396 research outputs found

    Precise Proximal Femur Fracture Classification for Interactive Training and Surgical Planning

    Full text link
    We demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD) tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray images according to the AO classification. The proposed framework aims to improve patient treatment planning and provide support for the training of trauma surgeon residents. A database of 1347 clinical radiographic studies was collected. Radiologists and trauma surgeons annotated all fractures with bounding boxes, and provided a classification according to the AO standard. The proposed CAD tool for the classification of radiographs into types "A", "B" and "not-fractured", reaches a F1-score of 87% and AUC of 0.95, when classifying fractures versus not-fractured cases it improves up to 94% and 0.98. Prior localization of the fracture results in an improvement with respect to full image classification. 100% of the predicted centers of the region of interest are contained in the manually provided bounding boxes. The system retrieves on average 9 relevant images (from the same class) out of 10 cases. Our CAD scheme localizes, detects and further classifies proximal femur fractures achieving results comparable to expert-level and state-of-the-art performance. Our auxiliary localization model was highly accurate predicting the region of interest in the radiograph. We further investigated several strategies of verification for its adoption into the daily clinical routine. A sensitivity analysis of the size of the ROI and image retrieval as a clinical use case were presented.Comment: Accepted at IPCAI 2020 and IJCAR

    Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning

    Full text link
    Purpose: Hip fractures are a common cause of morbidity and mortality. Automatic identification and classification of hip fractures using deep learning may improve outcomes by reducing diagnostic errors and decreasing time to operation. Methods: Hip and pelvic radiographs from 1118 studies were reviewed and 3034 hips were labeled via bounding boxes and classified as normal, displaced femoral neck fracture, nondisplaced femoral neck fracture, intertrochanteric fracture, previous ORIF, or previous arthroplasty. A deep learning-based object detection model was trained to automate the placement of the bounding boxes. A Densely Connected Convolutional Neural Network (DenseNet) was trained on a subset of the bounding box images, and its performance evaluated on a held out test set and by comparison on a 100-image subset to two groups of human observers: fellowship-trained radiologists and orthopaedists, and senior residents in emergency medicine, radiology, and orthopaedics. Results: The binary accuracy for fracture of our model was 93.8% (95% CI, 91.3-95.8%), with sensitivity of 92.7% (95% CI, 88.7-95.6%), and specificity 95.0% (95% CI, 91.5-97.3%). Multiclass classification accuracy was 90.4% (95% CI, 87.4-92.9%). When compared to human observers, our model achieved at least expert-level classification under all conditions. Additionally, when the model was used as an aid, human performance improved, with aided resident performance approximating unaided fellowship-trained expert performance. Conclusions: Our deep learning model identified and classified hip fractures with at least expert-level accuracy, and when used as an aid improved human performance, with aided resident performance approximating that of unaided fellowship-trained attendings.Comment: Presented at Orthopaedic Research Society, Austin, TX, Feb 2, 2019, currently in submission for publicatio

    Detecting mechanical loosening of total hip replacement implant from plain radiograph using deep convolutional neural network

    Full text link
    Plain radiography is widely used to detect mechanical loosening of total hip replacement (THR) implants. Currently, radiographs are assessed manually by medical professionals, which may be prone to poor inter and intra observer reliability and low accuracy. Furthermore, manual detection of mechanical loosening of THR implants requires experienced clinicians who might not always be readily available, potentially resulting in delayed diagnosis. In this study, we present a novel, fully automatic and interpretable approach to detect mechanical loosening of THR implants from plain radiographs using deep convolutional neural network (CNN). We trained a CNN on 40 patients anteroposterior hip x rays using five fold cross validation and compared its performance with a high volume board certified orthopaedic surgeon (AFC). To increase the confidence in the machine outcome, we also implemented saliency maps to visualize where the CNN looked at to make a diagnosis. CNN outperformed the orthopaedic surgeon in diagnosing mechanical loosening of THR implants achieving significantly higher sensitively (0.94) than the orthopaedic surgeon (0.53) with the same specificity (0.96). The saliency maps showed that the CNN looked at clinically relevant features to make a diagnosis. Such CNNs can be used for automatic radiologic assessment of mechanical loosening of THR implants to supplement the practitioners decision making process, increasing their diagnostic accuracy, and freeing them to engage in more patient centric care

    Deep learning for accurately recognizing common causes of shoulder pain on radiographs

    Get PDF
    Objective: Training a convolutional neural network (CNN) to detect the most common causes of shoulder pain on plain radiographs and to assess its potential value in serving as an assistive device to physicians. Materials and methods: We used a CNN of the ResNet-50 architecture which was trained on 2700 shoulder radiographs from clinical practice of multiple institutions. All radiographs were reviewed and labeled for six findings: proximal humeral fractures, joint dislocation, periarticular calcification, osteoarthritis, osteosynthesis, and joint endoprosthesis. The trained model was then evaluated on a separate test dataset, which was previously annotated by three independent expert radiologists. Both the training and the test datasets included radiographs of highly variable image quality to reflect the clinical situation and to foster robustness of the CNN. Performance of the model was evaluated using receiver operating characteristic (ROC) curves, the thereof derived AUC as well as sensitivity and specificity. Results: The developed CNN demonstrated a high accuracy with an area under the curve (AUC) of 0.871 for detecting fractures, 0.896 for joint dislocation, 0.945 for osteoarthritis, and 0.800 for periarticular calcifications. It also detected osteosynthesis and endoprosthesis with near perfect accuracy (AUC 0.998 and 1.0, respectively). Sensitivity and specificity were 0.75 and 0.86 for fractures, 0.95 and 0.65 for joint dislocation, 0.90 and 0.86 for osteoarthrosis, and 0.60 and 0.89 for calcification. Conclusion: CNNs have the potential to serve as an assistive device by providing clinicians a means to prioritize worklists or providing additional safety in situations of increased workload

    Computer-Aided Diagnosis System for Bone Fracture Detection and Classification: A Review on Deep Learning Techniques

    Get PDF
    Bone fracture detection and classification was a large discussed topic over the last few years and many researchers proposed different technological solutions to tackle this task. Despite this, a universal approach able to support the classification of fractures in the human body still does not exist today. We aim to provide a first discussion concerning a selection of research works done in the technological domain, with a specific focus on Deep Learning. The objective was to underline a picture on the most promising studies for stimulating a knowledge improvement in the specific focus of bone fracture classification, necessary to start the development of an optimal shared framework. The evaluation has been made involving a first qualitative assessment based on strengths and weaknesses, providing a usage scenario evaluation. This could support the development of a helpful Computer Aided Diagnosis (CAD) system able to drive doctors in diagnosis tasks reducing diagnosis time, especially in the most complex tasks, and supporting the reduction of wrong diagnosis issues, especially during stressful working conditions, as what frequently happens in many emergency departments
    • …
    corecore