5 research outputs found

    Detection threshold for non-parametric estimation

    No full text
    International audienceA new threshold is presented for better estimating a signal by sparse transform and soft thresholding. This threshold derives from a non-parametric statistical approach dedicated to the detection of a signal with unknown distribution and unknown probability of presence in independent and additive white Gaussian noise. This threshold is called the detection threshold and is particularly appropriate for selecting the few observations, provided by the sparse transform, whose amplitudes are sufficiently large to consider that they contain information about the signal. An upper bound for the risk of the soft thresholding estimation is computed when the detection threshold is used. For a wide class of signals, it is shown that, when the number of observations is large, this upper bound is from about twice to four times smaller than the standard upper bounds given for the universal and the minimax thresholds. Many real-world signals belong to this class, as illustrated by several experimental results

    Smooth Adaptation by Sigmoid Shrinkage

    No full text
    International audienceThis work addresses the properties of a sub-class of sigmoid based shrinkage functions: the non zero-forcing smooth sigmoid based shrinkage functions or SigShrink functions. It provides a SURE optimization for the parameters of the SigShrink functions. The optimization is performed on an unbiased estimation risk obtained by using the functions of this sub-class. The SURE SigShrink performance measurements are compared to those of the SURELET (SURE linear expansion of thresholds) parameterization. It is shown that the SURE SigShrink performs well in comparison to the SURELET parameterization. The relevance of SigShrink is the physical meaning and the flexibility of its parameters. The SigShrink functions perform weak attenuation of data with large amplitudes and stronger attenuation of data with small amplitudes, the shrinkage process introducing little variability among data with close amplitudes. In the wavelet domain, SigShrink is particularly suitable for reducing noise without impacting significantly the signal to recover. A remarkable property for this class of sigmoid based functions is the invertibility of its elements. This property makes it possible to smoothly tune contrast (enhancement - reduction)

    Wavelet Shrinkage: Unification of Basic Thresholding Functions and Thresholds

    No full text
    International audienceThis work addresses the unification of some basic functions and thresholds used in non-parametric estimation of signals by shrinkage in the wavelet domain. The Soft and Hard thresholding functions are presented as degenerate \emph{smooth sigmoid based shrinkage} functions. The shrinkage achieved by this new family of sigmoid based functions is then shown to be equivalent to a regularisation of wavelet coefficients associated with a class of penalty functions. Some sigmoid based penalty functions are calculated, and their properties are discussed. The unification also concerns the universal and the minimax thresholds used to calibrate standard Soft and Hard thresholding functions: these thresholds pertain to a wide class of thresholds, called the detection thresholds. These thresholds depend on two parameters describing the sparsity degree for the wavelet representation of a signal. It is also shown that the non-degenerate sigmoid shrinkage adjusted with the new detection thresholds is as performant as the best up-to-date parametric and computationally expensive method. This justifies the relevance of sigmoid shrinkage for noise reduction in large databases or large size images

    Smooth Adaptation by Sigmoid Shrinkage

    Get PDF
    corecore