35,633 research outputs found

    Incremental Learning of Object Models From Natural Human-Robot Interactions

    Get PDF
    In order to perform complex tasks in realistic human environments, robots need to be able to learn new concepts in the wild, incrementally, and through their interactions with humans. This article presents an end-to-end pipeline to learn object models incrementally during the human-robot interaction (HRI). The pipeline we propose consists of three parts: 1) recognizing the interaction type; 2) detecting the object that the interaction is targeting; and 3) learning incrementally the models from data recorded by the robot sensors. Our main contributions lie in the target object detection, guided by the recognized interaction, and in the incremental object learning. The novelty of our approach is the focus on natural, heterogeneous, and multimodal HRIs to incrementally learn new object models. Throughout the article, we highlight the main challenges associated with this problem, such as high degree of occlusion and clutter, domain change, low-resolution data, and interaction ambiguity. This article shows the benefits of using multiview approaches and combining visual and language features, and our experimental results outperform standard baselines

    Detecting Human-Object Interactions via Functional Generalization

    Full text link
    We present an approach for detecting human-object interactions (HOIs) in images, based on the idea that humans interact with functionally similar objects in a similar manner. The proposed model is simple and efficiently uses the data, visual features of the human, relative spatial orientation of the human and the object, and the knowledge that functionally similar objects take part in similar interactions with humans. We provide extensive experimental validation for our approach and demonstrate state-of-the-art results for HOI detection. On the HICO-Det dataset our method achieves a gain of over 2.5% absolute points in mean average precision (mAP) over state-of-the-art. We also show that our approach leads to significant performance gains for zero-shot HOI detection in the seen object setting. We further demonstrate that using a generic object detector, our model can generalize to interactions involving previously unseen objects.Comment: AAAI 202

    Going Deeper into First-Person Activity Recognition

    Full text link
    We bring together ideas from recent work on feature design for egocentric action recognition under one framework by exploring the use of deep convolutional neural networks (CNN). Recent work has shown that features such as hand appearance, object attributes, local hand motion and camera ego-motion are important for characterizing first-person actions. To integrate these ideas under one framework, we propose a twin stream network architecture, where one stream analyzes appearance information and the other stream analyzes motion information. Our appearance stream encodes prior knowledge of the egocentric paradigm by explicitly training the network to segment hands and localize objects. By visualizing certain neuron activation of our network, we show that our proposed architecture naturally learns features that capture object attributes and hand-object configurations. Our extensive experiments on benchmark egocentric action datasets show that our deep architecture enables recognition rates that significantly outperform state-of-the-art techniques -- an average 6.6%6.6\% increase in accuracy over all datasets. Furthermore, by learning to recognize objects, actions and activities jointly, the performance of individual recognition tasks also increase by 30%30\% (actions) and 14%14\% (objects). We also include the results of extensive ablative analysis to highlight the importance of network design decisions.
    • …
    corecore