986 research outputs found

    DNA Steganalysis Using Deep Recurrent Neural Networks

    Full text link
    Recent advances in next-generation sequencing technologies have facilitated the use of deoxyribonucleic acid (DNA) as a novel covert channels in steganography. There are various methods that exist in other domains to detect hidden messages in conventional covert channels. However, they have not been applied to DNA steganography. The current most common detection approaches, namely frequency analysis-based methods, often overlook important signals when directly applied to DNA steganography because those methods depend on the distribution of the number of sequence characters. To address this limitation, we propose a general sequence learning-based DNA steganalysis framework. The proposed approach learns the intrinsic distribution of coding and non-coding sequences and detects hidden messages by exploiting distribution variations after hiding these messages. Using deep recurrent neural networks (RNNs), our framework identifies the distribution variations by using the classification score to predict whether a sequence is to be a coding or non-coding sequence. We compare our proposed method to various existing methods and biological sequence analysis methods implemented on top of our framework. According to our experimental results, our approach delivers a robust detection performance compared to other tools

    Universal Image Steganalytic Method

    Get PDF
    In the paper we introduce a new universal steganalytic method in JPEG file format that is detecting well-known and also newly developed steganographic methods. The steganalytic model is trained by MHF-DZ steganographic algorithm previously designed by the same authors. The calibration technique with the Feature Based Steganalysis (FBS) was employed in order to identify statistical changes caused by embedding a secret data into original image. The steganalyzer concept utilizes Support Vector Machine (SVM) classification for training a model that is later used by the same steganalyzer in order to identify between a clean (cover) and steganographic image. The aim of the paper was to analyze the variety in accuracy of detection results (ACR) while detecting testing steganographic algorithms as F5, Outguess, Model Based Steganography without deblocking, JP Hide&Seek which represent the generally used steganographic tools. The comparison of four feature vectors with different lengths FBS (22), FBS (66) FBS(274) and FBS(285) shows promising results of proposed universal steganalytic method comparing to binary methods

    A multi-task learning CNN for image steganalysis

    Get PDF
    Convolutional neural network (CNN) based image steganalysis are increasingly popular because of their superiority in accuracy. The most straightforward way to employ CNN for image steganalysis is to learn a CNN-based classifier to distinguish whether secret messages have been embedded into an image. However, it is difficult to learn such a classifier because of the weak stego signals and the limited useful information. To address this issue, in this paper, a multi-task learning CNN is proposed. In addition to the typical use of CNN, learning a CNN-based classifier for the whole image, our multi-task CNN is learned with an auxiliary task of the pixel binary classification, estimating whether each pixel in an image has been modified due to steganography. To the best of our knowledge, we are the first to employ CNN to perform the pixel-level classification of such type. Experimental results have justified the effectiveness and efficiency of the proposed multi-task learning CNN

    Multi-Class Classification Averaging Fusion for Detecting Steganography

    Get PDF
    Multiple classifier fusion has the capability of increasing classification accuracy over individual classifier systems. This paper focuses on the development of a multi-class classification fusion based on weighted averaging of posterior class probabilities. This fusion system is applied to the steganography fingerprint domain, in which the classifier identifies the statistical patterns in an image which distinguish one steganography algorithm from another. Specifically we focus on algorithms in which jpeg images provide the cover in order to communicate covertly. The embedding methods targeted are F5, JSteg, Model Based, OutGuess, and StegHide. The developed multi-class steganalvsis system consists of three levels: (1) feature preprocessing in which a projection function maps the input vectors into a separable space, (2) classifier system using an ensemble of classifiers, and (3) two weighted fusion techniques are compared, the first is a well known variance weighted fusion and an Gaussian weighted fusion. Results show that through the novel addition of the classifier fusion step to the multi-class steganalysis system, the classification accuracy is improved by up to 12%
    corecore