
1

Incremental Learning of Object Models
from Natural Human-Robot Interactions

Pablo Azagra, Javier Civera, Ana C. Murillo
DIIS-I3A. University of Zaragoza, Spain.

Abstract—In order to perform complex tasks in realistic
human environments, robots need to be able to learn new
concepts in the wild, incrementally, and through their interactions
with humans. This paper presents an end-to-end pipeline to learn
object models incrementally during the human-robot interaction.

The pipeline we propose consists of three parts: (a) recognizing
the interaction type, (b) detecting the object that the interaction
is targeting, and (c) learning incrementally the models from data
recorded by the robot sensors. Our main contributions lie in
the target object detection, guided by the recognized interaction,
and in the incremental object learning. The novelty of our
approach is the focus on natural, heterogeneous and multimodal
human-robot interactions to incrementally learn new object
models. Throughout the paper we highlight the main challenges
associated with this problem, such as high degree of occlusion
and clutter, domain change, low resolution data and interaction
ambiguity. Our work shows the benefits of using multi-view
approaches and combining visual and language features, and
our experimental results outperform standard baselines.

Note to Practitioners—This work was motivated by challenges
in recognition tasks for dynamic and varying scenarios. Our
approach learns to recognize new user interactions and objects.
To do so, we use multimodal data from the user-robot interaction:
visual data is used to learn the objects and speech is used to learn
the label and help with the interaction type recognition. We use
state-of-the-art deep learning models to segment the user and the
objects in the scene. Our algorithm for incremental learning is
based on a classic incremental clustering approach.

The pipeline we propose works with all sensors mounted on
the robot, so it allows mobility on the system. Our work uses
data recorded from a Baxter robot, which enables the use of
the manipulation arms in future steps, but it would work with
any robot able to have the same sensors mounted. The sensors
used are two RGB-D cameras and a microphone. The pipeline
currently has high computational requirements to run the two
deep learning based steps. We have tested it with a desktop
computer including a GTX 1060 and 32GB of RAM.

Index Terms—Object recognition, incremental learning, mul-
timodal data, human-robot interaction.

I. INTRODUCTION

We are witnessing a widespread adoption of service robotics
in multiple aspects of our daily life and activities, such as
household assistance devices or semi-autonomous cars. Visual
perception is an essential component for these systems. In the
last years, visual object recognition has been studied the most,
typically with data-driven models trained offline, following the
great success of deep learning based approaches for numerous
recognition tasks. This paper addresses a particular case of

P. Azagra is a PhD student at the University of Zaragoza
J. Civera and A.C. Murillo are faculty at the University of Zaragoza

Fig. 1: Overview of our approach. A human user teaches a
robot new objects through natural interactions (e.g., pointing
to it). The robot recognizes the type of interaction from the
multimodal recordings, finds the target object region on its
camera views and updates the object model incrementally.

object recognition, incremental learning of object models from
natural human-robot interaction.

The need for incremental learning system comes from the
fact that models trained offline on large generic datasets
cannot, in general, address some challenges of using home
environment real data. One example is the long-tail distribu-
tion, i.e., objects that appear rarely and for which few or none
training samples exist in generic datasets. Another example
is the changing nature of the environments, with new objects
appearing, e.g. food products that did not exist when the large
training datasets were created. In order to address these and
other cases, robotic perception should have lifelong learning
components.

One essential aspect to learn or update world models,
affordances, and capabilities is a comfortable and intuitive
human-robot interaction. This interaction should happen in a
natural manner requiring the minimum effort for the human
user. In our believe, the best interaction would be natural
language and gestures, similarly to how the user would teach
something to another person.

Learning from this type of natural human-robot interactions
poses many significant research challenges. Although offline
learning (deep learning in particular) has shown an impressive
performance, it typically requires copious amounts of data.

2

(a) Point (b) Show (c) Speak

Fig. 2: Interaction types from the MHRI dataset [1].

This amount of data is not available for all the relevant
scenarios of human-robot interaction and other strategies are
required. In addition to the object model that the robot has
to learn or update, the correct identification of the interaction
is a challenge on its own. The data recorded by the robot is
typically multimodal, so a proper fusion has to be designed.
Besides, images captured by robot cameras are usually very
different from pictures acquired by humans: they typically
contain objects of interest at low resolution, occluded by the
human, only partially visible, or presenting motion blur. Such
domain shift makes the use of standard datasets impractical,
and might cause a bad performance of standard methods.
Finally, online learning from such noisy data is also an open
research problem.

To illustrate our goals, let us use the specific case of a
robot helping a user in a kitchen. The robot needs to know
the specific objects that are in the kitchen it operates. Some
may have common shapes, and may be easy to recognize with
models pre-trained offline (e.g., apple or mug), while others
may have a particular appearance (e.g., a new wine brand or
design cooking utensils). The user should be able to teach
these latest unknown objects to the robot, in a natural manner,
so the robot can identify them from then on. In order to learn
interactively from a human user, as summarized in Fig. 1, the
robot has to: 1) recognize the type of interaction the user is
attempting; 2) segment image regions relevant to the object
of interest according to this interaction; 3) create or update a
model for the object of interest.

The main contribution of our work is a specific pipeline for
learning new objects that is interaction-driven. As humans do,
our pipeline ranks the relevance of scene parts depending on
the gestures/speech of the person that is teaching. We focus on
the three most natural interactions for humans (Fig. 2 shows
one example of each of these interactions):

• Point: the user points at an object on the table and
announces its name.

• Show: the user grabs an object, shows it and utters its
name.

• Speak: the user describes where a certain object is in
relation to other objects.

This paper builds on our previous works in [1] and [2]. The
new contributions here are:

• An incremental learning algorithm, which is based on
incremental clustering and k-Nearest Neighbour (k-NN).

• An improved interaction recognition module, which now
uses a state-of-the-art CNN-based skeleton extractor [3]
and our incremental learning algorithm supervised with
human speech.

• A new strategy for the detection of object candidates,
combining the segmentation from MaskRCNN [4] with
the superpixel-based approach previously used in [1].

• A novel object recognition module that uses our incre-
mental learning algorithm.

• A complete evaluation and thorough analysis of each
module separately and then running the whole pipeline.

We evaluate our algorithms in two recent public datasets:
Core50 [5] and MHRI [1]. Our experimental validation shows
that our approach outperforms standard baselines, and it also
highlights the challenges associated with online model learn-
ing from natural Human Robot Interaction (HRI).

The rest of the paper is structured as follows. Sec. II
details the related work. Sec. III provides a general overview
of our approach. Sec. IV details the algorithm proposed
for incremental learning. Sections V, VI and VII present,
respectively, the details of the three modules of our pipeline:
multimodal interaction recognition, target object detection and
incremental learning of object models. Sec. VIII presents
a separate analysis and evaluation for each module, while
Sec. IX presents results running the whole pipeline. Sec. X
concludes the work and discusses lines for future work.

II. RELATED WORK

Our proposal spans over several areas of interest in robotics,
and we organize this section into such main areas.

A. Robot Interaction

There are plenty of applications where a service robot assists
a human user and learns or updates its models interacting with
him/her. Bohg et al. [6] presents a survey on interactive per-
ception and how it can be leveraged for robotic actions, with
specific references to interactive object modeling. Some works
focus on the value added by the robot motion. For example,
Park et al. [7], presents a robot that interacts with users to
perform daily routines, and Reiser et al. [8], presents a robot
with perception, navigation and manipulation capabilities that
interacts with a user via a touchscreen. Other works focus on
the interaction in a workshop like scenario, more closer to
our setup. For example Baraglia et al. [9] aims to decide if
it is the robot or the human who should take the initiative
in collaborative work, and Dumora et al. [10] presents an
approach where the robot decides the action to perform next
based on a set of haptic cues from the human user.

More similar to our work, other approaches study how the
user can teach the robot, like Skočaj et al. [11] and Krause
et al. [12]. There, the user maintains a conversation with the
robot to teach objects and attributes from a common view of
the table scenario. Valipour et al. [13] presents a work where
the user can correct the robot when an object is not found
using voice commands and pointing. In Siam et al. [14], HRI
helps to improve the segmentation of a target object and to
learn a better model. Other works focus on teaching actions
like Aksoy et al. [15], which is able to incrementally learn
semantic event chains (SECs) extracted from actions using
human demonstration.

3

Very related to our work, Pascuale et al. [16] uses Con-
volutional Neural Network (CNN) based features and Sup-
port Vector Machine (SVM) classification for teaching visual
models to a robot. The training data consists of egocentric
images, where a human presents an object in front of the
robot. Camoriano et al. [17] harnessed that data (vision-only
data and user interactions consisting only of users showing the
objects to the robot) and uses a variation of Regularized Least
Squares for incremental object recognition. Similarly, Kasaei
et al. [18] uses the point cloud to obtain a 3D descriptor and
incrementally learn objects looking where the user points.

Other set of works explore when the robot is able to
interact also with the objects. Lyubova et al. [19] learns objects
models using point-feature descriptors and Bag of Words
(BoW) models in two steps. The first one is based on just
observation (either from the table or from a human showing
the object) and the second one includes the robot interaction
with the objects. He et al [20] presents an incremental network,
called Adaptative Neural Gas (ANG) that learns shape and
color of simple objects in the robot workspace using visual-
audio input and the possibility of the robot to ask for more
information. The contribution of our proposal over these works
is a more generic strategy, towards a more natural human-
robot interaction, using multimodal data and enabling different
types of user interactions (point, show and speak) to learn new
objects.

B. Object Recognition

Object recognition is a traditional research area in computer
vision and robotics. Deep learning has made a breakthrough in
this area reaching human-level performance [21] in some task.
With well known models like ResNet [22] or Inception [23],
deep learning approaches have provided a significant boost on
related problems, such as object recognition, object segmenta-
tion [4] or object detection [24]. Also, their efficiency has been
improved and networks like [25] or [26] are able to run on
platforms with limited computational resources. All of these
models, however, are trained offline and typically require a
large amounts of labeled data.

Of particular relevance for our work are strategies that
approach object model learning through incremental methods.
Yao et al. [3] proposes an incremental learning method that
continually updates an object detector and detection threshold,
as the user interactively corrects annotations proposed by
the system. Kuznetsova et al. [27] investigates incremental
learning for object recognition in videos. Lee et al. [28]
presents a SIFT-vocabulary that builds an incremental graph
from a single image.

Recent recognition approaches focus on 3D object model,
like Furrer et al. [29]. They use multiple observations of a 3D
scene to incrementally create 3D models. We do not consider
3D object models, even though we use the depth channel,
because our data contains a high level of clutter and small
objects, which make such 3D modelling fail. Besides, in our
data, object 3D shapes are not discriminative enough to be
useful.

To study and evaluate different approaches for object recog-
nition, the research community has released plenty of public
datasets. For example [30], [31] are two well-known datasets
targeting object recognition from RGB-D images. Also Temel
et al. [32] shows objects in both real and unreal environments
and different challenging conditions like underexposure or
noise. However, most of the existing datasets focus on offline
visual learning and RGB images, like COCO dataset [33]
and Imagenet [34] . Interactive, multi-sensor, and multimodal
datasets are scarcer.

Multiple aspects should be considered on a dataset targeting
interactive learning. We focus, in particular, on multimodality
and on realistic HRI settings. In such scenarios, images are
expected to have very different appearance than the previously
mentioned datasets for offline learning. The objects are shown
by a human through different ways of interaction and the
images are seen from the robot point of view. This causes
noticeable domain shift. Some works capture HRI but from
another POV very different. Datasets like [35] or [36] capture
human-robot interaction from a third-person POV. Other works
capture the POV but the interaction is not with objects, like
Vatakis et al. [37] which has an experiment with a first-person
POV but with a screen interaction and a third-person POV
experiment with objects.

Besides, the majority of the datasets lack other sensor data
besides images like speech from the user, common in human-
robot interactive scenarios. As detailed in the next section, the
main dataset we use[1] is focused not only on capturing the
user expression, but also on capturing the scene information
(hands, arms, desk, objects, etc.) related to the object classes
being taught to the robot.

C. Incremental Learning

In recent years, significant advances have been made in the
field of incremental learning, many of them applying deep
learning techniques. Open-class approaches, i.e., those able to
add new categories as the data comes, are particularly relevant
for our work.

In Li et al. [38], the authors create and train new classifi-
cation layers as new classes are added and fine-tune the rest
of the network to maintain the outputs for older classification
layers. Following this work, Rannen et al. [39] uses a similar
setting, one shared model and several classification layers,
but at training time they add one feature-autoencoder per
class. The new autoencoder is trained on the data for the
assigned class and use a loss to keep the build-up error on
the old ones. More similar to our work, Rebuffi et al. [40]
use deep learning to obtain image representations that can be
incrementally updated. They set a limit in the total number of
stored examples and classify using the average feature of each
class examples. With our approach, we outperform this work
in the Core50 dataset and possibly at a lower cost, as we do
not fine-tune the network.

Other works with deep learning focus on incrementally bind
multimodal attributes to the objects like Xing et al. [41]. Here,
the Perception Coordination Network online adquires and bind
multimodal concepts between different sensory modules. It

4

uses two levels of neurons inspired by the brain structure
and separates lower neurons depending on the modality of
the input. Our work only focus on the use of deep learning as
feature extractor, because training a network online has more
computational cost and the binding of concepts is out of our
scope.

Other classic approaches for incremental or online learning
are found in the literature. Passive-Aggressive algorithms [42]
use an offline learning algorithm as a base and incrementally
modify their parameters. [43] presents a variation of SVM that
is able to change the support vector online. We can also find
online variations or combinations of K-means clustering algo-
rithms. Murty et al. [44] presents an approach that combines
the k-means algorithm with multilevel representation of the
clusters. Likas et al. [45] presents a global k-means that adds
a new cluster at a time and dynamically updates the other clus-
ters by applying the k-means algorithm multiple times. More
recently, Mensink et al. [46] presents an incremental Nearest
Mean Classifier which uses nearest neighbor with the mean of
each class for classification and also for generalization.

Other group of approaches apply a data transformation
based on self-organizing maps (SOM) Neural Networks, as
a base to incrementally update the nodes in the Network. For
example, Furao et al. [47] presents an online unsupervised
system with an incremental update of a Neural Network based
on SOM (SOINN). Xing et al. [48] presents a more recent
variant of the Self-Organizing Incremental Neural Networks
that incrementally transforms the nodes in the layers of the
SOINN using the local distribution. Gepperth et al. [49] uses
SOM to reduce the dimensionality of the data in the Hidden
Layer, but it needs to keep all the data in memory for re-
training.

These approaches work with seeds for each class based
on the existing data and can not add new classes over time.
Differently, our goal is to be able to learn completely from
scratch and increase incrementally the number of classes.

Incremental learning is a paradigm very suitable for
robotics, where the data typically arrives sequentially, and the
robot needs to keep the best model up to date at real time,
such as mapping in [50] or inverse dynamics incremental
learning in [51]. The same way, Angeli et al. [52] presents
an incremental method to build a model to recognize visual
loop-closures. We find multiple examples that propose how to
incrementally adapt environment visual models as the robot
moves. These approaches are often based on Gaussian Mixture
Models that can be easily updated and maintained to recognize
regions of interest for the robot [53], [54]. In robotics, we find
situations where the robot interacts directly with the scene,
e.g., grasping and moving an object, to build an incremental
object model [55], [56], [57]. Our approach is complementary
to these works, as we focus on the human interaction. This
interaction is needed in real scenarios, e.g., if the object to be
learned or explored is out of reach of the robot.

III. OVERVIEW

This section presents an overview of our incremental object
learning pipeline and the data we use to validate it.

A. Pipeline

The three main modules of our pipeline, illustrated in Fig. 3,
are summarized next and detailed in the following sections. All
the code to run our pipeline is available online1.

Multimodal Incremental Interaction Recognition: An
accurate identification of the human-robot interaction is a key
aspect, as the extraction of object patches to train the object
models depends on it. One of the main challenges here is that
each user interacts differently, so we need to learn or adjust
our models incrementally. This module combines skeleton
detection [58] to guide the hand search and our incremental
learning algorithm guided by natural user feedback.

Target Object Detection: For each interaction type we
propose a specific algorithm to select the candidate image
patches likely to contain the target object. We use two different
camera views, a top (head-mounted) one that facilitates the
segmentation, and a frontal one that provides closer object
views. We also consider the user motion to select target object
patches that minimize clutter and occlusion.

Incremental Object Model Learning: The candidate
patches obtained from previous steps are used as training
samples by our incremental learning algorithm. The category
labels are obtained from the user speech data.

B. Data

Our approach is built to learn from natural human-robot
interactions. In our scenario, the robot and the user share a
workspace and the objects to learn are visible to both. We
use the Multi-modal Human-Robot Interaction dataset, that
contains data from the robot POV capturing the user teaching
objects. We also use another public dataset, Core50, focused
on incremental learning of objects.

TABLE I: Summary of MHRI dataset content

Users 10

Interaction Type 3 Point, Show, Speak

Interactions per User 30 10 of each type. 1 object per interaction.

Object Pool 22

Apple, Banana, Big Mug, Bowl, Ce-
real Box, Coke, Diet Coke, Glass, Fork,
Ketchup, Kleenex, Knife, Lemon, Lime,
Mug, Noodles, Orange, Plate, Pringles,
Spoon, Tea Box, Water Bottle

Multi-modal Human-Robot Interaction (MHRI)
dataset [1]: This is the main dataset used in our
experimentation.

The MHRI dataset captures the most common natural in-
teractions to teach object classes to a robot, namely: Point,
Show and Speak. Table I summarizes its content: Recordings
from 10 users; each user interacting with 10 of the object
classes for each of the 3 types of interactions, for a total of
300 multimedia short clips. The aforementioned 10 objects
per user were picked randomly, out of a pool of 22 available
objects, and were used by such user in all his/her recordings.

Fig. 4 shows the cameras placement in the Baxter robot used
for the acquisition. The Frontal RGB-D camera is mounted on

1https://sites.google.com/a/unizar.es/iglu_mhri/

https://sites.google.com/a/unizar.es/iglu_mhri/

5

Fig. 3: Proposed interactive and incremental learning pipeline. A user teaches an object to a robot using one of the considered
interactions: Show, Point or Speak. The multimodal data recorded by the robot is the input to our pipeline. (a) to (d) are
the interaction recognition process steps. (e) to (g) summarize the target object extraction algorithm, that is dependent on the
interaction type recognized. Finally, (h) to (j) are the stages of the incremental object model learning, using object patches
obtained in the previous steps.

the robot chest to give a frontal view of the user and the table.
The Top RGB-D camera is mounted at the highest point of the
robot and has a holistic overview of the scene. The annotations
include the objects each user interacted with, the first uttered
word (which is either “this”, “that” or “the”), and the label
of the object in question for each interaction. Each frame is
labeled with the type of interaction.

Core50 dataset [5]: To further evaluate our incremental
learning algorithm, we also use the Core50 dataset. It focuses
on the incremental learning of both instances and classes,
and consists of 50 instances (10 categories) in 11 different
scenarios (indoor and outdoor). Each video shows an object
in a hand. The hand rotates to show different views of the
object.

Fig. 4: Baxter robot setup used to acquire the dataset. The
three cameras and the microphone locations are highlighted.

6

IV. INCREMENTAL LEARNING

Our online learning algorithm is inspired by incremental
clustering approaches, and it is used in two different stages of
our pipeline: interaction recognition and object model learning.

The algorithm works as follows. We represent each class
model C with a hierarchical set of clusters in the descriptor
space C = {C1, . . . , Cl, . . . , CN}, where Cl represents the set
of clusters class l, Cl = {C1

l , . . . , C
j
l , . . . , C

s
l }.

Each cluster Cj
l groups a representative subset of j descrip-

tors for class l, most of the time corresponding to a specific
viewpoint. We assign an integer score τ jl to each cluster Cj

l to
gather evidence of the suitability of such cluster via consensus.

As new samples arrive, existing clusters evolve and update
their centroids (used as representative descriptors) and scores.
Besides, new clusters can be created for new classes. Figs. 3(h)
to (j) show an example of the possibilities when a new training
sample is given to the incremental learning. The total number
of classes N is not limited by construction but, in order to
avoid unlimited growing, the number of clusters per class is
limited by a predefined size k. Algorithm 1 summarizes the
proposed strategy, and its main components are discussed next.

A. Incremental model update

The input to our algorithm is a descriptor e corresponding
to a new training sample, and its label l. As represented in
Fig 3(h), a new cluster Ce

l is created with e as its centroid
and l as associated label. The new cluster Ce

l is added to the
list of clusters Cl. If label l does not exist in the system,
it is added to it. If Cl has reached the maximum number of
associated clusters k, as represented in Fig 3(j), two things
can happen.
• The first nupdates times, the algorithm computes the

pairwise distance of each cluster in Cl with respect to the rest.
We compute the distance DB between the cluster centroids and
find the pairs {x̂, ŷ} and {ŵ, ẑ}, corresponding respectively to
the maximum and minimum intercluster distances. In the ex-
periments, we compare differents type of distance (euclidean,
cosine, battacharya,...) with different kind of descriptors.

{x̂, ŷ} = argminx,y{DB(C
x
l , C

y
l)} 3 x 6= y

{ẑ, ŵ} = argmaxw,z{DB(C
w
l , C

z
l)} 3 z 6= w

(1)

The two clusters at minimum distance, C x̂
l and C ŷ

l , are
merged into one single cluster Cs

l . The resulting cluster is
assigned the centroid of cluster with the better score between
τxl and τyl and its score incremented by one. The score (τzl)
of the cluster at maximum distance C ẑ

l is decremented by one.

• After nupdates, the cluster Cŵ
l with the worst score (τ ŵl)

is removed and replaced by the cluster of the new sample.

ŵ = argminwτ
w
l (2)

In addition to the approach to update the model described
above, we tested several simple baselines (random and always
similarity, where the merging is always with the closest
clusters) as alternative criteria for the cluster reorganization.
The proposed method offered the best performance, with an

Algorithm 1 Incremental learning algorithm

1: procedure INC.TRAIN(e,l)
2: Ce

l = Create_Cluster(e,l)
3: Cl.add(Ce

l)
4: if l not in system.Labels then
5: system.add_label(l)
6: else
7: if Cl.is_full(k) then
8: if system.updates % nupdates 6= 0 then
9: // Merge similar cluster

10: max_distance = 0
11: min_distance = inf
12: for each x in Cl do
13: for each y in Cl do
14: if x 6= y then
15: distance = DB(Cx

l ,Cy
l)

16: if distance < min_distance then
17: min_distance = distance
18: x̂ = x
19: ŷ = y
20: end if
21: if distance > max_distance then
22: ẑ = x
23: max_distance = distance
24: end if
25: end if
26: end for
27: end for
28: Cs

l = Merge(C x̂
l ,C ŷ

l)
29: update_score(Cs

l ,+1)
30: update_score(C ẑ

l ,−1)
31: else
32: // Remove worst scored cluster
33: w = Cl.get_worse_score()
34: Erase(Cw

l)
35: end if
36: system.updates +=1
37: end if
38: end if
39: end procedure

object recognition accuracy of 13% against 11% and 10%
of random and always similarity respectively. Our approach
prevents too much intercluster similarity by merging certain
clusters, and also penalizes and eventually removes clusters too
different from the rest (possibly corresponding to outlier data).
Since our application data is likely to contain significant noise
and have a different distribution than typical public datasets,
we do not find benefits pre-training our models on such data.

B. Classification of new samples

A new sample is assigned to the existing classes following
a k-Nearest Neighbor (k-NN) approach, following eq. 4. We
compute the distance from the descriptor e of the new sample
to all the cluster centroids in our model (C), sort them and
obtain the k-top clusters (x0:k in the eq. 4). Each existing
cluster, x, has an object label assigned, lx, and the new sample
is classified as class lx̂, where lx̂ is the Mode from the top k
labels obtained.

7

(a) Show (b) Show

(c) Point (d) Point

Fig. 5: Examples of skeleton detections. Notice that, in 5b, the
hand joint is predicted even when it is occluded.

x0:k = sort(DB(e, C))[0 : k] (3)
lx̂ = Mode(lx0:k) (4)

V. MULTIMODAL INCREMENTAL INTERACTION
RECOGNITION MODULE

This section details our interaction recognition module. It
uses visual and language features related to the analysis of the
user hand and the keywords in the user speech, respectively.

Classifying a person’s activity only from visual data is chal-
lenging. Several works, e.g. [59], show that the combination
of language and vision leads to substantial improvements. In
our previous work [60] we demonstrated that including Speak
interactions to train the models obtains better accuracy than
using only Point and Show ones.

A. Visual analysis of the user

To recognize the user interaction, we first analyze the
possible users in the robot field of view, and focus on the
main user hand.

We use a CNN-based approach by Cao et al [58] that
identifies all skeleton joints for all the people in the image.

It could be replaced by any other skeleton segmentation
strategy, but we chose this particular approach for several
reasons. It shows good performance in our images, even with
considerable occlusions of the user, and its computational load
is reasonably low. Fig. 5 shows several examples of estimated
skeletons where its accuracy can be appreciated.

After the skeletons have been detected, our pipeline focuses
on the largest individual. We extract a 200×200 patch around
the hand joint, which is expected to contain the hand. The
visual features for the interaction classification, detailed next,
are computed over this patch.

Fig. 6: Language feature occurrences in all recordings, per
type of interaction and per user.

B. Multimodal features

Language Features: From the user speech we extract the
label of the object that the user is referring to, as well as
information to guide the interaction recognition. We use a
simple language feature consisting of the first word of the user
speech. In our dataset, by construction, this word is either this
or that for Point and Show interactions and any other word for
the more heterogeneous Speak interaction. This feature is not
discriminative enough to separate the three interaction classes,
as it can be seen in Fig. 6. It can be used to separate Speak
interactions, but it is not helpful to differentiate between Point
and Show. However, separating Speak is particularly valuable,
as there are no specific visual patterns associated with this
interaction.

Visual Features: We compute Histogram of Gradients
(HOG) [61] in the depth channel of the hand patch.

C. Incremental Interaction Recognition

The recognition of the type of interaction has several
challenges. First, gestures are very different between users.
Second, such gestures are also highly dependent on the camera
viewpoint. Because of these two challenges, together with the
small amount of data in our dataset, a general gesture classifier
trained offline does not reach a reasonable performance.

In our experiments we have trained several baselines, specif-
ically common SVM classifiers, and well-known classification
CNNs such as Inception [23]. Probably due to the low number
of users available, none of them converged to a model that
generalizes well for new users, giving in most cases random
accuracies. Instead, we use the incremental learning algorithm
described in section IV . It uses interactive supervision from
the user if the classifier output is not conclusive.

This process is detailed in Algorithm 2. At the start, there
are no training samples for a given user. For the first n_vids
samples (in our experiments n_vids = 4), the algorithm
chooses one type of interaction randomly and asks the user if
the predicted interaction is correct. Depending on the answer,
the label is corrected, and the labeled video is used to train the
incremental model. After n_vids video samples, each video
frame is classified according to the hand patch found on it.

8

The video is assigned the class of the majority of the
frames classified with high confidence. If this majority is less
than min_prob, the algorithm asks the user for the actual
interaction type and the model is re-trained.

Algorithm 2 Incremental Interaction Recognition.
1: min_prob = 85%
2: videos_processed = 0
3: n_videos = 4
4: min_dist = 0.56
5: function EXTRACT_DESCRIPTOR(Frame_RGB)
6: Skeleton = obtain_skeleton(Frame_RGB.Front)
7: Hand_patch = Crop_Hand(Frame_RGB.Front,Skeleton.wrist)
8: Descriptor = Calculate_HOG(Hand_patch)
9: return Descriptor

10: end function
11: function TRAIN_INCREMENTAL(Video_RGBD)
12: Interaction = Ask_User()
13: for each Frame_RGB in Video_RGBD do
14: Descriptor = Extract_Descriptor(Frame_RGB)
15: Inc.Train(Descriptor, Interaction) . See Alg. 1
16: end for
17: return Interaction
18: end function
19: function INTERACTION RECOGNITION(Video_RGBD,speech)
20: if speech.get_first_word() 6= ("This" | "That") then
21: return "Speak"
22: else
23: if videos_processed < n_vids then
24: videos_processed += 1
25: Interaction = Train_Incremental(Video_RGBD)
26: return Interaction
27: else
28: videos_processed += 1
29: Votes = []
30: for each Frame_RGB in Video_RGBD do
31: Descriptor = Extract_Descriptor(Frame_RGB)
32: Class, Distance = Inc.Test(Descriptor)
33: if Distance < min_distance then
34: Votes.add_vote(Class)
35: end if
36: end for
37: Interaction,Confidence = Process_Results(Votes)
38: if Confidence > min_prob then
39: return Interaction
40: else
41: return Train_Incremental(Video_RGBD)
42: end if
43: end if
44: end if
45: end function

VI. TARGET OBJECT DETECTION MODULE

This module extracts image patches that are likely to contain
the target object we want to learn from the user interaction.
Depending on the type of interaction recognized with the
previous module (Show, Point, Speak), we propose three
different strategies to segment the target object patches.

A. Show interaction

This strategy considers when the user grabs the object and
lifts it, bringing it closer to the robot cameras. The key steps
are discussed next and detailed in Algorithm 3.

Selecting the best frame to extract the hand patch.
This usually happens when the hand is at a high position,
as occlusions are less likely at that moment. Therefore, we
select the subset of frames where the hand is above 70% of
the highest vertical hand position along the clip.

Selecting image regions most likely to contain the ob-
ject. Each image is segmented using SLIC [62] superpixels.

Our algorithm selects superpixels likely to contain relevant
information, i.e., large overlap with the hand patch and small
distance between the superpixel center and the hand patch
center.

Algorithm 3 Target object detection for Show interaction.
1: min_instersected = 40%
2: max_far = 200
3: function OBJECT_DETECTION_SHOW(Video_RGB-D, interaction,

Hand_Pos)
4: Patches = []
5: for each Frame_RGB in Video_RGB-D do
6: if (Hand_pos-min_height) > 0.7∗ (max_height-min_height)

then
7: SuperPixels = Slic(Frame.Front) Correct_SuperPixels = []
8: for each SuperPixel in SuperPixels do
9: intersection = get_intersection(Hand_Pos,SuperPixel)

10: distance_center = distance(SuperPixel.center(),Hand_Pos)
11: if intersection >= min_intersected &&

distance_center < max_far then
12: Correct_SuperPixels.add(SuperPixel)
13: end if
14: end for
15: Patch = Extract_patch(Correct_SuperPixels)
16: Patches.add(Patch)
17: end if
18: end for
19: return Patches
20: end function

B. Point interactions

This strategy considers when the user is pointing to an
object. Differently to Show, where the object is easy to find
because it is grasped by the user, Point interactions are more
challenging. The main difficulties are the estimation of the
pointing direction and the selection of the candidate object
region from the potential candidates along such direction. The
key steps of this strategy are described next and detailed in
Algorithm 4.

Candidate object segmentation. This segmentation is run
on the first frames acquired from the Top camera, before the
user motion starts. The Top camera views facilitate better
object pre-segmentation because they have less clutter and
occlusions than Frontal camera views. We can map approxi-
mately the objects from one view into another (in this case,
from Top to Frontal views) using the table plane homography.

To obtain the candidate segments, our algorithm runs two
different but complementary approaches on the resulting im-
age. In the first approach, Mask-RCNN [4] is used to segment
a few candidate objects. This CNN model can reliably segment
certain objects but, since our scene contains significant occlu-
sions and small objects (see examples in Fig. 12), it misses
important candidates. In the second approach, a superpixel
segmentation [63] is used to remove table pixels. Then we
apply Otsu’s thresholding with the Watershed algorithm (as de-
scribed in Meyer et al. [64]), to obtain object candidates.From
this candidates, we remove object that are too small or too
large, objects that occupy more than one third of the table or
less than an area of 100 pixels. This process is detailed in
Algorithm 5.

Hand pointing direction estimation. Fig. 7 shows several
examples of the output of our pointing direction estimation
algorithm. Hand contours are extracted using a Canny edge

9

(a) (b)

(c) (d)

Fig. 7: Examples for hand detection and pointing direction
estimation. The green regions show equally-distributed possi-
ble directions. The blue line is the estimated direction. (a) to
(c) show common correct cases; (b) shows an example where
the direction is correct even for an uncommon hand pose. (d)
shows a failure case, the direction is incorrect due to similar
depths in the hand and the table. (best viewed in color)

detector on the depth image. Then, we draw lines from the
hand center at several equally distributed angles. The pointing
direction is approximated by the line that intersects with the
hand boundary at the furthest distance to the hand center.

Intersection between the pointing direction and candi-
date object segments. These intersections are obtained as
represented in Fig. 3(f). To evaluate which candidates are more
promising, our algorithm computes the following score:

Score =
∑

Frames

Intersect(Hand_direction,Candidate)

Diagonal(Candidate)
, (5)

where Intersect computes the length of the intersection be-
tween the pointing direction and the candidate bounding
box; and Diagonal computes the length of the bounding box
diagonal.

This score helps us normalize by the size of each candidate.
The candidate with the highest score is selected, and the
corresponding image patch from both cameras is extracted and
used as a training sample for the incremental model.

C. Speak interactions

This type of interaction presents relevant challenges. Since
the visual part of the action is irrelevant, we parse the user
speech to extract the relevant information for the candidate
patch search. We assume simple user sentences, for which
standard speech processing tools like Nltk [65] can extract the
target object name, reference objects and their relative posi-
tions. Table II shows two examples of the speech processed.
Algorithm 6 describes our strategy for this interaction type
and the main ideas are discussed next.

Algorithm 4 Target object detection for Point interaction.
1: function OBJECT_DETECTION_POINT(Video_RGB-D, interaction,

Hand_Pos)
2: Patches = []
3: Candidates = Calculate_Candidates(Video_RGB) . See Alg. 5
4: for each Frame_RGB in Video_RGB-D do
5: hand_direction =

get_hand_direction(Frame_RGB.Front,Hand_Pos)
6: for each Candidate in Candidates do
7: Score,Intersected =

intersect(Candidate,hand_direction)/Diagonal(Candidate)
8: if Intersected then
9: Candidate.update_score(Score)

10: end if
11: end for
12: end for
13: Selected_Candidate = Candidates.get_best_score()
14: Patches =

[Selected_Candidate.Front_patch,Selected_Candidate.Top_patch]
15: return Patches
16: end function

Algorithm 5 Candidate Object Segmentation.
1: min_circle = 20
2: max_circle = 60
3: function CALCULATE_CANDIDATES(Video_RGB-D)
4: Homography =

get_table_homography(Frame_RGB.Front,Frame_RGB.Top)
5: Candidates = []
6: for each Frame_RGB in Video_RGB-D[0:5] do
7: Plane = Calculate_plane(Frame_RGB.Top)
8: Table_cropped = Extract_table(Frame_RGB.top,Plane)
9: DL_Candidates = MaskRCNN(Table_cropped)

10: Candidates.add(DL_Candidates)
11: SuperPixels = felzenszwalb(Table_cropped)
12: SuperPixels.filter_biggest()
13: Filtered_Image = Otsu_threshold(SuperPixels)
14: Heat_map = Distance_zeropix(Filtered_Image)
15: Segments = Watershed(Peaks(Distance_map))
16: for each Segment in Segments do
17: Center,Radio = min_enclosing_circle(segment)
18: if min_circle >= Radio >= max_circle then
19: Candidate = Extract_candidate(Segment)
20: Candidates.add(Candidate)
21: end if
22: end for
23: end for
24: for each Candidate in Candidates do
25: if Candidate.area < 100 or

Candidate.area > 1/3∗Plane.area then
26: Candidates.erase(Candidate)
27: end if
28: end for
29: return Candidates
30: end function

TABLE II: Examples of speech processing.

Step Example 1 Example 2

Phrase The apple is on front Cereal Box is at
of the Coke the right of the Mug

Nouns Extracted [’apple’,’front’,’Coke’] [’Cereal’,’Box’,’right’,’Mug’]
Target Obj. apple Cereal Box
Direction front right
Ref. Obj. Coke Mug

Object recognition on all candidate objects segmented at
the top view. This recognition is run with the models available
at that time. If the robot recognizes any of the objects used as
reference in the description, such object is used in combination
to the relative pose information to estimate a search direction.

Target area definition and candidate selection. We define
the target area using the corners of the reference patch, the
corner of the images and the search direction. The selected

10

Algorithm 6 Target object detection for Speak interaction.
1: min_confidence = 60%
2: function OBJECT_DETECTION_SPEAK(Video_RGB-D, Incremental,

speech)
3: Patches = []
4: Candidates = Calculate_Candidates(Video_RGB) . See Alg. 5
5: Ref_label = speech.get_reference()
6: Reference = None
7: Ref_conf = 0
8: for each Candidate in Candidates do
9: Candidate.Label,confidence = Incremental.Test(Candidate.patch)

10: if Candidate.Label = Ref_label &&
confidence >= max(min_confidence,Ref_conf) then

11: Reference = Candidate
12: Ref_Conf = confidence
13: end if
14: end for
15: Direction = speech.get_direction()
16: Target_area = obtain_area(Reference,Direction)
17: Selected_Candidate = None
18: Selected_Distance = inf
19: for each Candidate in Candidates do
20: if Inside(Candidate,Target_area) then
21: Distance = Calculate_distance(Candidate,Reference)
22: if Distance < Selected_Distance then
23: Selected_Candidate = Candidate
24: Selected_Distance = Distance
25: end if
26: end if
27: end for
28: Patches =

[Selected_Candidate.Front_patch,Selected_Candidate.Top_patch]
29: return Patches
30: end function

Fig. 8: Sample objects patches from human-robot interaction.
The object views are typically low-resolution patches where
standard keypoints/descriptors give low performance.

candidate is the closest to the reference patch within the target
area, similar to the Point interaction.

VII. INCREMENTAL OBJECT MODEL LEARNING MODULE

We apply our incremental learning approach, Sec. IV, to
learn object models from image patches. For an illustration
of the typical patches we have available in the considered
robotic settings, Fig. 8 shows a few examples of [1]. In robotic
settings computation capability is typically limited. Therefore,
we evaluate the following descriptors, that are reasonably
small and fast to compute.

BoW Histogram: This descriptor consists of a standard
Bag of Words (BoW) representation over local image features.
We use ORB features [66], as they provide a good compromise
between accuracy, efficiency and number of keypoints. The
BoW descriptor is a histogram of the occurrence of different
visual words from a vocabulary. The vocabulary is obtained by
clustering all the features extracted on a large set of images.
We build the vocabulary using the Washington dataset [30] to
avoid using the same data of the online experiments. We use
1000 visual words, clustered from more than 2 million features
extracted from over 12000 images. The images contain close-
up views of from the categories in the dataset, and scene views
containing the objects and clutter.

To obtain the descriptor BOWORB of an image patch we
first extract ORB features, find the closest word to each of
them and build BoW as a 1000-bin histogram of the frequency
of occurrence tw of each word in the image as:

BoWORB = [t1, ..., tw, ...t1000] ; tw =
nwp

nk
, (6)

where nwp is the number of occurrences of word w in image
patch and nk is the total number of keypoints in image patch.

Color Histogram: This descriptor approximates the color
distribution in an object view. We compute three normalized
8-bin histograms (Hr Hg Hb), one per color channel, over
region pixel values:

HCRGB = [Hr Hg Hb]. (7)

SIFT keypoints: We obtain SIFT keypoints and their
associated descriptors [67] as

SIFT = {s1, s2, s3, ..., sn}, (8)

where SIFT is the set of n keypoints obtained in the object
view. Although it has higher computational cost than other
local features, SIFT is an accurate and robust local feature
appropriate as a baseline.

CNN features: We use the flattened output of the last
GAP (Global average pool) layer from ResNet50 [22].

ResNet50 = ResNet50(patch).GAP (9)

The experimental validation of this module, in the next
section, shows that the best performing descriptor for our
application is the CNN-based one. It is also the largest
descriptor considered. The Color Histogram HCRGB performs
similarly in the evaluation of this particular module (see
Sec. VIII-C), but its performance decreases when evaluating
the whole pipeline (see Sec. IX).

VIII. MODULE VALIDATION

This section evaluates the performance of each module of
the proposed pipeline independently.

A. Multimodal Incremental Interaction Recognition

This experiment evaluates the accuracy of the incremental
interaction recognition module, described in Sec. V. We run
Algorithm 2 for all videos in the dataset (100 Point, 100 Show
and 100 Speak), in order to incrementally learn and classify
them into the considered interaction types. The parameters we
used in all our experiments are: n_vids = 4, min_prob =
85%, n_updates = 5 and min_distance = 0.56.

The algorithm maintains a stable accuracy for the different
users. Figure 9 shows how the interaction recognition accuracy
barely changes as we incrementally process more users. In
this plot, Error means the output of the classifier is erroneous
because it classifies a video with confidence (probability above
min_prob) into a wrong type of interaction. Correct means
the algorithm classifies a video with confidence into the correct
interaction. Question means the confidence of the classification

11

Fig. 9: Interaction recognition results.

TABLE III: Interaction recognition results per class (10 users).

Correct Question Error
Show 0,60 0,31 0,10
Point 0,62 0,27 0,11
Speak 1,00 0,00 0,00

Total 0,74 0,19 0,07

(a) Baseline [1] (b) Skeleton-guided (ours)

Fig. 10: Interaction recognition sample results.

output is below min_prob and the algorithm needs to ask the
user for clarification.

Looking into the results per class, Table III shows that Point
and Show achieve similar accuracy. Compared to the baseline
version of this module in [1], we observe an improvement
(13% error rate in [1] versus 7% error rate here) and more
balanced results (14% and 22% error rate for Point and Show
in [1] vs 11% and 10% error rates here). The key difference
between [1] and the algorithm in this paper is the skeleton
detection. Thanks to this, we improve from an average of 33
valid frames found per video to an average of 47. Besides, the
hand patches extracted now present higher quality, as shown
in the examples in Fig. 10. This also benefits the general
performance of the pipeline because the hand patch is used
in following steps.

B. Target Object Detection

To evaluate the quality of the object patches, segmented by
the target object detection module, we manually select which
ones are a Correct Patch, i.e., it actually contains the correct
target object. Fig. 11 shows several correct and incorrect
examples of the target object segmentation and Table IV
presents the quantitative results.

Point and Speak present lower accuracy than Show, as they
are more challenging interactions. Both use similar strategies
to segment the candidates, and they face similar challenges
(small objects, large occlusions and clutter, the object poten-
tially being anywhere in the scene). We study two different
approaches to find candidate patches for the target object in
Point and Speak videos: a deep learning (DL)-based approach
and a superpixel (SPX)-based one, both explained in Sec VI-B.
Fig. 12 shows that DL is less robust for smaller objects, but
more accurate. SPX extracts more candidates but it is less
accurate. Combining both (DL+SPX), we outperform their
weaknesses and obtain a better set of candidates.

Each interaction has additional challenges added to the
segmentation. Most of the errors in Point videos are caused
by incorrect pointing directions, which is a non-trivial task, as
illustrated in Fig. 13(a). Most of the errors in Speak videos
are caused by failures recognizing the reference object. As the
accuracy of the classifier improves, the quality of the Speak
patches also improves, because the reference object detection
is more reliable.

As we can see for example in Fig. 14(b), there are signif-
icantly more target patches obtained from Show videos than
from the rest. This is because of the strategy followed to obtain
them. Since the user is moving the hand, several frames are

Show
Ketchup Glass Bowl

Point
TeaBox Noodles Coke

Speak
Pringles DietCoke Kleenex

(a) (b)

Fig. 11: Target Object Detection sample results: (a) Correct
segmentation; (b) Incorrect segmentation

TABLE IV: Target Object patches accuracy (Acc.).

Acc. Total Correct Incorrect
Patches Patch Patch

Point 46.66 % 90 42 48
Show 86.23 % 3210 2768 442
Speak 47.32 % 112 53 59

12

kept, because they potentially show different points of view
of the target object. They are very likely to contain the target
object but often not centered or fully visible (see Fig. 13(b)),
providing very noisy training data.

C. Incremental Object Learning

This section analyzes the performance of the incremental
learning module described in Sec. VII. We use both the Core50
and MHRI datasets. In Core50, there are 11 sessions, 8 for
training and 3 for testing, and 50 objects. We use the same
setting used in the New Classes and Instances experiment in
[5]. In MHRI, there are 670 manually cropped patches from 22
classes, approximately 30 patches per class and 67 patches per
user. Each experiment consists of a 10-fold cross validation,
each fold keeping all the data from one user for test and using
the rest of the users for training.

We analyze the influence of the main parameters of our
strategy (object patch descriptor and incremental model
size) and compare the performance of the proposed method
with standard baselines for offline object recognition. To
decouple this evaluation from data quality, we first evaluate
the incremental model using manually segmented object
patches (see Fig. 14(a) for examples of such patches).

Object Patch Descriptors: We evaluate several patch de-
scriptors, as detailed in Sec. VII: Color Histogram (HCRGB),
Bag of Words using ORB descriptors (BoWORB), the output
of layer GAP of pre-trained ResNet [22] (ResNet50), and
SIFT correspondences (SIFT).

We first run this experiment on Core50, comparing HCRGB

and ResNet50 (keypoint-based descriptors are expected to
have worse performance). We varied k, the model size per
class, between 10 to 200 (the latest uses all the data). In
Fig. 15 we can see the average accuracy for the different limits
per class and descriptors. As we can see, a model size of 80
samples per class, Resnet50 and the cosine distance obtains
an accuracy of 31.97%, outperforming the 29.56% 2 reported
in [5] (We do not compare against their cumulative version
since it uses all the data to fine-tune the network). Per-class
limits of 80 and 100 for HCRGB descriptors and Battacharya
distance obtains 31.29% and 31.97%, respectively. In Fig. 16,
we can see the accuracy evolution as more samples are used
for training. This figure also shows that HCRGB performs
better than ResNet50

We run a similar experiment on MHRI, where we addi-
tionally consider the keypoint-based descriptors (SIFT and
BoWORB). We use the Bhattacharyya distance for HCRGB

and BoWORB and the cosine distance for ResNet50. SIFT
points are matched using FLANN [68], left-right consistency
and Lowe’s nearest neighbour ratio test [67]. Since MHRI is
around five times smaller than Core50, we configured the size-
limit to 10, 20, 30, and all data. Table V(a) shows the object
recognition accuracy obtained with all the descriptors, and
different model size limits, using Manually Cropped patches.
HCRGB and ResNet50 have the highest accuracy. This can
be explained by looking at the examples in Fig. 14. Notice

2https://vlomonaco.github.io/core50/leaderboard#keywords3

TABLE V: Average object recognition accuracy (22 Objects)
(10-fold), Manually Cropped patches

(a) Incremental, k-NN

of users processed to build the model
1 2 3 4 5 6 7 8 9

10-cluster limit per class
BoWORB 7,6 6,2 7,2 7,9 8,3 9,0 8,7 9,4 10,1
HCRGB 10,7 17,7 23,7 25,8 25,9 25,9 23,4 25,1 24,3
SIFT 6,1 5,8 5,8 5,8 6,1 5,8 6,8 6,2 6,4
ResNet50 21,3 25,8 30,3 31,0 31,9 33,7 34,7 35,7 35,2

20-cluster limit per class
BoWORB 7,6 7,2 8,0 8,3 9,0 9,6 10,4 10,3 11,3
HCRGB 10,7 17,9 23,1 26,0 28,0 29,6 30,8 31,1 31,4
SIFT 6,1 5,5 5,2 5,4 6,4 8,5 8,9 7,3 6,8
ResNet50 10,3 18,1 22,6 23,8 26,1 26,4 27,3 30,4 31,5

30-cluster limit per class
BoWORB 7,6 7,2 8,0 8,4 9,1 9,7 10,7 11,1 11,7
HCRGB 10,7 17,9 23,1 25,8 27,5 28,4 29,7 30,7 30,0
SIFT 6,1 5,5 5,2 5,5 6,0 6,9 7,5 8,0 7,7
ResNet50 21,3 26,2 31,4 32,7 31,8 35,3 36,8 34,3 33,1

No cluster limit per class (ALL)
BoWORB 7,6 7,2 8,0 8,4 9,1 9,7 10,8 11,3 11,8
HCRGB 10,7 17,9 23,1 25,8 27,6 28,4 29,2 30,3 30,2
SIFT 6,1 5,5 5,2 5,5 6,0 6,9 7,2 7,3 7,3
ResNet50 21,3 26,2 31,4 32,7 31,8 35,3 36,5 34,0 33,3

(c) Incremental SVM

ResNet50 3,8 5,6 5,6 7,1 8,1 8,1 8,1 8,1 8,1
HCRGB 3,6 8,0 8,0 9,0 9,0 9,0 9,0 9,0 9,0

(d) Incremental SoftMax Regression

HCRGB 10,6 12,6 17,4 20,7 22,1 24,9 25,7 27,7 28,8

(e) Offline

k-NN+BoWORB 11,8
k-NN+HCRGB 30,2
k-NN+SIFT 7,3
k-NN+ResNet50 33,3
SVM +HCRGB [1] 34,8
Inception-based [69] 59,3

that our objects have distinctive colors and poor texture, and
hence descriptors based on keypoints will perform poorly.

The best results are obtained for model size 20 for HCRGB

and 10 for ResNet50. In both cases limiting the model size
performs better than not limiting it, because our algorithm is
able to remove outlier data. Fig. 17 shows a graphical repre-
sentation side by side of the average number of clusters in each
configuration and the accuracy of the different descriptors.

Note that after a cluster-size limit of 20 the accuracy
does not improve substantially, and hence it is reasonable to
implement such limit in constrained platforms.

Discussion of related offline and online baselines: The
object recognition performance of our incremental model is
compared with previous work on the target scenario [1], which
used an offline recognition pipeline, and with two standard
offline strategies for object recognition:

• SVM+HCRGB [1]: we consider the best result obtained
on our earlier work. It uses HCRGB as a descriptor and

https://vlomonaco.github.io/core50/leaderboard#keywords3

13

(a) DL [4] (b) SPX (c) DL + SPX (Ours)

Fig. 12: Candidate object patches (blue rectangular regions) with the three options (DL, SPX, DL+SPX) considered. Yellow
stands for false positives, and red for false negatives. For our goals, it is essential to minimize false negatives.

(a) Innacurate pointing direction

(b) Segmented patch not centered on the object.

Fig. 13: Examples of two common difficult/failure cases for
Target Object Segmentation in Point and Show videos.

a SVM classifier trained offline.
• k-NN+descriptor: we run a standard k-NN classifica-

tion, computing distance between the query and all the
training data samples, for different descriptors. Note that
it is equivalent to the limitless incremental model after
processing data from 9 users.

• Inception-based: We have used the base Inception V3
model [69], with weights pre-trained on ImageNet, and
fine-tuned it with our Manually-cropped patches for the
22-object classes in MHRI dataset.

We also compare our algorithm against an incremental Passive-
Aggresive approach (PASVM) [42] applied to SVM3, which
updates the support vectors with each step, and with an
incremental SoftMax Regression. We tested the PASVM with

3https://github.com/Zotkin/Passive-Agressive-SVM-for-online-learning

(a) (b)

Fig. 14: Examples of (a) Manually Cropped and (b) Automat-
ically segmented patches from three objects in the MHRI data.

HCRGB and ResNet50 descriptors and parameter C = 2 and
the SoftMax with HCRGB .

Table V(c,d,e) shows the average object recognition ac-
curacy of these baselines. For the online baselines PASVM
performs poorly, but the SoftMax regression has a performance
close to our approach. For the offline baselines, we can observe
that our proposal (Incremental k-NN) has similar performance
(35.2%) to Offline k-NN (33.3%). This result is a solid support
for our incremental approach, as it shows that our strategy

14

Fig. 15: Core50 experiments processing all data.

Fig. 16: Core50 experiments, incremental results.

to limit the cluster size does not harm the performance. Our
results are also improve over SVM +HCRGB [1], a remark-
able result taking into account that our current approach is
incremental, while SVM +HCRGB [1] used offline training.
Amont the offline approaches, the Inception-based model
obtains the best results. Notice, however, that for this approach
the target object patches are manually cropped and training is
done offline. Hence, it is an approach not suitable for our case
of study, which is incremental learning. We consider this to
be an upper bound for the performance, worth showing as
reference.

IX. END-TO-END PIPELINE VALIDATION

This section presents an integration experiment to validate
the correct behavior and performance of all the modules
running together, using the MHRI dataset. To our knowledge,
this dataset is the only one that contains both interaction and
object recognition in the wild. As discussed in more detail in
previous work [1], classifiers are sensitive to domain change,
so learning models using data from different domains does not
necessarily boost the performance.

This experiment uses target object patches, extracted auto-
matically from the interactions, for training and testing. Fig. 14
shows illustrative examples of these automatic patches quality,
which is considerably worse than manual patches quality. This

Fig. 17: Accuracy and number of clusters of our incremental
learning algorithm as the number of users increases. Descrip-
tors reported: HCRGB , FC7, SIFT, BoWORB . Model sizes
evaluated: 10, 20, 30 and All.

increases significantly the challenge of this experiment but
brings it closer to a system running from scratch in the wild.

A. Incremental k-NN

The incremental algorithm we propose is again run with
a 10-fold cross-validation, where each fold corresponds to
a user, but now uses the more challenging automatically
segmented patches. The difficulty is also increased because
each user manipulates a different object pool subset and then at
some points in time, there may be no examples in the training
data for some of the objects in the test data.

We run this experiment using the ResNet50 descriptor,
which had the overall best performance in previous section,
and the HCRGB descriptor, with a more robust performance
in the Core50 data.

Table VI and Table VII show the accuracy for object
recognition with the HCRGB and ResNet50 descriptors,
respectively, at different steps of the incremental process and
for the different folds.

In these experiments the descriptor that works the best is
ResNet50, obtaining an accuracy of 18.2% with all users
processed. Results show that the incremental approach varies
around 20% with each user added after the third user pro-
cessed, as shown in Fig. 18. HCRGB obtains worse results,
with 13.9% of accuracy, but shows a more constant progress as
more users are processed. It is also interesting that, as shown
in Table IX, the size of both models is small compared to
other baselines.

Fig. 19 shows several examples of objects recognized after
the pipeline has been trained with the 9 users. The algorithm
has been able to learn models from interactions and identify
them correctly on the table. For the class cereal, the descriptor
is not invariant to rotation, it needs examples in different
positions. We can see from the examples that our algorithm
works even if the object has instances from different colors
(like knife, apple or lime). For a quantitative evaluation of the
results, Fig. 20 shows the evolution of the F1 score (averaged
over 10 folds) with the amount of training data. It can be
observed that the F1 score remains quite stable after the

15

Fig. 18: Incremental learning accuracy as more data (from
more users) is used for training. Dashed lines are per-fold
results, solid line is the average. Table VII contains the
numerical results for this graph. (best viewed in color)

Fig. 19: Examples of the recognition results after the incre-
mental learning was run. The objects in green are correctly
labeled. Best viewed in color.

Fig. 20: Evolution of the F1 score with the amount of training
data over 10 folds. The blue line stands for its average, and
the colored area for its standard deviation.

fourth user, which is consistent with previous experiments. We
can also see a high deviation between folds, due to certain
particularly challenging object classes, as it was discussed
before in more detail.

TABLE VI: Object Recognition Accuracy (HCRGB , model
size 20). Columns: # training users. Rows: Results per fold.

users 1 2 3 4 5 6 7 8 9

user1 0,3 0,3 1,1 0,9 0,9 1,7 0,6 0,9 1,4
user2 2,0 4,0 1,6 6,0 3,6 6,0 1,2 4,4 4,8
user3 17,0 4,4 5,6 8,5 18,1 17,0 23,0 24,8 15,9
user4 3,3 7,4 2,8 5,6 6,5 4,7 5,1 5,1 11,2
user5 4,1 10,1 9,9 11,2 7,7 2,5 8,2 7,4 9,3
user6 12,2 20,0 8,9 3,3 1,1 12,2 13,3 23,3 21,1
user7 26,3 3,2 20,6 18,6 12,6 17,0 19,8 30,4 29,6
user8 4,7 6,5 13,7 12,2 15,7 16,9 15,2 14,5 13,5
user9 14,0 19,5 25,5 11,0 11,5 15,5 16,0 14,5 15,0
user10 2,0 1,5 3,0 27,3 29,8 27,8 23,7 22,2 17,2
Avg. 8,6 7,7 9,3 10,5 10,7 12,1 12,6 14,8 13,9

TABLE VII: Object Recognition Accuracy (ResNet50, model
size 10). Columns: # training users. Rows: Results per fold.

users 1 2 3 4 5 6 7 8 9

user1 0,0 18,2 25,3 22,9 18,9 14,5 18,9 20,5 15,5
user2 0,8 5,0 27,2 33,7 33,3 18,4 21,1 21,1 21,5
user3 38,3 37,0 28,6 33,1 33,8 31,8 31,2 37,0 14,3
user4 10,6 22,9 25,0 26,1 27,7 26,1 27,1 20,7 11,7
user5 6,7 7,0 8,3 8,0 8,9 9,3 17,6 18,2 31,9
user6 8,2 12,2 12,2 20,4 8,2 10,2 16,3 16,3 11,2
user7 15,5 5,5 7,7 8,3 8,3 8,8 8,8 10,5 12,2
user8 16,0 15,0 17,5 18,6 19,3 17,8 16,2 16,2 19,2
user9 16,7 14,2 16,7 29,1 25,4 26,1 33,3 32,1 29,4
user10 6,3 17,6 21,5 17,3 13,7 16,5 14,8 16,5 14,8
Avg 11,9 15,5 19,0 21,7 19,7 18,0 20,5 20,9 18,2

TABLE VIII: Object Recognition Accuracy with SoftMax Re-
gression (HCRGB). Columns: # training users. Rows: Results
per fold.

users 1 2 3 4 5 6 7 8 9

user1 14,4 0,4 0,4 0,2 0,2 4,0 0,0 11,3 7,5
user2 20,8 0,0 22,0 0,0 0,0 13,6 0,0 0,4 0,4
user3 1,5 0,4 0,7 11,9 0,7 0,7 0,4 1,9 17,8
user4 10,2 16,3 0,5 0,9 0,5 2,3 1,4 12,6 0,9
user5 0,3 0,0 15,1 0,0 0,0 0,3 4,1 3,0 7,9
user6 3,3 1,1 1,1 2,2 2,2 3,3 18,9 0,0 11,1
user7 0,0 4,0 0,4 0,4 6,9 1,2 0,4 0,8 21,1
user8 1,5 9,0 12,5 0,3 11,5 0,2 8,7 0,0 0,2
user9 0,0 0,0 13,6 0,0 0,0 2,7 14,6 0,7 13,6
user10 2,0 0,0 14,6 25,3 5,6 1,0 0,0 0,0 0,5
Avg. 12,2 0,3 7,7 4,0 0,3 6,1 0,1 4,5 8,6

B. Comparison with incremental and offline baselines

As a reference incremental approach baseline, we
run incremental SoftMax Regression. Table VIII shows
its performance. It is significantly lower compared to the
experiment in Table V (it decreases from 28% to 8.6%).
This is a consequence of the lower quality of the data (for
the results of Table V, Manually Cropped patches were
used). Notice that, in our approach, the degradation is not as
significant, and we outperform this baseline.

As a reference baseline for our incremental end-to-end
approach, since up to our knowledge there is not another
available of similar characteristics to ours, we show our earlier

16

TABLE IX: Recognition results using Automatic Patches (22
classes, 10-fold cross validation, random acc. 4.45%)

Accuracy STD Size
Previous Work (offline) [1]:
Automatic SVM +HCRGB 7.95 6.6 -
Inspected SVM +HCRGB 11.45 10.53 -
Other offline baselines:
Automatic Offline k-NN(ResNet) 23.98 8.85 10MB
Automatic Offline k-NN(HC) 13.6 9.6 2MB
Automatic Inception-based 35.5 6.51 92MB
Incremental:
SoftMax 8.6 8.7 2.5MB
Incremental-ResNet 18.2 7.4 3MB
Incremental-HC 13.9 8.0 220KB

work presenting the dataset [1]. It consists of a SVM classifier
trained offline using HCRGB as patch descriptor. We consider
two configurations, depending on the data used for training,
with the best result obtained for each of them:

• Automatic SVM +HCRGB : SVM trained with all the
patches extracted automatically, i.e., including significant
amount of noisy patches.

• Inspected SVM+HCRGB : SVM trained with automatic
patches manually inspected to keep only correct ones.

Besides, the same offline baselines from previous section
are shown as reference. However, this experiment runs them
using automatically segmented patches:

• Automatic Offline k-NN: standard nearest neighbour
classification using Automatic patches.

• Automatic Inception-based: fine-tuned CNN model as
in our previous experiment, but using Automatically seg-
mented patches.

Table IX shows the average accuracy (of the 10-folds) ob-
tained for the different approaches run to learn object models.
The performance of Inception and Offline k-NN decreases
to an 35.5% and 23.98%, from the 59, 3% and 33, 3% they
reached training with Manually Cropped patches in earlier ex-
periments. This is not surprising and confirms the challenging
set up we are working with. The decrease in performance is
due to error accumulated from running each of the modules
and the lower quality of the data used for training. Fig. 14
examples show that there is high amount of noise, partial views
of the objects and heterogeneous patch sizes. As we already
discussed in the object segmentation evaluation, only around
60% of the patches actually contain the object targeted.

Our incremental approach also suffers a decrease in perfor-
mance but it is able to outperform the Automatic SVM +
HCRGB and Inspected SVM + HCRGB baseline of [1]
processing only 20% of the data, using the Resnet descriptor.
In case of the Inspected SVM +HCRGB is really important
because it uses manually pruned data. It is also worth noticing,
that the size of data stored by our incremental approach
is several times smaller than the offline baselines, therefore
requiring less resources. Note that in this case the other offline
baselines are not much better than our incremental approach,
which highlights the challenging data and setup considered and
leaves open research problems in learning for service robotics.

X. CONCLUSIONS

This paper presents a complete end-to-end approach for
incremental learning of object models from natural and mul-
timodal Human-Robot Interaction.

The pipeline presented in this work is built on our prelimi-
nary version of the individual modules. The contributions here
with respect to those earlier results include the incremental
strategy, the full integration of the pipeline and a more
thorough evaluation and discussion on the challenges in the
problem considered.

The novelty of our approach relies on the integration of sev-
eral modules that facilitate the use of natural interaction data.
Our main conclusions about each of them are the following.
Firstly, recognizing the type of interaction is a critical step to
be able to find the relevant regions in the image, as it guides
the object patch segmentation used to train the object models.
We have attempted different strategies to achieve it and show
that it needs to get user feedback to robustly adapt to new
users and environments.

Our results also show how the interaction recognition
benefits from the use of multimodal data (language and vi-
sion). Secondly, the different target object detection strategies
proposed successfully extract patches containing the objects
targeted. Our performance evaluation highlights significant
challenges of the natural interaction settings with respect to
other settings, where the data obtained is less noisy. Third,
our evaluation of the incremental object learning module also
highlights the challenges of our targeted incremental learning
in natural or in-the-wild scenarios.

The performance of our incremental algorithm is close to
common offline approaches and outperforms the baseline in
the Core50 dataset, while storing significantly smaller amounts
of data.

Finally, we have demonstrated the behaviour of the full
pipeline with a real use case application and analyzed the
main insights and conclusions. As it could be expected, the
domain change is critical for the learning step, and it is
impractical to use other datasets in a naïve manner. Besides,
although our approach shows a reasonable performance, there
are still considerable challenges in the target object detec-
tion and incremental model learning. Our experiments show
that object segmentation strongly affects the learning module
performance, justifying the relevance of the topic for future
research. We believe the most promising lines for future work
are increasing the accuracy of the hand direction estimation
in the Point videos, or other possibilities to improve the target
object segmentation, and the exploration of more sophisticated
incremental learning methods, particularly those that are robust
to noisy data.

ACKNOWLEDGMENTS

The authors would like to thank NVIDIA Corporation
for the donation of a Titan Xp GPU used in this work.
This research has been partially funded by the Euro-
pean Union (CHIST-ERA IGLU), the Spanish Government,
FEDER/Ministerio de Ciencia, Innovación y Universidades
- Agencia Estatal de Investigación under grants PGC2018-

17

096367-B-I00, PGC2018-098817-A-I00 and RTC-2017-6421-
7 and the Aragón regional government (DGA T45 17R/FSE).

REFERENCES

[1] P. Azagra, F. Golemo, Y. Mollard, M. Lopes, J. Civera, and A. C.
Murillo, “A multimodal dataset for object model learning from natural
human-robot interaction,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sept 2017 http://robots.unizar.
es/IGLUdataset/, pp. 6134–6141.

[2] P. Azagra, J. Civera, and A. C. Murillo, “Finding regions of interest from
multimodal human-robot interactions,” in Proc. GLU 2017 International
Workshop on Grounding Language Understanding, 2017, pp. 73–77.

[3] A. Yao, J. Gall, C. Leistner, and L. Van Gool, “Interactive object
detection,” in Computer Vision and Pattern Recognition. IEEE, 2012,
pp. 3242–3249.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2980–2988.

[5] V. Lomonaco and D. Maltoni, “Core50: a new dataset and benchmark
for continuous object recognition,” in Conference on Robot Learning,
2017, pp. 17–26.

[6] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and
G. S. Sukhatme, “Interactive perception: Leveraging action in perception
and perception in action,” IEEE Transactions on Robotics, vol. 33, no. 6,
pp. 1273–1291, 2017.

[7] K. Park, H. Lee, Y. Kim, and Z. Z. Bien, “A steward robot for human-
friendly human-machine interaction in a smart house environment,”
IEEE Transactions on Automation Science and Engineering, vol. 5,
no. 1, pp. 21–25, Jan 2008.

[8] U. Reiser, C. P. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weis-
shardt, T. Jacobs, C. Parlitz, M. Hägele, and A. Verl, “Care-o-bot R©
3-creating a product vision for service robot applications by integrating
design and technology.” in Intelligent Robots and Systems (IROS), 2009
IEEE/RSJ International Conference on, vol. 9, 2009, pp. 1992–1998.

[9] J. Baraglia, M. Cakmak, Y. Nagai, R. Rao, and M. Asada, “Initia-
tive in robot assistance during collaborative task execution,” in 2016
11th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), March 2016, pp. 67–74.

[10] J. Dumora, F. Geffard, C. Bidard, N. A. Aspragathos, and P. Fraisse,
“Robot assistance selection for large object manipulation with a hu-
man,” in 2013 IEEE International Conference on Systems, Man, and
Cybernetics, Oct 2013, pp. 1828–1833.

[11] D. Skočaj, M. Kristan, A. Vrečko, M. Mahnič, M. Janíček, G.-J. M.
Kruijff, M. Hanheide, N. Hawes, T. Keller, M. Zillich, et al., “A
system for interactive learning in dialogue with a tutor,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 3387–3394.

[12] E. A. Krause, M. Zillich, T. Williams, and M. Scheutz, “Learning to
recognize novel objects in one shot through human-robot interactions
in natural language dialogues,” in Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2014.

[13] S. Valipour, C. Perez, and M. Jagersand, “Incremental learning for robot
perception through hri,” in Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on. IEEE, 2017, pp. 2772–2777.

[14] M. Siam, C. Jiang, S. Lu, L. Petrich, M. Gamal, M. Elhoseiny, and
M. Jägersand, “Video segmentation using teacher-student adaptation in
a human robot interaction (hri) setting,” 2019 IEEE International Con-
ference on Robotics and Automation (ICRA) 2019., vol. abs/1810.07733,
2019.

[15] E. E. Aksoy, M. Tamosiunaite, and F. Wörgötter, “Model-free incre-
mental learning of the semantics of manipulation actions,” Robotics and
Autonomous Systems, vol. 71, pp. 118 – 133, 2015, emerging Spatial
Competences: From Machine Perception to Sensorimotor Intelligence.

[16] G. Pasquale, C. Ciliberto, F. Odone, L. Rosasco, L. Natale, and I. dei
Sistemi, “Teaching iCub to recognize objects using deep convolutional
neural networks,” Proc. Work. Mach. Learning Interactive Syst, pp. 21–
25, 2015.

[17] R. Camoriano, G. Pasquale, C. Ciliberto, L. Natale, L. Rosasco, and
G. Metta, “Incremental object recognition in robotics with extension to
new classes in constant time,” arXiv preprint arXiv:1605.05045, 2016.

[18] S. H. Kasaei, M. Oliveira, G. H. Lim, L. S. Lopes, and A. M. Tomé,
“Interactive open-ended learning for 3d object recognition: An approach
and experiments,” Journal of Intelligent & Robotic Systems, vol. 80, no.
3-4, pp. 537–553, 2015.

[19] N. Lyubova, S. Ivaldi, and D. Filliat, “From passive to interactive
object learning and recognition through self-identification on a humanoid
robot,” Autonomous Robots, vol. 40, no. 1, pp. 33–57, 2016.

[20] X. He, R. Kojima, and O. Hasegawa, “Developmental word grounding
through a growing neural network with a humanoid robot,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 37, no. 2, pp. 451–462, 2007.

[21] R. Geirhos, D. H. Janssen, H. H. Schütt, J. Rauber, M. Bethge,
and F. A. Wichmann, “Comparing deep neural networks against hu-
mans: object recognition when the signal gets weaker,” arXiv preprint
arXiv:1706.06969, 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[24] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[25] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[27] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Sigal, “Expanding
object detector’s horizon: incremental learning framework for object
detection in videos,” in Computer Vision and Pattern Recognition.
IEEE, 2015, pp. 28–36.

[28] S. Lee, J. Lim, and I. H. Suh, “Incremental learning from a single seed
image for object detection,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 1905–
1912.

[29] F. Furrer, T. Novkovic, M. Fehr, A. Gawel, M. Grinvald, T. Sattler,
R. Siegwart, and J. Nieto, “Incremental object database: Building 3d
models from multiple partial observations,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Oct 2018,
pp. 6835–6842.

[30] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” May 2011.

[31] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird:
A large-scale 3d database of object instances,” in IEEE Int. Conf. on
Robotics and Automation, 2014, pp. 509–516.

[32] D. Temel, J. Lee, and G. Alregib, “Cure-or: Challenging unreal and real
environments for object recognition,” in 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), Dec 2018,
pp. 137–144.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in con-
text,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014,
pp. 740–755.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[35] J. Sung, C. Ponce, B. Selman, and A. Saxena, “Human activity detection
from RGBD images.” plan, activity, and intent recognition, vol. 64,
2011.

[36] W. Gong, J. Gonzàlez, J. M. R. S. Tavares, and F. X. Roca, A New
Image Dataset on Human Interactions. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012.

[37] A. Vatakis and K. Pastra, “A multimodal dataset of spontaneous speech
and movement production on object affordances,” Scientific Data, Jan
2016.

[38] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[39] A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, “Encoder
based lifelong learning,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1320–1328.

[40] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the

http://robots.unizar.es/IGLUdataset/
http://robots.unizar.es/IGLUdataset/

18

IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2001–2010.

[41] Y.-L. Xing, F.-R. Shen, J.-X. Zhao, J.-X. Pan, and A.-H. Tan, “Perception
coordination network: A framework for online multi-modal concept
acquisition and binding,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[42] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, no. Mar, pp. 551–585, 2006.

[43] Rong Xiao, Jicheng Wang, and Fayan Zhang, “An approach to incremen-
tal svm learning algorithm,” in Proceedings 12th IEEE Internationals
Conference on Tools with Artificial Intelligence. ICTAI 2000, Nov 2000,
pp. 268–273.

[44] M. N. Murty and G. Krishna, “A hybrid clustering procedure for
concentric and chain-like clusters,” International Journal of Computer
& Information Sciences, vol. 10, no. 6, pp. 397–412, 1981.

[45] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[46] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Distance-based
image classification: Generalizing to new classes at near-zero cost,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 11, pp. 2624–2637, 2013.

[47] S. Furao and O. Hasegawa, “An incremental network for on-line unsu-
pervised classification and topology learning,” Neural Networks, vol. 19,
no. 1, pp. 90 – 106, 2006.

[48] Y. Xing, X. Shi, F. Shen, K. Zhou, and J. Zhao, “A self-organizing
incremental neural network based on local distribution learning,” Neural
Networks, vol. 84, pp. 143 – 160, 2016.

[49] A. Gepperth and C. Karaoguz, “A bio-inspired incremental learning
architecture for applied perceptual problems,” Cognitive Computation,
vol. 8, no. 5, pp. 924–934, Oct 2016.

[50] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping,” in
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Interna-
tional Conference on, vol. 1. IEEE, 2000, pp. 321–328.

[51] A. Gijsberts and G. Metta, “Real-time model learning using incremental
sparse spectrum gaussian process regression,” Neural Networks, vol. 41,
pp. 59–69, 2013.

[52] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Fast and incre-
mental method for loop-closure detection using bags of visual words,”
Trans. on Robotics, vol. 24, no. 5, pp. 1027–1037, 2008.

[53] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, “Self-
supervised monocular road detection in desert terrain,” in Proceedings
of Robotics: Science and Systems, Philadelphia, USA, August 2006.

[54] J. Rituerto, A. C. Murillo, and J. Kosecka, “Label propagation in videos
indoors with an incremental non-parametric model update,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept 2011, pp. 2383–2389.

[55] P. Iravani, P. Hall, D. Beale, C. Charron, and Y. Hicks, “Visual object
classification by robots, using on-line, self-supervised learning,” in IEEE
Int. Conf. on Computer Vision Workshops, 2011, pp. 1092–1099.

[56] M. Krainin, B. Curless, and D. Fox, “Autonomous generation of com-
plete 3D object models using next best view manipulation planning,” in
IEEE Int. Conf. on Robotics and Automation, 2011, pp. 5031–5037.

[57] J. Sinapov, C. Schenck, and A. Stoytchev, “Learning relational object
categories using behavioral exploration and multimodal perception,” in
IEEE Int. Conf. on Robotics and Automation, 2014, pp. 5691–5698.

[58] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in CVPR, 2017.

[59] L. N. Abdullah and S. A. M. Noah, “Integrating audio visual data for
human action detection,” in Int. Conf. Computer Graphics, Imaging and
Visualisation. IEEE, 2008, pp. 242–246.

[60] P. Azagra, J. Civera, and A. C. Murillo, “Finding regions of interest
from multimodal human-robot interactions.”

[61] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, vol. 1. IEEE,
2005, pp. 886–893.

[62] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 11,
pp. 2274–2282, 2012.

[63] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International journal of computer vision, vol. 59, no. 2,
pp. 167–181, 2004.

[64] F. Meyer, “Color image segmentation,” in Image Processing and its
Applications, 1992., International Conference on. IET, 1992, pp. 303–
306.

[65] S. Bird and E. Loper, “Nltk: the natural language toolkit,” in Proceedings
of the ACL 2004 on Interactive poster and demonstration sessions.
Association for Computational Linguistics, 2004, p. 31.

[66] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 2564–2571.

[67] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
Nov 2004.

[68] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[69] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

Pablo Azagra is a Ph.D. student at the Doctoral
Program in Systems Engineering and Informatics,
University of Zaragoza (Spain), in the Robotics
group. His research interests include computer vi-
sion, machine learning and human robot interaction.

Javier Civera is an associate professor at the De-
partment of Computer Science and Systems Engi-
neering at Universidad de Zaragoza. His research
interests include SLAM and computer vision for
robotics and other embedded systems. Dr. Civera
received his Ph.D degree in Computer Science from
the University of Zaragoza, in Spain.

Ana C. Murillo is an associate professor at the
Department of Computer Science and Systems Engi-
neering at Universidad de Zaragoza. Her research in-
terests include scene understanding and visual recog-
nition for robotics and other embedded systems.
Dr. Murillo received her Ph.D degree in Computer
Science from the University of Zaragoza, in Spain.

	Introduction
	Related work
	Robot Interaction
	Object Recognition
	Incremental Learning

	Overview
	Pipeline
	Data

	Incremental Learning
	Incremental model update
	Classification of new samples

	Multimodal Incremental Interaction Recognition Module
	Visual analysis of the user
	Multimodal features
	Incremental Interaction Recognition

	Target Object Detection Module
	Show interaction
	Point interactions
	Speak interactions

	Incremental Object Model Learning Module
	Module Validation
	Multimodal Incremental Interaction Recognition
	Target Object Detection
	Incremental Object Learning

	End-to-End pipeline validation
	Incremental k-NN
	Comparison with incremental and offline baselines

	Conclusions
	References
	Biographies
	Pablo Azagra
	Javier Civera
	Ana C. Murillo

