5 research outputs found

    AUTOMATIC PENALTY CHARGING FOR VIOLATION OF TRAFFIC RULES

    Get PDF
    Abstract: During the past few years, traffic accidents & congestion has increased enormously. Even in our daily life, we come across many problems caused due to traffic rule violation by some people. Also when we go through the daily newspaper, we realize that road accidents is one of the major problems now a days in every city. These problems cause disturbance to the whole system and also consumes our precious time. So in an attempt to reduce it & improve the traffic discipline, advanced technological solutions has been proposed. In this project, we are designing a system which will automatically incur penalty to the car driver for violation of traffic rules. The penalty will be automatically charged to the car owner if PUC has been expired or if car is standing on zebra crossing when the signal is red, for illegal signal crossing, crossing the speed limit in speed limit zone or parking the car in no parking zone. Also the car will not start if the driver does not have license or if he is drunk. This will help to bring discipline on roads

    Vehicle Detection of Multi-source Remote Sensing Data Using Active Fine-tuning Network

    Get PDF
    Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    VANET-enabled eco-friendly road characteristics-aware routing for vehicular traffic

    Get PDF
    There is growing awareness of the dangers of climate change caused by greenhouse gases. In the coming decades this could result in numerous disasters such as heat-waves, flooding and crop failures. A major contributor to the total amount of greenhouse gas emissions is the transport sector, particularly private vehicles. Traffic congestion involving private vehicles also causes a lot of wasted time and stress to commuters. At the same time new wireless technologies such as Vehicular Ad-Hoc Networks (VANETs) are being developed which could allow vehicles to communicate with each other. These could enable a number of innovative schemes to reduce traffic congestion and greenhouse gas emissions. 1) EcoTrec is a VANET-based system which allows vehicles to exchange messages regarding traffic congestion and road conditions, such as roughness and gradient. Each vehicle uses the messages it has received to build a model of nearby roads and the traffic on them. The EcoTrec Algorithm then recommends the most fuel efficient route for the vehicles to follow. 2) Time-Ants is a swarm based algorithm that considers not only the amount of cars in the spatial domain but also the amoumt in the time domain. This allows the system to build a model of the traffic congestion throughout the day. As traffic patterns are broadly similar for weekdays this gives us a good idea of what traffic will be like allowing us to route the vehicles more efficiently using the Time-Ants Algorithm. 3) Electric Vehicle enhanced Dedicated Bus Lanes (E-DBL) proposes allowing electric vehicles onto the bus lanes. Such an approach could allow a reduction in traffic congestion on the regular lanes without greatly impeding the buses. It would also encourage uptake of electric vehicles. 4) A comprehensive survey of issues associated with communication centred traffic management systems was carried out
    corecore