5,975 research outputs found

    How to avoid potential pitfalls in recurrence plot based data analysis

    Full text link
    Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis

    Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves

    Get PDF
    Demodulation of intensity noise in the optical heterodyne detector is analyzed for application in interferometric gravitational-wave detectors. The correlation function and the power spectral density of the demodulated intensity noise are derived, taking into account the effect of bandpass filtering at the photodiode and an arbitrary demodulation waveform. The analysis includes demodulation of the rf-modulated shot noise as a special case of the intensity noise. For shot-noise-limited detection, the signal-to-noise ratio is found as a function of the modulation parameters, and the optimization of the signal-to-noise ratio with respect to the demodulation phase is described

    Bayesian Model Search for Nonstationary Periodic Time Series

    Get PDF
    We propose a novel Bayesian methodology for analyzing nonstationary time series that exhibit oscillatory behaviour. We approximate the time series using a piecewise oscillatory model with unknown periodicities, where our goal is to estimate the change-points while simultaneously identifying the potentially changing periodicities in the data. Our proposed methodology is based on a trans-dimensional Markov chain Monte Carlo (MCMC) algorithm that simultaneously updates the change-points and the periodicities relevant to any segment between them. We show that the proposed methodology successfully identifies time changing oscillatory behaviour in two applications which are relevant to e-Health and sleep research, namely the occurrence of ultradian oscillations in human skin temperature during the time of night rest, and the detection of instances of sleep apnea in plethysmographic respiratory traces.Comment: Received 23 Oct 2018, Accepted 12 May 201

    Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology

    Get PDF
    The detection and attribution of long-term patterns in hydrological time series have been important research topics for decades. A significant portion of the literature regards such patterns as ‘deterministic components’ or ‘trends’ even though the complexity of hydrological systems does not allow easy deterministic explanations and attributions. Consequently, trend estimation techniques have been developed to make and justify statements about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting consequences of human activities on the hydrological cycle. This analysis usually relies on the application of some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima, minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper discusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori additional information on the underlying stochastic process, according to deductive reasoning. This prevents the use of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the correlation structures characterizing hydrological time series might easily be underestimated, further compromising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though adjusting procedures accounting for correlation have been developed, some of them are insufficient or are applied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using 250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow records, whose larger sizes enable a more reliable assessment of the correlation structures

    Retrieval of dispersive and convective transport phenomena in fluids using stationary and nonstationary time domain analysis

    Get PDF
    Simultaneously occuring dispersive and convective components of fluid kinematics are obtained by a time domain analysis of optically retrieved temporal histories of the transport phenomena. Utilizing triangulation of collimated optical fields of view from two radiometers to obtain the temporal histories of the intensity fluctuations associated with the transport phenomena has enabled investigators to retrieve the local convective transport by employing correlation statistics. The location of the peak in the covariance curve determines the transit time from which the convection velocity is calculated; whereas, the change in shape of the peak in the covariance curve determines the change in average frequency of the wave packet from which the dispersion velocity is calculated. Thus, two-component analysis requires the maximum possible enhancement of the delineation for the transport. The convection velocity is the result of a fixed reference frame calculation whereas, the dispersion velocity is the result of a moving reference frame calcuation

    Fast detection of nonlinearity and nonstationarity in short and noisy time series

    Full text link
    We introduce a statistical method to detect nonlinearity and nonstationarity in time series, that works even for short sequences and in presence of noise. The method has a discrimination power similar to that of the most advanced estimators on the market, yet it depends only on one parameter, is easier to implement and faster. Applications to real data sets reject the null hypothesis of an underlying stationary linear stochastic process with a higher confidence interval than the best known nonlinear discriminators up to date.Comment: 5 pages, 6 figure
    corecore