2,127 research outputs found

    Assessing emphysema in CT scans of the lungs:Using machine learning, crowdsourcing and visual similarity

    Get PDF

    Longitudinal detection of radiological abnormalities with time-modulated LSTM

    Full text link
    Convolutional neural networks (CNNs) have been successfully employed in recent years for the detection of radiological abnormalities in medical images such as plain x-rays. To date, most studies use CNNs on individual examinations in isolation and discard previously available clinical information. In this study we set out to explore whether Long-Short-Term-Memory networks (LSTMs) can be used to improve classification performance when modelling the entire sequence of radiographs that may be available for a given patient, including their reports. A limitation of traditional LSTMs, though, is that they implicitly assume equally-spaced observations, whereas the radiological exams are event-based, and therefore irregularly sampled. Using both a simulated dataset and a large-scale chest x-ray dataset, we demonstrate that a simple modification of the LSTM architecture, which explicitly takes into account the time lag between consecutive observations, can boost classification performance. Our empirical results demonstrate improved detection of commonly reported abnormalities on chest x-rays such as cardiomegaly, consolidation, pleural effusion and hiatus hernia.Comment: Submitted to 4th MICCAI Workshop on Deep Learning in Medical Imaging Analysi

    Thoracic Disease Identification and Localization with Limited Supervision

    Full text link
    Accurate identification and localization of abnormalities from radiology images play an integral part in clinical diagnosis and treatment planning. Building a highly accurate prediction model for these tasks usually requires a large number of images manually annotated with labels and finding sites of abnormalities. In reality, however, such annotated data are expensive to acquire, especially the ones with location annotations. We need methods that can work well with only a small amount of location annotations. To address this challenge, we present a unified approach that simultaneously performs disease identification and localization through the same underlying model for all images. We demonstrate that our approach can effectively leverage both class information as well as limited location annotation, and significantly outperforms the comparative reference baseline in both classification and localization tasks.Comment: Conference on Computer Vision and Pattern Recognition 2018 (CVPR 2018). V1: CVPR submission; V2: +supplementary; V3: CVPR camera-ready; V4: correction, update reference baseline results according to their latest post; V5: minor correction; V6: Identification results using NIH data splits and various image model
    corecore