700 research outputs found

    Time-delayed models of gene regulatory networks

    Get PDF
    We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternativemodelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems

    Hybrid-Controlled Neurofuzzy Networks Analysis Resulting in Genetic Regulatory Networks Reconstruction

    Get PDF
    Reverse engineering of gene regulatory networks (GRNs) is the process of estimating genetic interactions of a cellular system from gene expression data. In this paper, we propose a novel hybrid systematic algorithm based on neurofuzzy network for reconstructing GRNs from observational gene expression data when only a medium-small number of measurements are available. The approach uses fuzzy logic to transform gene expression values into qualitative descriptors that can be evaluated by using a set of defined rules. The algorithm uses neurofuzzy network to model genes effects on other genes followed by four stages of decision making to extract gene interactions. One of the main features of the proposed algorithm is that an optimal number of fuzzy rules can be easily and rapidly extracted without overparameterizing. Data analysis and simulation are conducted on microarray expression profiles of S. cerevisiae cell cycle and demonstrate that the proposed algorithm not only selects the patterns of the time series gene expression data accurately, but also provides models with better reconstruction accuracy when compared with four published algorithms: DBNs, VBEM, time delay ARACNE, and PF subjected to LASSO. The accuracy of the proposed approach is evaluated in terms of recall and F-score for the network reconstruction task

    Fusion of Domain Knowledge for Dynamic Learning in Transcriptional Networks

    Get PDF
    A critical challenge of the postgenomic era is to understand how genes are differentially regulated even when they belong to a given network. Because the fundamental mechanism controlling gene expression operates at the level of transcription initiation, computational techniques have been devel oped that identify cis-regulatory features and map such features into differential expression patterns. The fact that such co-regulated genes may be differentially regulated suggests that subtle differences in the shared cis-acting regulatory elements are likely significant. Thus, we carry out an exhaustive description of cis-acting regulatory features including the orientation, location and number of binding sites for a regulatory protein, the presence of binding site submotifs, the class and number of RNA polymerase sites, as well as gene expression data, which is treated as one feature among many. These features, derived from dif ferent domain sources, are analyzed concurrently, and dynamic relations are re cognized to generate profiles, which are groups of promoters sharing common features. We apply this method to probe the regulatory networks governed by the PhoP/PhoQ two-component system in the enteric bacteria Escherichia coli and Salmonella enterica. Our analysis uncovered novel members of the PhoP regulon as and the resulting profiles group genes that share underlying biologi cal that characterize the system kinetics. The predictions were experimentally validated to establish that the PhoP protein uses multiple mechanisms to control gene transcription and is a central element in a highly connected network.Ministerio de Ciencia y Tecnología BIO2004-0270-

    Interpretability-oriented data-driven modelling of bladder cancer via computational intelligence

    Get PDF

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks
    corecore