4 research outputs found

    Urban nighttime leisure space mapping with nighttime light images and POI data

    Get PDF
    Urban nighttime leisure spaces (UNLSs), important urban sites of nighttime economic activity, have created enormous economic and social benefits. Both the physical features (e.g., location, shape, and area) and the social functions (e.g., commercial streets, office buildings, and entertainment venues) of UNLSs are important in UNLS mapping. However, most studies rely solely on census data or nighttime light (NTL) images to map the physical features of UNLSs, which limits UNLS mapping, and few studies perform UNLS mapping from a social function perspective. Point-of-interest (POI) data, which can reflect social activity functions, are needed. As a result, a novel methodological UNLS mapping framework, that integrates NTL images and POI data is required. Consequently, we first extracted high-NTL intensity and high-POI density areas from composite data as areas with high nightlife activity levels. Then, the POI data were analyzed to identify the social functions of leisure spaces revealing that nighttime leisure activities are not abundant in Beijing overall, the total UNLS area in Beijing is 31.08 km(2), which accounts for only 0.2% of the total area of Beijing. In addition, the nightlife activities in the central urban area are more abundant than those in the suburbs. The main urban area has the largest UNLS area. Compared with the nightlife landmarks in Beijing established by the government, our results provide more details on the spatial pattern of nighttime leisure activities throughout the city. Our study aims to provide new insights into how multisource data can be leveraged for UNLS mapping to enable researchers to broaden their study scope. This investigation can also help government departments better understand the local nightlife situation to rationally formulate planning and adjustment measures

    Resolving urban mobility networks from individual travel graphs using massive-scale mobile phone tracking data

    Get PDF
    Human movements and interactions with cities are characterized by urban mobility networks. Many studies that address urban mobility are inspired by complex networks. The models of complex networks require a large amount of empirical data. However, current works relied on traditional survey data and were unable to take full advantage of the capabilities offered by complex networks; thus, the possibility of quantifying urban mobility networks by considering individual travel patterns has not yet been addressed. This study presents a data-driven approach for characterizing urban mobility networks based on massive-scale mobile phone tracking data. Individual travel motifs are first extracted using a graph-based approach. The global urban mobility network (G-UMN) and the motif-dependent urban mobility subnetworks (MD-UMNs) are then constructed. Next, network properties, including statistical measures and scaling relations between the basic measures, are proposed for characterizing mobility networks. We have conducted experiments focusing on Shenzhen, China. The results demonstrated that (1) the individual travel motifs are structurally and spatially heterogeneous, (2) the G-UMN exhibits a evolutionary hierarchical structure, and (3) the MD-UMNs show many behavioral differences in their spatial and topological properties, reflecting the impacts of the heterogeneity of the individual travel motifs. These results bridge the gap between complex network properties and urban mobility patterns and provide crucial implications and policies for data-informed urban planning

    Detecting Urban Polycentric Structure from POI Data

    No full text
    It is meaningful to analyze urban spatial structure by identifying urban subcenters, and many methods of doing so have been proposed in the published literature. Although these methods are widely applied, they exhibit obvious shortcomings that limit their further application. Therefore, it is of great value to propose a new urban subcenter identification method that can overcome these shortcomings. In this paper, we propose the density contour tree (DCT) method for detecting urban polycentric structures and their spatial distributions. Conceptually, this method is based on an analogy between urban spatial structure and terrain. The point-of-interest (POI) density is visualized as a continuous mathematical surface representing the urban terrain. Peaks represent the regions of the most frequent human activity, valleys represent regions with small population densities in the city, and slopes represent spatial changes in urban land-use intensity. Using this method, we have detected the urban “polycentric” structure of Beijing and determined the corresponding spatial relationships. In addition, several important properties of the urban centers have been identified. For example, Beijing has a typical urban polycentric structure with an urban center area accounting for 5.9% of the total urban area, and most of the urban centers in Beijing serve comprehensive functions. In general, the method and the results can serve as references for the later research on analyzing urban structure

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments
    corecore