6 research outputs found

    Doppler-Resilient Schemes for Underwater Acoustic Communication Channels.

    Get PDF
    In this thesis we consider Orthogonal Frequency Division Multiplexing (OFDM) technique by taking into account in the receiver design the fundamental and unique characteristics of Underwater Acoustic (UWA) channels in the context of Relay-Assisted (RA) systems. In particular, OFDM technique is used to combat the problem of Intersymbol Interference (ISI), while to handle the Intercarrier Interference (ICI), a pre-processing unit is used prior to the Minimum Mean Squared Error (MMSE) frequency-domain equalization called Multiple Resampling (MR), which minimizes the effect of time variation. This pre-processor consists of multiple branches, each corresponds to a Doppler scaling factor of a path/user/cluster, and performs of frequency shifting, resampling, and Fast Fourier Transform (FFT) operation. As a suboptimal alternative to MR pre-processing, Single Resampling (SR) pre-processing is also used to reduce the effect of ICI in the system, and it consists of only one branch that performs frequency shifting, resampling, and FFT operation, which corresponds to one approximated resampling factor, that is a function of one or more of the actual Doppler scaling factors. The problem of bandwidth scarcity is considered in the context of Two Way Relaying (TWR) systems in an attempt to increase the bandwidth efficiency of the system, while the problem of fading is considered in the context of Distributed Space-Time Block Coding (D-STBC) to boost the system reliability. Also, joint TWR-D-STBC system is proposed to extract the advantages of both schemes simultaneously. Second, motivated by the fact that OFDM is extremely sensitive to time variation, which destroys the orthogonality between the subcarriers, we consider another candidate to UWA channels and competitor to OFDM scheme, namely, block-based Single Carrier (SC) modulation with Frequency Domain Equalization (FDE). We start by the Point-to-Point (P2P) systems with path-specific Doppler model and Multiple Access Channel (MAC) system with user-specific Doppler model. The Maximum Likelihood (ML) receiver in each case is derived, and it is shown that a MR pre-processing stage is necessary to handle the effect of time variation, as it is the case in OFDM. Different from OFDM, however, the structure of this pre-processing stage. Specifically, it consists of multiple branches and each branch corresponds to a Doppler scaling factor per path or per user, and performs frequency shifting, resampling, and followed by and integration. FFT operation is not a part of the pre-processor. The goal of this pre-processing stage is to minimize the level of time variation in the time domain. So, the output of the pre-processor will still be time-varying contaminated by ISI, and hence an equalization stage is required. To avoid the complexity of the optimum Maximum Likelihood Sequence Detector (MLSD), we propose the use of MMSE FDE, where the samples are transformed to the frequency domain by means of FFT operation, and after the FDE transformed back to the time domain, where symbol-by-symbol detection becomes feasible. Also, the channels are approximated such that all paths or all users have the same Doppler scaling factor, and the pre-processing stage in this case consists of only one branch and it is called SR. Having the basic structure of SC-FDE scheme, we then consider the corresponding schemes that are considered for OFDM systems, namely: TWR, D-STBC, and TWR-D-STBC schemes. A complete complexity analysis, bandwidth efficiency, and extensive Average Bit Error Rate (ABER) simulation results are given. It is shown that MR schemes outperforms its SR counterparts within a given signaling scheme (i.e., OFDM or SC-FDE). However, this superiority in performance comes at the expense of more hardware complexity. Also, for uncoded systems, MR-SC-FDE outperforms its OFDM counterpart with less hardware complexity, because in SC-FDE systems, FFT operation is not part of the MR pre-processor, but rather a part of the equalizer. Finally, under total power constraint, it is shown that TWR-D-STBC scheme serves as a good compromise between bandwidth efficiency and reliability, where it has better bandwidth efficiency with some performance loss compared to D-STBC, while it has better performance and the same bandwidth efficiency compared to TWR

    Cooperative Communication over Underwater Acoustic Channels

    Get PDF
    As diverse and data-heavy underwater applications emerge, demanding requirements are further imposed on underwater wireless communication systems. Future underwater wireless communication networks might consist of both mobile and stationary nodes which exchange data such as control, telemetry, speech, and video signals among themselves as well as a central node located at a ship or onshore. The submerged nodes, which can, for example, take the form of an autonomous underwater vehicle/robot or diver, can be equipped with various sensors, sonars, video cameras, or other types of data acquisition instruments. Innovative physical layer solutions are therefore required to develop efficient, reliable, and high-speed transmission solutions tailored for challenging and diverse requirements of underwater applications. Building on the promising combination of multi-carrier and cooperative communication techniques, this dissertation investigates the fundamental performance bounds of cooperative underwater acoustic (UWA) communication systems taking into account the inherent unique characteristics of the UWA channel. We derive outage probability and capacity expressions for cooperative multi-carrier UWA systems with amplify-and-forward and decode-and-forward relaying. Through the derived expressions, we demonstrate the effect of several system and channel parameters on the performance. Furthermore, we investigate the performance of cooperative UWA systems in the presence of non-uniform Doppler distortion and propose receiver designs to mitigate the degrading Doppler effects

    Channel estimation for SISO and MIMO OFDM communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.Telecommunications in the current information age is increasingly relying on the wireless link. This is because wireless communication has made possible a variety of services ranging from voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher data rate, better quality of service, and higher network capacity, there is a migration from Single Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation technique to combat the problems associated with physical properties of the wireless channels such as multipath fading, dispersion, and interference. The combination of MIMO technology with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution to enhance the data rate of future broadband wireless communication Systems. This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM Systems; estimation of accurate channel state information (CSI) in order to make possible coherent detection of the transmitted signal at the receiver end of the system. Hence, the first novel contribution of this thesis is the development of a low complexity adaptive algorithm that is robust against both slow and fast fading channel scenarios, in comparison with other algorithms employed in literature, to implement soft iterative channel estimator for turbo equalizer-based receiver for single antenna communication Systems. Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to derive Channel Impulse Response Estimator for implementation of Decision Directed Channel Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division Multiplexing (SISO-OFDM) Systems. This is implemented in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor, with low computational complexity in comparison with others in literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative principle. It is shown that improvement in the performance can be achieved with the iterative DDCE scheme for OFDM system in comparison with the non iterative scheme. Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO Channel for the implementation of the CTF estimator module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum mean square error (MMSE) criterion. The VSSNLMS-based channel transfer function estimator is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in comparison with linear MMSE-based channel transfer function estimator

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems
    corecore