3,530 research outputs found

    Localization of adaptive variants in human genomes using averaged one-dependence estimation.

    Get PDF
    Statistical methods for identifying adaptive mutations from population genetic data face several obstacles: assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple selection statistics under different evolutionary scenarios and calculating the posterior probability of a sweep at each genomic site. SWIF(r) is trained using simulations from a user-specified demographic model and explicitly models the joint distributions of selection statistics, thereby increasing its power to both identify regions undergoing sweeps and localize adaptive mutations. Using array and exome data from 45 ‡Khomani San hunter-gatherers of southern Africa, we identify an enrichment of adaptive signals in genes associated with metabolism and obesity. SWIF(r) provides a transparent probabilistic framework for localizing beneficial mutations that is extensible to a variety of evolutionary scenarios

    Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates

    Full text link
    What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome

    Get PDF
    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an increasingly common experimental approach to generate genome-wide maps of histone modifications and to dissect the complexity of the epigenome. Here, we propose EpiCSeg: a novel algorithm that combines several histone modification maps for the segmentation and characterization of cell-type specific epigenomic landscapes. By using an accurate probabilistic model for the read counts, EpiCSeg provides a useful annotation for a considerably larger portion of the genome, shows a stronger association with validation data, and yields more consistent predictions across replicate experiments when compared to existing methods.The software is available at http://github.com/lamortenera/epicseg

    Dependency detection with similarity constraints

    Full text link
    Unsupervised two-view learning, or detection of dependencies between two paired data sets, is typically done by some variant of canonical correlation analysis (CCA). CCA searches for a linear projection for each view, such that the correlations between the projections are maximized. The solution is invariant to any linear transformation of either or both of the views; for tasks with small sample size such flexibility implies overfitting, which is even worse for more flexible nonparametric or kernel-based dependency discovery methods. We develop variants which reduce the degrees of freedom by assuming constraints on similarity of the projections in the two views. A particular example is provided by a cancer gene discovery application where chromosomal distance affects the dependencies between gene copy number and activity levels. Similarity constraints are shown to improve detection performance of known cancer genes.Comment: 9 pages, 3 figures. Appeared in proceedings of the 2009 IEEE International Workshop on Machine Learning for Signal Processing XIX (MLSP'09). Implementation of the method available at http://bioconductor.org/packages/devel/bioc/html/pint.htm
    • …
    corecore