2,608 research outputs found

    Vision-Based Road Detection in Automotive Systems: A Real-Time Expectation-Driven Approach

    Full text link
    The main aim of this work is the development of a vision-based road detection system fast enough to cope with the difficult real-time constraints imposed by moving vehicle applications. The hardware platform, a special-purpose massively parallel system, has been chosen to minimize system production and operational costs. This paper presents a novel approach to expectation-driven low-level image segmentation, which can be mapped naturally onto mesh-connected massively parallel SIMD architectures capable of handling hierarchical data structures. The input image is assumed to contain a distorted version of a given template; a multiresolution stretching process is used to reshape the original template in accordance with the acquired image content, minimizing a potential function. The distorted template is the process output.Comment: See http://www.jair.org/ for any accompanying file

    Model-based estimation of off-highway road geometry using single-axis LADAR and inertial sensing

    Get PDF
    This paper applies some previously studied extended Kalman filter techniques for planar road geometry estimation to the domain of autonomous navigation of off-highway vehicles. In this work, a clothoid model of the road geometry is constructed and estimated recursively based on road features extracted from single-axis LADAR range measurements. We present a method for feature extraction of the road centerline in the image plane, and describe its application to recursive estimation of the road geometry. We analyze the performance of our method against simulated motion of varied road geometries and against closed-loop detection, tracking and following of desert roads. Our method accomodates full 6 DOF motion of the vehicle as it navigates, constructs consistent estimates of the road geometry with respect to a fixed global reference frame, and requires an estimate of the sensor pose for each range measurement

    Improving construction materials management practices in construction sites

    Get PDF
    Construction Materials Management is a vital function for improving productivity in construction projects. Poor materials management can often affect the overall construction time, quality and budget. Currently, the construction material management practice in Somalia is believed to be poorly performed. Lack of standardized construction materials management system is one of the key issues facing by the building industry in Mogadishu-Somalia. The aim of this study was to investigate the current practices of material management at construction sites in Mogadishu-Somalia. A questionnaire survey study design was used to explore construction materials management practices. Fifty questionnaires were distributed to project managers, project engineers, site engineers, engineer, and foreman, and they were received and analysed. The following data analysis techniques were used: descriptive statistics were conducted to report sample characteristics, reliability and validity analyses were performed to confirm robustness of the instrument, graphical presentation such as bar charts were developed, and finally Average Mean Index Scale were constructed. The study results reveals that, 46.7% of respondent’s organization obtain materials for sites without site requisition by site engineer provisions, while 28.9% of respondent’s organization procure materials for sites with site requisition by project manager provisions and 13.3% of respondent’s organization procure materials for site by engineer. The results indicated that currently there is no standardized and computerized construction materials management system applied in Somalia. The researcher concluded that all contracting companies are interested in using some techniques of managing construction materials such as creating and updating database for materials categories from local and international suppliers. Finally, researcher recommends to use computerized construction materials management systems to reduce effort and time, and to achieve more accurate results

    GANav: Group-wise Attention Network for Classifying Navigable Regions in Unstructured Outdoor Environments

    Full text link
    We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation. We propose a bottleneck transformer-based deep neural network architecture that uses a novel group-wise attention mechanism to distinguish between navigability levels of different terrains.Our group-wise attention heads enable the network to explicitly focus on the different groups and improve the accuracy. In addition, we propose a dynamic weighted cross entropy loss function to handle the long-tailed nature of the dataset. We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation. We compare our approach with prior work on these datasets and achieve an improvement over the state-of-the-art mIoU by 6.74-39.1% on RUGD and 3.82-10.64% on RELLIS-3D

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    MultiNet: Multi-Modal Multi-Task Learning for Autonomous Driving

    Full text link
    Autonomous driving requires operation in different behavioral modes ranging from lane following and intersection crossing to turning and stopping. However, most existing deep learning approaches to autonomous driving do not consider the behavioral mode in the training strategy. This paper describes a technique for learning multiple distinct behavioral modes in a single deep neural network through the use of multi-modal multi-task learning. We study the effectiveness of this approach, denoted MultiNet, using self-driving model cars for driving in unstructured environments such as sidewalks and unpaved roads. Using labeled data from over one hundred hours of driving our fleet of 1/10th scale model cars, we trained different neural networks to predict the steering angle and driving speed of the vehicle in different behavioral modes. We show that in each case, MultiNet networks outperform networks trained on individual modes while using a fraction of the total number of parameters.Comment: Published in IEEE WACV 201
    corecore