14 research outputs found

    Beyond Accuracy: Assessing Software Documentation Quality

    Full text link
    Good software documentation encourages good software engineering, but the meaning of "good" documentation is vaguely defined in the software engineering literature. To clarify this ambiguity, we draw on work from the data and information quality community to propose a framework that decomposes documentation quality into ten dimensions of structure, content, and style. To demonstrate its application, we recruited technical editors to apply the framework when evaluating examples from several genres of software documentation. We summarise their assessments -- for example, reference documentation and README files excel in quality whereas blog articles have more problems -- and we describe our vision for reasoning about software documentation quality and for the expansion and potential of a unified quality framework.Comment: to appear in the Visions and Reflections Track of the ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering 202

    Speculative Analysis for Quality Assessment of Code Comments

    Full text link
    Previous studies have shown that high-quality code comments assist developers in program comprehension and maintenance tasks. However, the semi-structured nature of comments, unclear conventions for writing good comments, and the lack of quality assessment tools for all aspects of comments make their evaluation and maintenance a non-trivial problem. To achieve high-quality comments, we need a deeper understanding of code comment characteristics and the practices developers follow. In this thesis, we approach the problem of assessing comment quality from three different perspectives: what developers ask about commenting practices, what they write in comments, and how researchers support them in assessing comment quality. Our preliminary findings show that developers embed various kinds of information in class comments across programming languages. Still, they face problems in locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help developers and researchers in building comment quality assessment tools, we provide: (i) an empirically validated taxonomy of comment convention-related questions from various community forums, (ii) an empirically validated taxonomy of comment information types from various programming languages, (iii) a language-independent approach to automatically identify the information types, and (iv) a comment quality taxonomy prepared from a systematic literature review.Comment: 5 pages, 1 figure, conferenc

    A Decade of Code Comment Quality Assessment: A Systematic Literature Review

    Get PDF
    Code comments are important artifacts in software systems and play a paramount role in many software engineering (SE) tasks related to maintenance and program comprehension. However, while it is widely accepted that high quality matters in code comments just as it matters in source code, assessing comment quality in practice is still an open problem. First and foremost, there is no unique definition of quality when it comes to evaluating code comments. The few existing studies on this topic rather focus on specific attributes of quality that can be easily quantified and measured. Existing techniques and corresponding tools may also focus on comments bound to a specific programming language, and may only deal with comments with specific scopes and clear goals (e.g., Javadoc comments at the method level, or in-body comments describing TODOs to be addressed). In this paper, we present a Systematic Literature Review (SLR) of the last decade of research in SE to answer the following research questions: (i) What types of comments do researchers focus on when assessing comment quality? (ii) What quality attributes (QAs) do they consider? (iii) Which tools and techniques do they use to assess comment quality?, and (iv) How do they evaluate their studies on comment quality assessment in general? Our evaluation, based on the analysis of 2353 papers and the actual review of 47 relevant ones, shows that (i) most studies and techniques focus on comments in Java code, thus may not be generalizable to other languages, and (ii) the analyzed studies focus on four main QAs of a total of 21 QAs identified in the literature, with a clear predominance of checking consistency between comments and the code. We observe that researchers rely on manual assessment and specific heuristics rather than the automated assessment of the comment quality attributes

    Associating Natural Language Comment and Source Code Entities

    Full text link
    Comments are an integral part of software development; they are natural language descriptions associated with source code elements. Understanding explicit associations can be useful in improving code comprehensibility and maintaining the consistency between code and comments. As an initial step towards this larger goal, we address the task of associating entities in Javadoc comments with elements in Java source code. We propose an approach for automatically extracting supervised data using revision histories of open source projects and present a manually annotated evaluation dataset for this task. We develop a binary classifier and a sequence labeling model by crafting a rich feature set which encompasses various aspects of code, comments, and the relationships between them. Experiments show that our systems outperform several baselines learning from the proposed supervision.Comment: Accepted in AAAI 202

    A decade of code comment quality assessment : a systematic literature review

    Get PDF
    Code comments are important artifacts in software systems and play a paramount role in many software engineering (SE) tasks related to maintenance and program comprehension. However, while it is widely accepted that high quality matters in code comments just as it matters in source code, assessing comment quality in practice is still an open problem. First and foremost, there is no unique definition of quality when it comes to evaluating code comments. The few existing studies on this topic rather focus on specific attributes of quality that can be easily quantified and measured. Existing techniques and corresponding tools may also focus on comments bound to a specific programming language, and may only deal with comments with specific scopes and clear goals (e.g., Javadoc comments at the method level, or in-body comments describing TODOs to be addressed). In this paper, we present a Systematic Literature Review (SLR) of the last decade of research in SE to answer the following research questions: (i) What types of comments do researchers focus on when assessing comment quality? (ii) What quality attributes (QAs) do they consider? (iii) Which tools and techniques do they use to assess comment quality?, and (iv) How do they evaluate their studies on comment quality assessment in general? Our evaluation, based on the analysis of 2353 papers and the actual review of 47 relevant ones, shows that (i) most studies and techniques focus on comments in Java code, thus may not be generalizable to other languages, and (ii) the analyzed studies focus on four main QAs of a total of 21 QAs identified in the literature, with a clear predominance of checking consistency between comments and the code. We observe that researchers rely on manual assessment and specific heuristics rather than the automated assessment of the comment quality attributes, with evaluations often involving surveys of students and the authors of the original studies but rarely professional developers

    Assessing Comment Quality in Object-Oriented Languages

    Get PDF
    Previous studies have shown that high-quality code comments support developers in software maintenance and program comprehension tasks. However, the semi-structured nature of comments, several conventions to write comments, and the lack of quality assessment tools for all aspects of comments make comment evaluation and maintenance a non-trivial problem. To understand the specification of high-quality comments to build effective assessment tools, our thesis emphasizes acquiring a multi-perspective view of the comments, which can be approached by analyzing (1) the academic support for comment quality assessment, (2) developer commenting practices across languages, and (3) developer concerns about comments. Our findings regarding the academic support for assessing comment quality showed that researchers primarily focus on Java in the last decade even though the trend of using polyglot environments in software projects is increasing. Similarly, the trend of analyzing specific types of code comments (method comments, or inline comments) is increasing, but the studies rarely analyze class comments. We found 21 quality attributes that researchers consider to assess comment quality, and manual assessment is still the most commonly used technique to assess various quality attributes. Our analysis of developer commenting practices showed that developers embed a mixed level of details in class comments, ranging from high-level class overviews to low-level implementation details across programming languages. They follow style guidelines regarding what information to write in class comments but violate the structure and syntax guidelines. They primarily face problems locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help researchers and developers in building comment quality assessment tools, we contribute: (i) a systematic literature review (SLR) of ten years (2010–2020) of research on assessing comment quality, (ii) a taxonomy of quality attributes used to assess comment quality, (iii) an empirically validated taxonomy of class comment information types from three programming languages, (iv) a multi-programming-language approach to automatically identify the comment information types, (v) an empirically validated taxonomy of comment convention-related questions and recommendation from various Q&A forums, and (vi) a tool to gather discussions from multiple developer sources, such as Stack Overflow, and mailing lists. Our contributions provide various kinds of empirical evidence of the developer’s interest in reducing efforts in the software documentation process, of the limited support developers get in automatically assessing comment quality, and of the challenges they face in writing high-quality comments. This work lays the foundation for future effective comment quality assessment tools and techniques

    Automatic Detection and Analysis of Outdated Documentation in GitHub Repositories

    Get PDF
    Outdated documentation is a pervasive problem in software development, preventing effective use of software, and misleading users and developers alike. We posit that one possible reason why documentation becomes out of sync so easily is that developers are unaware of when their source code modifications render the documentation obsolete. Ensuring that the documentation is always in sync with the source code takes considerable effort, especially for large codebases. To address this situation, we propose an approach that can automatically detect code element references that survive in the documentation after all source code instances have been deleted. In this work, we analysed more than 3,000 GitHub projects and found that most projects contain at least one outdated code element reference at some point in their history. We submitted GitHub issues to real-world projects containing outdated references detected by our approach, some of which have already led to documentation fixes. As an initiative toward keeping documentation in software repositories up-to-date, we have made our implementation available and created a tool for developers to scan their GitHub projects for outdated code element references. Lastly, we extended our approach to detect outdated references to code elements in over 2,000 images present in software documentation.Thesis (MPhil) -- University of Adelaide, School of Computer and Mathematical Sciences, 202
    corecore