3 research outputs found

    Experimental Investigation for Fault Diagnosis Based on a Hybrid Approach Using Wavelet Packet and Support Vector Classification

    Get PDF
    To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples

    Detecting and approximating fault lines from randomly scattered data

    No full text
    Discretely defined surfaces that exhibit vertical displacements across unknown fault lines can be difficult to approximate accurately unless a representation of the faults is known. Accurate representations of these faults enable the construction of constrained approximation models that can successfully overcome common problems such as over-smoothing. In this paper we review an existing method for detecting fault lines and present a new detection approach based on data triangulations and discrete Gaussian curvature (DGC). Furthermore, we show that if the fault line can be described non-parametrically, then accurate support vector machine (SVM) models can be constructed that are independent of the type of triangulation used in the detection algorithms. We shall also see that SVM models are particularly effective when the data produced by the detection algorithms are noisy. We compare the performances of the various new and established models
    corecore