1,232 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload.

    Get PDF
    Standard of care diagnostic procedure for suspected skin cancer is microscopic examination of hematoxylin & eosin stained tissue by a pathologist. Areas of high inter-pathologist discordance and rising biopsy rates necessitate higher efficiency and diagnostic reproducibility. We present and validate a deep learning system which classifies digitized dermatopathology slides into 4 categories. The system is developed using 5,070 images from a single lab, and tested on an uncurated set of 13,537 images from 3 test labs, using whole slide scanners manufactured by 3 different vendors. The system\u27s use of deep-learning-based confidence scoring as a criterion to consider the result as accurate yields an accuracy of up to 98%, and makes it adoptable in a real-world setting. Without confidence scoring, the system achieved an accuracy of 78%. We anticipate that our deep learning system will serve as a foundation enabling faster diagnosis of skin cancer, identification of cases for specialist review, and targeted diagnostic classifications

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Improving Whole Slide Segmentation Through Visual Context - A Systematic Study

    Full text link
    While challenging, the dense segmentation of histology images is a necessary first step to assess changes in tissue architecture and cellular morphology. Although specific convolutional neural network architectures have been applied with great success to the problem, few effectively incorporate visual context information from multiple scales. With this paper, we present a systematic comparison of different architectures to assess how including multi-scale information affects segmentation performance. A publicly available breast cancer and a locally collected prostate cancer datasets are being utilised for this study. The results support our hypothesis that visual context and scale play a crucial role in histology image classification problems

    Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics

    Full text link
    In prostate cancer (PCa), the use of new radiopharmaceuticals has improved the accuracy of diagnosis and staging, refined surveillance strategies, and introduced specific and personalized radioreceptor therapies. Nuclear medicine, therefore, holds great promise for improving the quality of life of PCa patients, through managing and processing a vast amount of molecular imaging data and beyond, using a multi-omics approach and improving patients' risk-stratification for tailored medicine. Artificial intelligence (AI) and radiomics may allow clinicians to improve the overall efficiency and accuracy of using these "big data" in both the diagnostic and theragnostic field: from technical aspects (such as semi-automatization of tumor segmentation, image reconstruction, and interpretation) to clinical outcomes, improving a deeper understanding of the molecular environment of PCa, refining personalized treatment strategies, and increasing the ability to predict the outcome. This systematic review aims to describe the current literature on AI and radiomics applied to molecular imaging of prostate cancer

    Segmentation of the Prostatic Gland and the Intraprostatic Lesions on Multiparametic Magnetic Resonance Imaging Using Mask Region-Based Convolutional Neural Networks

    Get PDF
    Purpose: Accurate delineation of the prostate gland and intraprostatic lesions (ILs) is essential for prostate cancer dose-escalated radiation therapy. The aim of this study was to develop a sophisticated deep neural network approach to magnetic resonance image analysis that will help IL detection and delineation for clinicians. Methods and Materials: We trained and evaluated mask region-based convolutional neural networks to perform the prostate gland and IL segmentation. There were 2 cohorts in this study: 78 public patients (cohort 1) and 42 private patients from our institution (cohort 2). Prostate gland segmentation was performed using T2-weighted images (T2WIs), although IL segmentation was performed using T2WIs and coregistered apparent diffusion coefficient maps with prostate patches cropped out. The IL segmentation model was extended to select 5 highly suspicious volumetric lesions within the entire prostate. Results: The mask region-based convolutional neural networks model was able to segment the prostate with dice similarity coefficient (DSC) of 0.88 ± 0.04, 0.86 ± 0.04, and 0.82 ± 0.05; sensitivity (Sens.) of 0.93, 0.95, and 0.95; and specificity (Spec.) of 0.98, 0.85, and 0.90. However, ILs were segmented with DSC of 0.62 ± 0.17, 0.59 ± 0.14, and 0.38 ± 0.19; Sens. of 0.55 ± 0.30, 0.63 ± 0.28, and 0.22 ± 0.24; and Spec. of 0.974 ± 0.010, 0.964 ± 0.015, and 0.972 ± 0.015 in public validation/public testing/private testing patients when trained with patients from cohort 1 only. When trained with patients from both cohorts, the values were as follows: DSC of 0.64 ± 0.11, 0.56 ± 0.15, and 0.46 ± 0.15; Sens. of 0.57 ± 0.23, 0.50 ± 0.28, and 0.33 ± 0.17; and Spec. of 0.980 ± 0.009, 0.969 ± 0.016, and 0.977 ± 0.013. Conclusions: Our research framework is able to perform as an end-to-end system that automatically segmented the prostate gland and identified and delineated highly suspicious ILs within the entire prostate. Therefore, this system demonstrated the potential for assisting the clinicians in tumor delineation
    corecore