9,925 research outputs found

    Sampling Arborescences in Parallel

    Get PDF
    We study the problem of sampling a uniformly random directed rooted spanning tree, also known as an arborescence, from a possibly weighted directed graph. Classically, this problem has long been known to be polynomial-time solvable; the exact number of arborescences can be computed by a determinant [Tutte, 1948], and sampling can be reduced to counting [Jerrum et al., 1986; Jerrum and Sinclair, 1996]. However, the classic reduction from sampling to counting seems to be inherently sequential. This raises the question of designing efficient parallel algorithms for sampling. We show that sampling arborescences can be done in RNC. For several well-studied combinatorial structures, counting can be reduced to the computation of a determinant, which is known to be in NC [Csanky, 1975]. These include arborescences, planar graph perfect matchings, Eulerian tours in digraphs, and determinantal point processes. However, not much is known about efficient parallel sampling of these structures. Our work is a step towards resolving this mystery

    Generating Random Elements of Finite Distributive Lattices

    Full text link
    This survey article describes a method for choosing uniformly at random from any finite set whose objects can be viewed as constituting a distributive lattice. The method is based on ideas of the author and David Wilson for using ``coupling from the past'' to remove initialization bias from Monte Carlo randomization. The article describes several applications to specific kinds of combinatorial objects such as tilings, constrained lattice paths, and alternating-sign matrices.Comment: 13 page

    The Distribution of Patterns in Random Trees

    Get PDF
    Let T_nT\_n denote the set of unrooted labeled trees of size nn and let T_nT\_n be a particular (finite, unlabeled) tree. Assuming that every tree of T_nT\_n is equally likely, it is shown that the limiting distribution as nn goes to infinity of the number of occurrences of MM as an induced subtree is asymptotically normal with mean value and variance asymptotically equivalent to μn\mu n and σ2n\sigma^2n, respectively, where the constants μ>0\mu>0 and σ≥0\sigma\ge 0 are computable

    A permanent formula for the Jones polynomial

    Get PDF
    The permanent of a square matrix is defined in a way similar to the determinant, but without using signs. The exact computation of the permanent is hard, but there are Monte-Carlo algorithms that can estimate general permanents. Given a planar diagram of a link L with nn crossings, we define a 7n by 7n matrix whose permanent equals to the Jones polynomial of L. This result accompanied with recent work of Freedman, Kitaev, Larson and Wang provides a Monte-Carlo algorithm to any decision problem belonging to the class BQP, i.e. such that it can be computed with bounded error in polynomial time using quantum resources.Comment: To appear in Advances in Applied Mathematic

    On Deletion in Delaunay Triangulation

    Get PDF
    This paper presents how the space of spheres and shelling may be used to delete a point from a dd-dimensional triangulation efficiently. In dimension two, if k is the degree of the deleted vertex, the complexity is O(k log k), but we notice that this number only applies to low cost operations, while time consuming computations are only done a linear number of times. This algorithm may be viewed as a variation of Heller's algorithm, which is popular in the geographic information system community. Unfortunately, Heller algorithm is false, as explained in this paper.Comment: 15 pages 5 figures. in Proc. 15th Annu. ACM Sympos. Comput. Geom., 181--188, 199
    • …
    corecore