3 research outputs found

    An Unusual 500,000 Bases Long Oscillation of Guanine and Cytosine Content in Human Chromosome 21

    Full text link
    An oscillation with a period of around 500 kb in guanine and cytosine content (GC%) is observed in the DNA sequence of human chromosome 21. This oscillation is localized in the rightmost one-eighth region of the chromosome, from 43.5 Mb to 46.5 Mb. Five cycles of oscillation are observed in this region with six GC-rich peaks and five GC-poor valleys. The GC-poor valleys comprise regions with low density of CpG islands and, alternating between the two DNA strands, low gene density regions. Consequently, the long-range oscillation of GC% result in spacing patterns of both CpG island density, and to a lesser extent, gene densities.Comment: 15 pages (figures included), 5 figure

    Quantumlike Chaos in the Frequency Distributions of the Bases A, C, G, T in Drosophila DNA

    Get PDF
    Continuous periodogram power spectral analyses of fractal fluctuations of frequency distributions of bases A, C, G, T in Drosophila DNA show that the power spectra follow the universal inverse power-law form of the statistical normal distribution. Inverse power-law form for power spectra of space-time fluctuations is generic to dynamical systems in nature and is identified as self-organized criticality. The author has developed a general systems theory, which provides universal quantification for observed self-organized criticality in terms of the statistical normal distribution. The long-range correlations intrinsic to self-organized criticality in macro-scale dynamical systems are a signature of quantumlike chaos. The fractal fluctuations self-organize to form an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. Power spectral analysis resolves such a spiral trajectory as an eddy continuum with embedded dominant wavebands. The dominant peak periodicities are functions of the golden mean. The observed fractal frequency distributions of the Drosophila DNA base sequences exhibit quasicrystalline structure with long-range spatial correlations or self-organized criticality. Modification of the DNA base sequence structure at any location may have significant noticeable effects on the function of the DNA molecule as a whole. The presence of non-coding introns may not be redundant, but serve to organize the effective functioning of the coding exons in the DNA molecule as a complete unit.Comment: 46 pages, 9 figure

    Detection of latent sequence periodicities.

    No full text
    A method is proposed for the automatic detection of serial periodicities in a linear sequence. Its application to DNA subtelomeric sequences from two lower eukaryotes, P.falciparum and S.cerevisiae, reveals ordered patterns organised in hierarchical periodicities, not easily recognizable by other methods. The possible implications concerning the evolution of tandemly repetitive arrays are discussed in light of a model which involves, as successive steps, random repeat modification, the fusion of differently modified repeat versions into longer units, and the amplification of (and/or homogenization to) the more recent repeat units
    corecore