8,568 research outputs found

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data

    New instruments and technologies for Cultural Heritage survey: full integration between point clouds and digital photogrammetry

    Get PDF
    In the last years the Geomatic Research Group of the Politecnico di Torino faced some new research topics about new instruments for point cloud generation (e.g. Time of Flight cameras) and strong integration between multi-image matching techniques and 3D Point Cloud information in order to solve the ambiguities of the already known matching algorithms. ToF cameras can be a good low cost alternative to LiDAR instruments for the generation of precise and accurate point clouds: up to now the application range is still limited but in a near future they will be able to satisfy the most part of the Cultural Heritage metric survey requirements. On the other hand multi-image matching techniques with a correct and deep integration of the point cloud information can give the correct solution for an "intelligent" survey of the geometric object break-lines, which are the correct starting point for a complete survey. These two research topics are strictly connected to a modern Cultural Heritage 3D survey approach. In this paper after a short analysis of the achieved results, an alternative possible scenario for the development of the metric survey approach inside the wider topic of Cultural Heritage Documentation is reporte

    Development of a Computer Vision-Based Three-Dimensional Reconstruction Method for Volume-Change Measurement of Unsaturated Soils during Triaxial Testing

    Get PDF
    Problems associated with unsaturated soils are ubiquitous in the U.S., where expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Solving these widespread geohazards requires a fundamental understanding of the constitutive behavior of unsaturated soils. In the past six decades, the suction-controlled triaxial test has been established as a standard approach to characterizing constitutive behavior for unsaturated soils. However, this type of test requires costly test equipment and time-consuming testing processes. To overcome these limitations, a photogrammetry-based method has been developed recently to measure the global and localized volume-changes of unsaturated soils during triaxial test. However, this method relies on software to detect coded targets, which often requires tedious manual correction of incorrectly coded target detection information. To address the limitation of the photogrammetry-based method, this study developed a photogrammetric computer vision-based approach for automatic target recognition and 3D reconstruction for volume-changes measurement of unsaturated soils in triaxial tests. Deep learning method was used to improve the accuracy and efficiency of coded target recognition. A photogrammetric computer vision method and ray tracing technique were then developed and validated to reconstruct the three-dimensional models of soil specimen

    Virtual geological outcrops - fieldwork and analysis made less exhaustive?

    Get PDF
    For geologists studying outcrops in the field, there is an ever‐increasing need for the acquisition of accurate and comprehensive data, whatever their purpose. Fortunately, this need is mirrored by an expanding range of digital data capturing technologies that provide the possibility of examining geological outcrops in minute detail from the desktop. Although difficult technologically, there is also a need to combine differing datasets into a single, accurate, digital model that will allow field geologists to place their data in a wider context. This paper examines the techniques available, and highlights new Light Detection and Ranging (LIDAR) technology which should prove to be a unifying technique, being able to combine images and local coordinates on‐site

    KERNEL FEATURE CROSS-CORRELATION FOR UNSUPERVISED QUANTIFICATION OF DAMAGE FROM WINDTHROW IN FORESTS

    Get PDF
    In this study estimation of tree damage from a windthrow event using feature detection on RGB high resolution imagery is assessed. An accurate quantitative assessment of the damage in terms of volume is important and can be done by ground sampling, which is notably expensive and time-consuming, or by manual interpretation and analyses of aerial images. This latter manual method also requires an expert operator investing time to manually detect damaged trees and apply relation functions between measures and volume which are also error-prone. In the proposed method RGB images with 0.2 m ground sample distance are analysed using an adaptive template matching method. Ten images corresponding to ten separate study areas are tested. A 13 7 13 pixels kernel with a simplified lin ear-feature representation of a cylinder is applied at different rotation angles (from 0\ub0 to 170\ub0 at 10\ub0 steps). The higher values of the normalized cross-correlation (NCC) of all angles are recorded for each pixel for each image. Several features are tested: percentiles (75, 80, 85, 90, 95, 99, max) and sum and number of pixels with NCC above 0.55. Three regression methods are tested, multiple regression (mr), support vector machines (SVM) with linear kernel and random forests. The first two methods gave the best results. The ground-truth was acquired by ground sampling, and total volumes of damaged trees are estimated for each of the 10 areas. Damaged volumes in the ten areas range from 3c1.8 7 102 m3 to 3c1.2 7 104 m3. Regression results show that smv regression method over the sum gives an R-squared of 0.92, a mean of absolute errors (MAE) of 255 m3 and a relative absolute error (RAE) of 34% using leave-one-out cross validation from the 10 observations. These initial results are encouraging and support further investigations on more finely tuned kernel template metrics to define an unsupervised image analysis process to automatically assess forest damage from windthrow
    corecore