4 research outputs found

    Monitoring Dynamic Spatial Fields Using Responsive Geosensor Networks

    Get PDF
    Many environmental phenomena (e.g., changes in global levels of atmospheric carbon dioxide) can be modeled as variations of attributes over regions of space and time, called dynamic spatial fields. The goal of this project is to provide efficient ways for sensor networks to monitor such fields, and to report significant changes in them. The focus is on qualitative changes, such as splitting of areas or emergence of holes in a region of study. The approach is to develop qualitative and topological methods to deal with changes. Qualitative properties form a small, discrete space, whereas quantitative values form a large, continuous space, and this enables efficiencies to be gained over traditional quantitative methods. The combinatorial map model of the spatial embedding of the sensor network is rich enough so that for each sensor, its position, and the distances and bearings of neighboring sensors, are easily computed. The sensors are responsive to changes to the spatial field, so that sensors are activated in the vicinity of interesting developments in the field, while sensors are deactivated in quiescent locations. All computation and message passing is local , with no centralized control. Optimization is addressed through use of techniques in qualitative representation and reasoning, and efficient update through a dynamic and responsive underlying spatial framework. Effective deployment of very large arrays of sensors for environmental monitoring has important scientific and societal benefits. The project is integrated with the NSF IGERT program on Sensor Science, Engineering, and Informatics at the University of Maine, which will enhance educational and outreach opportunities. The project Web site (http://www.spatial.maine.edu/~worboys/sensors.html) will be used for broad results dissemination

    SEI+II Information Integration Through Events

    Get PDF
    Many environmental observations are collected at different space and time scales that preclude easy integration of the data and hinder broader understanding of ecosystem dynamics. Ocean Observing Systems provide a specific example of multi-sensor systems observing several variables in different space - time regimes. This project integrates diverse space-time environmental sensor streams based on the conversion of their information content to a common higher-level abstraction: a space-time event data type. The space-time event data type normalizes across the diversity of observation level data to produce a common data type for exploration and analysis. Gulf of Maine Ocean Observing System (GOMOOS) data provide the multivariate time and space-time series from which space-time events are detected and assembled. Event detection employs a combined top down-bottom up approach. The top down component specifies an event ontology while the bottom up component is based on extraction of primitive events (e.g. decreasing, increasing, local maxima and minima sequences) from time and space-time series. Exploration and analysis of the extracted events employs a graphic exploratory environment based on a graphic primitive called an event band and its composition into event band stacks and panels that support investigation of various space-time patterns.The project contributes a new information integration approach based on the concept of an event that can be extended to many domains including socio-economic, financial, legislative, surveillance and health related information. The project will contribute new data mining strategies for event detection in time and space-time series and a set of flexible exploratory tools for examination and development of hypotheses on space-time event patterns and interactions

    Deferred decentralized movement pattern mining for geosensor networks

    Get PDF
    This paper presents an algorithm for decentralized (in-network) data mining of the movement pattern flock amongst mobile geosensor nodes. The algorithm DDIG (Deferred Decentralized Information Grazing) allows roaming sensor nodes to 'graze' over time more information than they could access through their spatially limited perception range alone. The algorithm requires an intrinsic temporal deferral for pattern mining, as sensor nodes must be enabled to collect, memorize, exchange, and integrate their own and their neighbors' most current movement history before reasoning about patterns. A first set of experiments with trajectories of simulated agents showed that the algorithm accuracy increases with growing deferral. A second set of experiments with trajectories of actual tracked livestock reveals some of the shortcomings of the conceptual flocking model underlying DDIG in the context of a smart farming application. Finally, the experiments underline the general conclusion that decentralization in spatial computing can result in imperfect, yet useful knowledge

    Réception des données spatiales et leurs traitements : analyse d'images satellites pour la mise à jour des SIG par enrichissement du système de raisonnement spatial RCC8

    Get PDF
    De nos jours, la résolution des images satellites et le volume des bases de données géographiques disponibles sont en constante augmentation. Les images de télédétection à haute résolution représentent des sources de données hétérogènes de plus en plus nécessaires et difficiles à exploiter. Ces images sont considérées comme des sources très riches et utiles pour la mise à jour des Systèmes d'Information Géographique (SIG). Afin de mettre à jour ces bases de données, une étape de détection de changements est nécessaire. Cette thèse s'attache à l'étude de l'analyse d'images satellites par enrichissement du système de raisonnement spatial RCC8 (Region Connection Calculus) pour la détection des changements topologiques dans le but de mettre à jour des SIG. L'objectif à terme de cette étude est d'exploiter, de détailler et d'enrichir les relations topologiques du système RCC8. L'intérêt de l'enrichissement, l'exploitation et la description détaillée des relations du système RCC8 réside dans le fait qu'elles permettent de détecter automatiquement les différents niveaux de détails topologiques et les changements topologiques entre des régions géographiques représentées sur des cartes numériques (CN) et dans des images satellitaires. Dans cette thèse, nous proposons et développons une extension du modèle topologique d'Intersection et Différence (ID) par des invariants topologiques qui sont : le nombre de séparations, le voisinage et le type des éléments spatiaux. Cette extension vient enrichir et détailler les relations du système RCC8 à deux niveaux de détail. Au premier niveau, l'enrichissement du système RCC8 est fait par l'invariant topologique du nombre de séparations, et le nouveau système est appelé "système RCC-16 au niveau-1". Pour éviter des problèmes de confusion entre les relations de ce nouveau système, au deuxième niveau, l'enrichissement du "RCC-16 au niveau-1" est fait par l'invariant topologique du type d'éléments spatiaux et le nouveau système est appelé "système RCC-16 au niveau-2". Ces deux systèmes RCC-16 (au niveau-1 et au niveau-2) seront appliqués pour l'analyse d'images satellites, la détection de changements et l'analyse spatiale dans des SIG. Nous proposons à partir de celà une nouvelle méthode de détection de changements entre une nouvelle image satellite et une ancienne carte numérique des SIG qui intègre l'analyse topologique par le système RCC-16 afin de détecter et d'identifier les changements entre deux images satellites, ou entre deux cartes vectorielles produites à différentes dates. Dans cette étude de l'enrichissement du système RCC8, les régions spatiales ont de simples représentations spatiales. Cependant, la représentation spatiale et les relations topologiques entre régions dans des images satellites et des données des SIG sont plus complexes, floues et incertaines. Dans l'objectif d'étudier les relations topologiques entre régions floues, un modèle appelé le modèle topologique Flou d'Intersection et Différence (FID) pour la description des relations topologiques entre régions floues sera proposé et développé. 152 relations topologiques peuvent être extraites à l'aide de ce modèle FID. Ces 152 relations sont regroupées dans huit clusters qualitatifs du système RCC8 : Disjoint (Déconnexion), Meets (Connexion Extérieure), Overlaps (Chevauchement), CoveredBy (Inclusion Tangentielle), Inside (Inclusion Non-Tangentielle), Covers (Inclusion Tangentielle Inverse), Contains (Inclusion Non-Tangentielle Inverse), et Equal (Égalité). Ces relations seront évaluées et extraites à partir des images satellites pour donner des exemples de leur intérêt dans le domaine de l'analyse d'image et dans des SIG. La contribution de cette thèse est marquée par l'enrichissement du système RCC8 donnant lieu à un nouveau système, RCC-16, mettant en ouvre une nouvelle méthode de détection de changements, le modèle FID, et regroupant les 152 relations topologiques floues dans les huit clusters qualitatifs du système RCC8.Nowadays, the resolution of satellite images and the volume of available geographic databases are constantly growing. Images of high resolution remote sensing represent sources of heterogeneous data increasingly necessary and difficult to exploit. These images are considered very rich and useful sources for updating Geographic Information Systems (GIS). To update these databases, a step of change detection is necessary and required. This thesis focuses on the study of satellite image analysis by enriching the spatial reasoning system RCC8 (Region Connection Calculus) for the detection of topological changes in order to update GIS databases. The ultimate goal of this study is to exploit and enrich the topological relations of the system RCC8. The interest of the enrichment and detailed description of RCC8 system relations lies in the fact that they can automatically detect the different levels of topological details and topological changes between geographical regions represented on GIS digital maps and satellite images. In this thesis, we propose and develop an extension of the Intersection and Difference (ID) topological model by using topological invariants which are : the separation number, the neighborhood and the spatial element type. This extension enriches and details the relations of the system RCC8 at two levels of detail. At the first level, the enrichment of the system RCC8 is made by using the topological invariant of the separation number and the new system is called "system RCC-16 at level-1". To avoid confusion problems between the topological relations of this new system, the second level by enriching the "system RCC-16 at level-1" is done by using the topological invariant of the spatial element type and the new system is called "system RCC-16 at level-2". These two systems RCC-16 (at two levels : level-1 and level-2) will be applied to satellite image analysis, change detection and spatial analysis in GIS. We propose a new method for detecting changes between a new satellite image and a GIS old digital map. This method integrates the topological analysis of the system RCC-16 to detect and identify changes between two satellite images, or between two vector maps produced at different dates. In this study of the enrichment of the system RCC8, spatial regions have simple spatial representations. However, the spatial and topological relations between regions in satellite images and GIS data are more complex, vague and uncertain. With the aim of studying the topological relations between fuzzy regions, a model called the Fuzzy topological model of Intersection and Difference (FID) for the description of topological relations between fuzzy regions is proposed and developed. 152 topological relations can be extracted using this model FID. These 152 relations are grouped into eight clusters of the qualitative relations of the system RCC8 : Disjoint (Disconnected), Meets (Externally Connected), Overlaps (Partially Overlapping), CoveredBy (Tangential Proper Part), Inside (Non-Tangential Proper Part), Covers (Tangential Proper Part Inverse), Contains (Non-Tangential Proper Part Inverse), and Equal. These relations will be evaluated and extracted from satellite images to give examples of their interest in the image analysis field and GIS. The contribution of this thesis is marked by enriching the qualitative spatial reasoning system RCC8 giving rise to a new system, RCC-16, implementing a new method of change detection, the model FID, and clustering the 152 fuzzy topological relations in eight qualitative clusters of the system RCC8
    corecore