACs, per a la qual s'ha desenvolupat la cgFEM virtual characterisation technique, i l'anàlisi estructural de futurs implants, aprofitant la capacitat del cgFEM de combinar fàcilment imatges i models de CAD.In silico medicine is believed to be one of the most disruptive changes in the near future. A great effort has been carried out during the last decade to develop predicting computational models to increase the diagnostic capabilities of medical doctors and the effectiveness of therapies. One of the key points of this revolution, will be personalisation, which means in most of the cases creating patient specific computational models, also called digital twins. This practice is currently wide-spread in research and there are quite a few software products in the market to obtain models from images. Nevertheless, in order to be usable in the clinical practice, these methods have to drastically reduce the time and human intervention required for the creation of the numerical models. This thesis focuses on the proposal of image-based Cartesian grid Finite Element Method (cgFEM), a technique to automatically obtain numerical models from images and carry out linear structural analyses of bone, implants or heterogeneous materials. In the method proposed in this thesis, after relating the image scale to corresponding elastic properties, all the pixel information will be used for the integration of the element stiffness matrices, which homogenise the elastic behaviour of the groups of pixels contained in each element. An initial uniform Cartesian mesh is h-adapted to the image characteristics by using an efficient refinement procedure which takes into account the local elastic properties associated to the pixel values. Doing so we avoid an excessive elastic property smoothing due to element integration in highly heterogeneous areas, but, nonetheless obtain final models with a reasonable number of degrees of freedom. The result of the process is non-conforming mesh in which C0 continuity is enforced via multipoint constraints at the hanging nodes. In contrast to the standard procedures for the creation of Finite Element models from images, which usually require a complete and watertight definition of the geometry and treat the result as a standard CAD, with cgFEM it is not necessary to define any geometrical entity, as the procedure proposed leads to an implicit definition of the boundaries. Nonetheless, they are straightforward to include in the model if necessary, such as smooth surfaces to impose the boundary conditions more precisely or CAD device volumes for the simulation of implants. As a consequence, the amount of human work required for the creation of the numerical models is drastically reduced. In this thesis, we analyse in detail the new method behaviour in 2D and 3D problems from CT-scans and X-ray images and synthetic images, focusing on three classes of problems. These include the simulation of bones, the material characterisation of solid foams from CT scans, for which we developed the cgFEM virtual characterisation technique, and the structural analysis of future implants, taking advantage of the capability of cgFEM to easily mix images and CAD models.Giovannelli, L. (2018). Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113644TESI

    Cloud geometry for passive remote sensing

    Get PDF
    An important cause for disagreements between current climate models is lack of understanding of cloud processes. In order to test and improve the assumptions of such models, detailed and large scale observations of clouds are necessary. Passive remote sensing methods are well-established to obtain cloud properties over a large observation area in a short period of time. In case of the visible to near infrared part of the electromagnetic spectrum, a quick measurement process is achieved by using the sun as high-intensity light source to illuminate a cloud scene and by taking simultaneous measurements on all pixels of an imaging sensor. As the sun as light source can not be controlled, it is not possible to measure the time light travels from source to cloud to sensor, which is how active remote sensing determines distance information. But active light sources do not provide enough radiant energy to illuminate a large scene, which would be required to observe it in an instance. Thus passive imaging remains an important remote sensing method. Distance information and accordingly cloud surface location information is nonetheless crucial information: cloud fraction and cloud optical thickness largely determines the cloud radiative effect and cloud height primarily influences a cloud's influence on the Earth's thermal radiation budget. In combination with ever increasing spatial resolution of passive remote sensing methods, accurate cloud surface location information becomes more important, as the largest source of retrieval uncertainties at this spatial scale, influences of 3D radiative transfer effects, can be reduced using this information. This work shows how the missing location information is derived from passive remote sensing. Using all sensors of the improved hyperspectral and polarization resolving imaging system specMACS, a unified dataset, including classical hyperspectral measurements as well as cloud surface location information and derived properties, is created. This thesis shows how RGB cameras are used to accurately derive cloud surface geometry using stereo techniques, complementing the passive remote sensing of cloud microphysics on board the German High-Altitude Long-Range research aircraft (HALO). Measured surface locations are processed into a connected surface representation, which in turn is used to assign height and location to other passive remote sensing observations. Furthermore, cloud surface orientation and a geometric shadow mask are derived, supplementing microphysical retrieval methods. The final system is able to accurately map visible cloud surfaces while flying above cloud fields. The impact of the new geometry information on microphysical retrieval uncertainty is studied using theoretical radiative transfer simulations and measurements. It is found that in some cases, information about surface orientation allows to improve classical cloud microphysical retrieval methods. Furthermore, surface information helps to identify measurement regions where a good microphysical retrieval quality is expected. By excluding likely biased regions, the overall microphysical retrieval uncertainty can be reduced. Additionally, using the same instrument payload and based on knowledge of the 3D cloud surface, new approaches for the retrieval of cloud droplet radius exploiting measurements of parts of the polarized angular scattering phase function become possible. The necessary setup and improvements of the hyperspectral and polarization resolving measurement system specMACS, which have been developed throughout four airborne field campaigns using the HALO research aircraft are introduced in this thesis.Ein wichtiger Grund für Unterschiede zwischen aktuellen Klimamodellen sind nicht ausreichend verstandene Wolkenprozesse. Um die zugrundeliegenden Annahmen dieser Modelle zu testen und zu verbessern ist es notwendig detaillierte und großskalige Beobachtungen von Wolken durch zu führen. Methoden der passiven Fernerkundung haben sich für die schnelle Erfassung von Wolkeneigenschaften in einem großen Beobachtungsgebiet etabliert. Für den sichtbaren bis nahinfraroten Bereich des elektromagnetischen Spektrums kann eine schnelle Messung erreicht werden, in dem die Sonne als starke Lichtquelle genutzt wird und die Wolkenszene durch simultane Messung über alle Pixel eines Bildsensors erfasst wird. Da die Sonne als Lichtquelle nicht gesteuert werden kann, ist es nicht möglich die Zeit zu messen die von einem Lichtstrahl für den Weg von der Quelle zur Wolke und zum Sensor benötigt wird, so wie es bei aktiven Verfahren zur Distanzbestimmung üblich ist. Allerdings können aktive Lichtquellen nicht genügend Energie bereitstellen um eine große Szene gut genug zu beleuchten um diese Szene in einem kurzen Augenblick vollständig zu erfassen. Aus diesem Grund werden passive bildgebende Verfahren weiterhin eine wichtige Methode zur Fernerkundung bleiben. Trotzdem ist der Abstand zur beobachteten Wolke und damit der Ort der Wolke eine entscheidende Information: Wolkenbedeckungsgrad und die optische Dicke einer Wolke bestimmen einen Großteil des Strahlungseffektes von Wolken und die Höhe der Wolken ist der Haupteinflussfaktor von Wolken auf die thermische Strahlungsbilanz der Erde. Einhergehend mit der weiterhin zunehmenden Auflösung von passiven Fernerkundungsmethoden werden genaue Informationen über den Ort von Wolkenoberflächen immer wichtiger. Dreidimensionale Strahlungstransporteffekte werden auf kleineren räumlichen Skalen zum dominierenden Faktor für Fehler in Messverfahren für Wolkenmikrophysik. Dieser Einfluss auf die Messverfahren kann durch die Nutzung von Informationen über die Lage der Wolken reduziert und die Ergebnisse somit verbessert werden. Diese Arbeit zeigt, wie die fehlenden Ortsinformationen aus passiven Fernerkundungsmethoden gewonnen werden können. Damit kann ein vereinheitlichter Datensatz aller Sensoren des verbesserten specMACS-Systems für hyperspektrale und polarisationsaufgelöste Bilderfassung erstellt werden, in dem außer den gemessenen Strahlungsdichten auch die Positionen der beobachteten Wolkenoberflächen und daraus abgeleitete Größen enthalten sind. In dieser Arbeit wird gezeigt, wie RGB-Kameras genutzt werden, um mit Hilfe stereographischer Techniken die Geometrie der beobachteten Wolken ab zu leiten und so die Möglichkeiten zur passiven Fernerkundung auf dem Forschungsflugzeug HALO zu erweitern. Aus den so gemessenen Positionen der Wolkenoberflächen wird eine geschlossene Darstellung der Wolkenoberflächen berechnet. Dies ermöglicht es die Daten aus anderen passiven Fernerkundungsmethoden um Höhe und Ort der Messung zu erweitern. Außerdem ist es so möglich die Orientierung der Wolkenoberflächen und eine Schattenmaske auf Grund der nun bekannten Beobachtungsgeometrie zu berechnen. Das fertige System ist in der Lage, die sichtbaren Wolkenoberflächen aus Daten von einem Überflug zu rekonstruieren. Mit Hilfe theoretischer Strahlungstransportsimulationen und Messungen wird der Einfluss der neu gewonnenen Informationen auf bestehende Rekonstruktionsmethoden für Wolkenmikrophysik untersucht. In manchen Fällen helfen die neu gewonnenen Informationen direkt die Ergebnisse dieser Methoden zu verbessern und in jedem Fall ermöglichen es die Positionsdaten Bereiche zu identifizieren für die bekannt ist, dass bisherige Rekonstruktionsmethoden nicht funktionieren. Durch Ausschluss solcher Bereiche wird der Gesamtfehler von Mirkophysikrekonstruktionen weiterhin reduziert. Das aktuelle specMACS System ermöglicht auch polarisationsaufgelöste Messungen, wodurch eine sehr genaue Bestimmung der Wolkentropfengrößen möglich wird. Die nun verfügbaren Positionsdaten der Wolkenoberflächen helfen die Genauigkeit dieses Verfahrens deutlich zu verbessern. Die notwendigen Auf- und Umbauten des hyperspektralen und polarisationsauflösenden Messsystems specMACS, die während vier Flugzeuggestützer Messkampagnen auf dem Forschungsflugzeug HALO entwickelt wurden sind in dieser Arbeit beschrieben

    Simulation of pore-scale flow using finite element-methods

    No full text
    I present a new finite element (FE) simulation method to simulate pore-scale flow. Within the pore-space, I solve a simplified form of the incompressible Navier-Stoke’s equation, yielding the velocity field in a two-step solution approach. First, Poisson’s equation is solved with homogeneous boundary conditions, and then the pore pressure is computed and the velocity field obtained for no slip conditions at the grain boundaries. From the computed velocity field I estimate the effective permeability of porous media samples characterized by thin section micrographs, micro-CT scans and synthetically generated grain packings. This two-step process is much simpler than solving the full Navier Stokes equation and therefore provides the opportunity to study pore geometries with hundreds of thousands of pores in a computationally more cost effective manner than solving the full Navier-Stoke’s equation. My numerical model is verified with an analytical solution and validated on samples whose permeabilities and porosities had been measured in laboratory experiments (Akanji and Matthai, 2010). Comparisons were also made with Stokes solver, published experimental, approximate and exact permeability data. Starting with a numerically constructed synthetic grain packings, I also investigated the extent to which the details of pore micro-structure affect the hydraulic permeability (Garcia et al., 2009). I then estimate the hydraulic anisotropy of unconsolidated granular packings. With the future aim to simulate multiphase flow within the pore-space, I also compute the radii and derive capillary pressure from the Young-Laplace equation (Akanji and Matthai,2010

    Cloud geometry for passive remote sensing

    Get PDF
    An important cause for disagreements between current climate models is lack of understanding of cloud processes. In order to test and improve the assumptions of such models, detailed and large scale observations of clouds are necessary. Passive remote sensing methods are well-established to obtain cloud properties over a large observation area in a short period of time. In case of the visible to near infrared part of the electromagnetic spectrum, a quick measurement process is achieved by using the sun as high-intensity light source to illuminate a cloud scene and by taking simultaneous measurements on all pixels of an imaging sensor. As the sun as light source can not be controlled, it is not possible to measure the time light travels from source to cloud to sensor, which is how active remote sensing determines distance information. But active light sources do not provide enough radiant energy to illuminate a large scene, which would be required to observe it in an instance. Thus passive imaging remains an important remote sensing method. Distance information and accordingly cloud surface location information is nonetheless crucial information: cloud fraction and cloud optical thickness largely determines the cloud radiative effect and cloud height primarily influences a cloud's influence on the Earth's thermal radiation budget. In combination with ever increasing spatial resolution of passive remote sensing methods, accurate cloud surface location information becomes more important, as the largest source of retrieval uncertainties at this spatial scale, influences of 3D radiative transfer effects, can be reduced using this information. This work shows how the missing location information is derived from passive remote sensing. Using all sensors of the improved hyperspectral and polarization resolving imaging system specMACS, a unified dataset, including classical hyperspectral measurements as well as cloud surface location information and derived properties, is created. This thesis shows how RGB cameras are used to accurately derive cloud surface geometry using stereo techniques, complementing the passive remote sensing of cloud microphysics on board the German High-Altitude Long-Range research aircraft (HALO). Measured surface locations are processed into a connected surface representation, which in turn is used to assign height and location to other passive remote sensing observations. Furthermore, cloud surface orientation and a geometric shadow mask are derived, supplementing microphysical retrieval methods. The final system is able to accurately map visible cloud surfaces while flying above cloud fields. The impact of the new geometry information on microphysical retrieval uncertainty is studied using theoretical radiative transfer simulations and measurements. It is found that in some cases, information about surface orientation allows to improve classical cloud microphysical retrieval methods. Furthermore, surface information helps to identify measurement regions where a good microphysical retrieval quality is expected. By excluding likely biased regions, the overall microphysical retrieval uncertainty can be reduced. Additionally, using the same instrument payload and based on knowledge of the 3D cloud surface, new approaches for the retrieval of cloud droplet radius exploiting measurements of parts of the polarized angular scattering phase function become possible. The necessary setup and improvements of the hyperspectral and polarization resolving measurement system specMACS, which have been developed throughout four airborne field campaigns using the HALO research aircraft are introduced in this thesis.Ein wichtiger Grund für Unterschiede zwischen aktuellen Klimamodellen sind nicht ausreichend verstandene Wolkenprozesse. Um die zugrundeliegenden Annahmen dieser Modelle zu testen und zu verbessern ist es notwendig detaillierte und großskalige Beobachtungen von Wolken durch zu führen. Methoden der passiven Fernerkundung haben sich für die schnelle Erfassung von Wolkeneigenschaften in einem großen Beobachtungsgebiet etabliert. Für den sichtbaren bis nahinfraroten Bereich des elektromagnetischen Spektrums kann eine schnelle Messung erreicht werden, in dem die Sonne als starke Lichtquelle genutzt wird und die Wolkenszene durch simultane Messung über alle Pixel eines Bildsensors erfasst wird. Da die Sonne als Lichtquelle nicht gesteuert werden kann, ist es nicht möglich die Zeit zu messen die von einem Lichtstrahl für den Weg von der Quelle zur Wolke und zum Sensor benötigt wird, so wie es bei aktiven Verfahren zur Distanzbestimmung üblich ist. Allerdings können aktive Lichtquellen nicht genügend Energie bereitstellen um eine große Szene gut genug zu beleuchten um diese Szene in einem kurzen Augenblick vollständig zu erfassen. Aus diesem Grund werden passive bildgebende Verfahren weiterhin eine wichtige Methode zur Fernerkundung bleiben. Trotzdem ist der Abstand zur beobachteten Wolke und damit der Ort der Wolke eine entscheidende Information: Wolkenbedeckungsgrad und die optische Dicke einer Wolke bestimmen einen Großteil des Strahlungseffektes von Wolken und die Höhe der Wolken ist der Haupteinflussfaktor von Wolken auf die thermische Strahlungsbilanz der Erde. Einhergehend mit der weiterhin zunehmenden Auflösung von passiven Fernerkundungsmethoden werden genaue Informationen über den Ort von Wolkenoberflächen immer wichtiger. Dreidimensionale Strahlungstransporteffekte werden auf kleineren räumlichen Skalen zum dominierenden Faktor für Fehler in Messverfahren für Wolkenmikrophysik. Dieser Einfluss auf die Messverfahren kann durch die Nutzung von Informationen über die Lage der Wolken reduziert und die Ergebnisse somit verbessert werden. Diese Arbeit zeigt, wie die fehlenden Ortsinformationen aus passiven Fernerkundungsmethoden gewonnen werden können. Damit kann ein vereinheitlichter Datensatz aller Sensoren des verbesserten specMACS-Systems für hyperspektrale und polarisationsaufgelöste Bilderfassung erstellt werden, in dem außer den gemessenen Strahlungsdichten auch die Positionen der beobachteten Wolkenoberflächen und daraus abgeleitete Größen enthalten sind. In dieser Arbeit wird gezeigt, wie RGB-Kameras genutzt werden, um mit Hilfe stereographischer Techniken die Geometrie der beobachteten Wolken ab zu leiten und so die Möglichkeiten zur passiven Fernerkundung auf dem Forschungsflugzeug HALO zu erweitern. Aus den so gemessenen Positionen der Wolkenoberflächen wird eine geschlossene Darstellung der Wolkenoberflächen berechnet. Dies ermöglicht es die Daten aus anderen passiven Fernerkundungsmethoden um Höhe und Ort der Messung zu erweitern. Außerdem ist es so möglich die Orientierung der Wolkenoberflächen und eine Schattenmaske auf Grund der nun bekannten Beobachtungsgeometrie zu berechnen. Das fertige System ist in der Lage, die sichtbaren Wolkenoberflächen aus Daten von einem Überflug zu rekonstruieren. Mit Hilfe theoretischer Strahlungstransportsimulationen und Messungen wird der Einfluss der neu gewonnenen Informationen auf bestehende Rekonstruktionsmethoden für Wolkenmikrophysik untersucht. In manchen Fällen helfen die neu gewonnenen Informationen direkt die Ergebnisse dieser Methoden zu verbessern und in jedem Fall ermöglichen es die Positionsdaten Bereiche zu identifizieren für die bekannt ist, dass bisherige Rekonstruktionsmethoden nicht funktionieren. Durch Ausschluss solcher Bereiche wird der Gesamtfehler von Mirkophysikrekonstruktionen weiterhin reduziert. Das aktuelle specMACS System ermöglicht auch polarisationsaufgelöste Messungen, wodurch eine sehr genaue Bestimmung der Wolkentropfengrößen möglich wird. Die nun verfügbaren Positionsdaten der Wolkenoberflächen helfen die Genauigkeit dieses Verfahrens deutlich zu verbessern. Die notwendigen Auf- und Umbauten des hyperspektralen und polarisationsauflösenden Messsystems specMACS, die während vier Flugzeuggestützer Messkampagnen auf dem Forschungsflugzeug HALO entwickelt wurden sind in dieser Arbeit beschrieben

    Analyses of stone surfaces by optical methods

    Get PDF
    Ornamental stone products are generally used for decorative cladding. A major quality parameter is their aesthetical appearance, which directly impacts their commercial value. The surface quality of stone products depends on the presence of defects both due to the unpredictability of natural materials and to the actual manufacturing process. This work starts reviewing the literature about optical methods for stone surface inspection. A classification is then proposed focusing on their industrial applicability in order to provide a guideline for future investigations. Three innovative systems are proposed and described in details: a vision system, an optical profilometer and a reflectometer for the inspection of polished, bush-hammered, sand-blasted, flame-finished, waterjet processed, and laser engraved surfaces

    Finite element analysis of particle rebound characteristics

    Get PDF
    In the present thesis, a study about the particle rebound characteristics is presented. The rebound of a spherical particle was analyzed in details and specifically the coefficient of restitution of a sphere colliding to a planar surface was investigated. This study has been conducted by carrying out a series of finite element simulations using the software package ANSYS Autodyn. In the first part of the work, a summary about the existing studies and the theoretical models is done. While the theoretical model for the elastic collisions was applied and validated, predicting the coefficient of restitution for collisions where plastic deformation is a more complex task. In the second part, the experimental results of an aluminum oxide particle colliding to an aluminum alloy target surface are provided. Using a finite element analysis software these results are reproduced. The selection of the equation of state and the strength model for each material has a strong role in the results. For both materials, the Shock equation of state is used. For the strength model, the Johnson-Cook and the Elastic model provided by the software are respectively used. The coincidence of the results obtained with the experimental values, confirm that the model proposed with ANSYS Autodyn fits the real behavior of the particle and therefore, it is validated to analyze other parameters. By fixing the velocity to 3.85 m/s and varying the impact angle, the effect of this second variable in the rebound is observed. To check how the impact velocity affects the rebound, the impact angle is set to 30º and 60º and the velocity is changed. After run of these simulations, the influence of the parameters such as the initial velocity, the impact angle or the coefficient of friction was obtained and analyzed

    Curve Skeleton and Moments of Area Supported Beam Parametrization in Multi-Objective Compliance Structural Optimization

    Get PDF
    This work addresses the end-to-end virtual automation of structural optimization up to the derivation of a parametric geometry model that can be used for application areas such as additive manufacturing or the verification of the structural optimization result with the finite element method. A holistic design in structural optimization can be achieved with the weighted sum method, which can be automatically parameterized with curve skeletonization and cross-section regression to virtually verify the result and control the local size for additive manufacturing. is investigated in general. In this paper, a holistic design is understood as a design that considers various compliances as an objective function. This parameterization uses the automated determination of beam parameters by so-called curve skeletonization with subsequent cross-section shape parameter estimation based on moments of area, especially for multi-objective optimized shapes. An essential contribution is the linking of the parameterization with the results of the structural optimization, e.g., to include properties such as boundary conditions, load conditions, sensitivities or even density variables in the curve skeleton parameterization. The parameterization focuses on guiding the skeletonization based on the information provided by the optimization and the finite element model. In addition, the cross-section detection considers circular, elliptical, and tensor product spline cross-sections that can be applied to various shape descriptors such as convolutional surfaces, subdivision surfaces, or constructive solid geometry. The shape parameters of these cross-sections are estimated using stiffness distributions, moments of area of 2D images, and convolutional neural networks with a tailored loss function to moments of area. Each final geometry is designed by extruding the cross-section along the appropriate curve segment of the beam and joining it to other beams by using only unification operations. The focus of multi-objective structural optimization considering 1D, 2D and 3D elements is on cases that can be modeled using equations by the Poisson equation and linear elasticity. This enables the development of designs in application areas such as thermal conduction, electrostatics, magnetostatics, potential flow, linear elasticity and diffusion, which can be optimized in combination or individually. Due to the simplicity of the cases defined by the Poisson equation, no experts are required, so that many conceptual designs can be generated and reconstructed by ordinary users with little effort. Specifically for 1D elements, a element stiffness matrices for tensor product spline cross-sections are derived, which can be used to optimize a variety of lattice structures and automatically convert them into free-form surfaces. For 2D elements, non-local trigonometric interpolation functions are used, which should significantly increase interpretability of the density distribution. To further improve the optimization, a parameter-free mesh deformation is embedded so that the compliances can be further reduced by locally shifting the node positions. Finally, the proposed end-to-end optimization and parameterization is applied to verify a linear elasto-static optimization result for and to satisfy local size constraint for the manufacturing with selective laser melting of a heat transfer optimization result for a heat sink of a CPU. For the elasto-static case, the parameterization is adjusted until a certain criterion (displacement) is satisfied, while for the heat transfer case, the manufacturing constraints are satisfied by automatically changing the local size with the proposed parameterization. This heat sink is then manufactured without manual adjustment and experimentally validated to limit the temperature of a CPU to a certain level.:TABLE OF CONTENT III I LIST OF ABBREVIATIONS V II LIST OF SYMBOLS V III LIST OF FIGURES XIII IV LIST OF TABLES XVIII 1. INTRODUCTION 1 1.1 RESEARCH DESIGN AND MOTIVATION 6 1.2 RESEARCH THESES AND CHAPTER OVERVIEW 9 2. PRELIMINARIES OF TOPOLOGY OPTIMIZATION 12 2.1 MATERIAL INTERPOLATION 16 2.2 TOPOLOGY OPTIMIZATION WITH PARAMETER-FREE SHAPE OPTIMIZATION 17 2.3 MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION WITH THE WEIGHTED SUM METHOD 18 3. SIMULTANEOUS SIZE, TOPOLOGY AND PARAMETER-FREE SHAPE OPTIMIZATION OF WIREFRAMES WITH B-SPLINE CROSS-SECTIONS 21 3.1 FUNDAMENTALS IN WIREFRAME OPTIMIZATION 22 3.2 SIZE AND TOPOLOGY OPTIMIZATION WITH PERIODIC B-SPLINE CROSS-SECTIONS 27 3.3 PARAMETER-FREE SHAPE OPTIMIZATION EMBEDDED IN SIZE OPTIMIZATION 32 3.4 WEIGHTED SUM SIZE AND TOPOLOGY OPTIMIZATION 36 3.5 CROSS-SECTION COMPARISON 39 4. NON-LOCAL TRIGONOMETRIC INTERPOLATION IN TOPOLOGY OPTIMIZATION 41 4.1 FUNDAMENTALS IN MATERIAL INTERPOLATIONS 43 4.2 NON-LOCAL TRIGONOMETRIC SHAPE FUNCTIONS 45 4.3 NON-LOCAL PARAMETER-FREE SHAPE OPTIMIZATION WITH TRIGONOMETRIC SHAPE FUNCTIONS 49 4.4 NON-LOCAL AND PARAMETER-FREE MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION 54 5. FUNDAMENTALS IN SKELETON GUIDED SHAPE PARAMETRIZATION IN TOPOLOGY OPTIMIZATION 58 5.1 SKELETONIZATION IN TOPOLOGY OPTIMIZATION 61 5.2 CROSS-SECTION RECOGNITION FOR IMAGES 66 5.3 SUBDIVISION SURFACES 67 5.4 CONVOLUTIONAL SURFACES WITH META BALL KERNEL 71 5.5 CONSTRUCTIVE SOLID GEOMETRY 73 6. CURVE SKELETON GUIDED BEAM PARAMETRIZATION OF TOPOLOGY OPTIMIZATION RESULTS 75 6.1 FUNDAMENTALS IN SKELETON SUPPORTED RECONSTRUCTION 76 6.2 SUBDIVISION SURFACE PARAMETRIZATION WITH PERIODIC B-SPLINE CROSS-SECTIONS 78 6.3 CURVE SKELETONIZATION TAILORED TO TOPOLOGY OPTIMIZATION WITH PRE-PROCESSING 82 6.4 SURFACE RECONSTRUCTION USING LOCAL STIFFNESS DISTRIBUTION 86 7. CROSS-SECTION SHAPE PARAMETRIZATION FOR PERIODIC B-SPLINES 96 7.1 PRELIMINARIES IN B-SPLINE CONTROL GRID ESTIMATION 97 7.2 CROSS-SECTION EXTRACTION OF 2D IMAGES 101 7.3 TENSOR SPLINE PARAMETRIZATION WITH MOMENTS OF AREA 105 7.4 B-SPLINE PARAMETRIZATION WITH MOMENTS OF AREA GUIDED CONVOLUTIONAL NEURAL NETWORK 110 8. FULLY AUTOMATED COMPLIANCE OPTIMIZATION AND CURVE-SKELETON PARAMETRIZATION FOR A CPU HEAT SINK WITH SIZE CONTROL FOR SLM 115 8.1 AUTOMATED 1D THERMAL COMPLIANCE MINIMIZATION, CONSTRAINED SURFACE RECONSTRUCTION AND ADDITIVE MANUFACTURING 118 8.2 AUTOMATED 2D THERMAL COMPLIANCE MINIMIZATION, CONSTRAINT SURFACE RECONSTRUCTION AND ADDITIVE MANUFACTURING 120 8.3 USING THE HEAT SINK PROTOTYPES COOLING A CPU 123 9. CONCLUSION 127 10. OUTLOOK 131 LITERATURE 133 APPENDIX 147 A PREVIOUS STUDIES 147 B CROSS-SECTION PROPERTIES 149 C CASE STUDIES FOR THE CROSS-SECTION PARAMETRIZATION 155 D EXPERIMENTAL SETUP 15

    Spatial evolution of the turbulent/turbulent interface geometry in a cylinder wake

    Full text link
    This study aims to examine the spatial evolution of the geometrical features of the turbulent/turbulent interface (TTI) in a cylinder wake. The wake is exposed to various turbulent backgrounds in which the turbulence intensity and the integral length scale are independently varied and comparisons to a turbulent/non-turbulent interface (TNTI) are drawn. The turbulent wake was marked with a high-Schmidt-number (ScSc) scalar and a planar laser induced fluorescence (PLIF) experiment was carried out to capture the interface between the wake and the ambient flow from x/dx/d = 5 to 40 where xx is the streamwise coordinate from the centre of the cylinder and dd is the cylinder's diameter. It is found that the TTI generally spreads faster toward the ambient flow than the TNTI. A transition region of the interfaces' spreading is found at x/d15x/d \approx 15, after which the interfaces propagate at a slower rate than previously (upstream) and the mean interface positions of both TNTI and TTI scale with the local wake half-width. The location of both the TNTI and TTI have non-Gaussian probability density functions (PDFs) in the near wake because of the influence of the large-scale coherent motions present within the flow. Further downstream, after the large-scale coherent motions have dissipated, the TNTI position PDF does become Gaussian. For the first time we explore the spatial variation of the ``roughness'' of the TTI, quantified via the fractal dimension, from near field to far field. The length scale in the background flow has a profound effect on the TTI fractal dimension in the near wake, whilst the turbulence intensity only becomes important for the fractal dimension farther downstream
    corecore