16 research outputs found

    False positive reduction in CADe using diffusing scale space

    Get PDF
    Segmentation is typically the first step in computer-aided-detection (CADe). The second step is false positive reduction which usually involves computing a large number of features with thresholds set by training over excessive data set. The number of false positives can, in principle, be reduced by extensive noise removal and other forms of image enhancement prior to segmentation. However, this can drastically affect the true positive results and their boundaries. We present a post-segmentation method to reduce the number of false positives by using a diffusion scale space. The method is illustrated using Integral Invariant scale space, though this is not a requirement. It is quite general, does not require any prior information, is fast and easy to compute, and gives very encouraging results. Experiments are performed both on intensity mammograms as well as on Volpara® density maps

    COMPUTER-AIDED MODEL FOR BREAST CANCER DETECTION IN MAMMOGRAMS

    Get PDF
    The objective of this research was to introduce a new system for automated detection of breast masses in mammography images. The system will be able to discriminate if the image has a mass or not, as well as benign and malignant masses. The new automated ROI segmentation model, where a profiling model integrated with a new iterative growing region scheme has been proposed. The ROI region segmentation is integrated with both statistical and texture feature extraction and selection to discriminate suspected regions effectively. A classifier model is designed using linear fisher classifier for suspected region identification. To check the system's performance, a large mammogram database has been used for experimental analysis. Sensitivity, specificity, and accuracy have been used as performance measures. In this study, the methods yielded an accuracy of 93% for normal/abnormal classification and a 79% accuracy for bening/malignant classification. The proposed model had an improvement of 8% for normal/abnormal classification, and a 7% improvement for benign/malignant classification over Naga et al., 2001. Moreover, the model improved 8% for normal/abnormal classification over Subashimi et al., 2015. The early diagnosis of this disease has a major role in its treatment. Thus the use of computer systems as a detection tool could be viewed as essential to helping with this disease

    Microcalcification and Macrocalcification Detection in Mammograms Based on GLCM and ODCM Texture Features Using SVM Classifier

    Full text link
    Breast cancer is a common cancer in women and the second leading cause of cancer deaths worldwide. Photographing the changes in internal breast structure due to formation of masses and microcalcification for detection of Breast Cancer is known as Mammogram, which are low dose x-ray images. These images play a very significant role in early detection of breast cancer. Usually in pattern recognition texture analysis is used for classification based on content of image or in image segmentation based on variation of intensities of gray scale levels or colours. Similarly texture analysis can also be used to identify masses and microcalcification in mammograms. However Grey Level Co-occurrence Matrices (GLCM) technique introduced by Haralick was initially used in study of remote sensing images. Radiologists f i n d i t d i f f i c u l t to identify the mass in a mammogram, since the masses are surrounded by pectoral muscle and blood vessels. In breast cancer screening, radiologists usually miss approximately 10% - 30% of tumors because of the ambiguous margins of tumors resulting from long-time diagnosis. Computer-aided detection system is developed to aid radiologists in detecting ma mammographic masses which indicate the presence of breast cancer. In this paper the input image is pre-processed initially that includes noise removal, pectoral muscle removal, thresholding, contrast enhancement and suspicious mass is detected and the features are extracted based on the mass detected. A feature extraction method based on grey level co- occurrence matrix and optical density features called GLCM -OD features is used to describe local texture characteristics and the discrete photometric distribution of each ROI. Finally, a support vector machine is used to classify abnormal regions by selecting the individual performance of each feature. The results prove that the proposed system achieves an excellent detection performance using SVM classifier

    Mass segmentation using a combined method for cancer detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is one of the leading causes of cancer death for women all over the world and mammography is thought of as one of the main tools for early detection of breast cancer. In order to detect the breast cancer, computer aided technology has been introduced. In computer aided cancer detection, the detection and segmentation of mass are very important. The shape of mass can be used as one of the factors to determine whether the mass is malignant or benign. However, many of the current methods are semi-automatic. In this paper, we investigate fully automatic segmentation method.</p> <p>Results</p> <p>In this paper, a new mass segmentation algorithm is proposed. In the proposed algorithm, a fully automatic marker-controlled watershed transform is proposed to segment the mass region roughly, and then a level set is used to refine the segmentation. For over-segmentation caused by watershed, we also investigated different noise reduction technologies. Images from DDSM were used in the experiments and the results show that the new algorithm can improve the accuracy of mass segmentation.</p> <p>Conclusions</p> <p>The new algorithm combines the advantages of both methods. The combination of the watershed based segmentation and level set method can improve the efficiency of the segmentation. Besides, the introduction of noise reduction technologies can reduce over-segmentation.</p

    False Positive Reduction in CADe Using Diffusing Scale Space

    Full text link

    Multi-fractal dimension features by enhancing and segmenting mammogram images of breast cancer

    Get PDF
    The common malignancy which causes deaths in women is breast cancer. Early detection of breast cancer using mammographic image can help in reducing the mortality rate and the probability of recurrence. Through mammographic examination, breast lesions can be detected and classified. Breast lesions can be detected using many popular tools such as Magnetic Resonance Imaging (MRI), ultrasonography, and mammography. Although mammography is very useful in the diagnosis of breast cancer, the pattern similarities between normal and pathologic cases makes the process of diagnosis difficult. Therefore, in this thesis Computer Aided Diagnosing (CAD) systems have been developed to help doctors and technicians in detecting lesions. The thesis aims to increase the accuracy of diagnosing breast cancer for optimal classification of cancer. It is achieved using Machine Learning (ML) and image processing techniques on mammogram images. This thesis also proposes an improvement of an automated extraction of powerful texture sign for classification by enhancing and segmenting the breast cancer mammogram images. The proposed CAD system consists of five stages namely pre-processing, segmentation, feature extraction, feature selection, and classification. First stage is pre-processing that is used for noise reduction due to noises in mammogram image. Therefore, based on the frequency domain this thesis employed wavelet transform to enhance mammogram images in pre-processing stage for two purposes which is to highlight the border of mammogram images for segmentation stage, and to enhance the region of interest (ROI) using adaptive threshold in the mammogram images for feature extraction purpose. Second stage is segmentation process to identify ROI in mammogram images. It is a difficult task because of several landmarks such as breast boundary and artifacts as well as pectoral muscle in Medio-Lateral Oblique (MLO). Thus, this thesis presents an automatic segmentation algorithm based on new thresholding combined with image processing techniques. Experimental results demonstrate that the proposed model increases segmentation accuracy of the ROI from breast background, landmarks, and pectoral muscle. Third stage is feature extraction where enhancement model based on fractal dimension is proposed to derive significant mammogram image texture features. Based on the proposed, model a powerful texture sign for classification are extracted. Fourth stage is feature selection where Genetic Algorithm (GA) technique has been used as a feature selection technique to select the important features. In last classification stage, Artificial Neural Network (ANN) technique has been used to differentiate between Benign and Malignant classes of cancer using the most relevant texture feature. As a conclusion, classification accuracy, sensitivity, and specificity obtained by the proposed CAD system are improved in comparison to previous studies. This thesis has practical contribution in identification of breast cancer using mammogram images and better classification accuracy of benign and malign lesions using ML and image processing techniques
    corecore