1,363 research outputs found

    Structural health monitoring using the Firefly optimization algorithm and finite elements

    Get PDF
    In this study, a novel technique for multiple damage detection of structures using modal characterization to evaluate the dynamic response of the structure given a damage model is investigated. The damage identification problem is seen as an optimization problem to be solved using a firefly optimization algorithm. The objective function is based on a numerical damage model that considers the modal response of the structures. We show some implementation details and discuss the obtained results for a benchmark problem used to assess the performance of the method and its advantages for structural health monitoring.En este estudio, se investiga una técnica novedosa para la detección de daños múltiples de estructuras mediante la caracterización modal para evaluar la respuesta dinámica de la estructura dado un modelo de daño. El problema de identificación de daños se plantea como un problema de optimización que se resuelve utilizando un algoritmo de optimización tipo firefly. La función objetivo se basa en un modelo de daño numérico que considera la respuesta modal de las estructuras. Mostramos algunos detalles de implementación y discutimos los resultados obtenidos para un problema de referencia utilizado para evaluar el rendimiento del método y sus ventajas para el monitoreo de la salud estructural

    Multiple damage detection and localization in beam-like and complex structures using co-ordinate modal assurance criterion combined with firefly and genetic algorithms

    Get PDF
    Damage detection and localization in civil engineering constructions using dynamic analysis has become an important topic in recent years. This paper presents a methodology based on non-destructive detection, localization and quantification of multiple damages in simple and continuous beams, and a more complex structure, namely two-dimensional frame structure. The proposed methodology makes used of Firefly Algorithm and Genetic Algorithm as optimization tools and the Coordinate Modal Assurance Criterion as an objective function. The results show that the proposed combination of Coordinate Modal Assurance Criterion and Firefly Algorithm or Genetic Algorithm can be easily used to identify multiple local structural damages in complex structures. However, the convergence rate becomes slower for the case of multiple damages compared to the case of single damage. The effect of noise on the algorithm is further investigated. It is found that the proposed technique is able to detect the damage location and its severity with high accuracy in the presence of noise, although the convergence rate became slower than in the case when no noise is present. It is also found that the convergence rate of Firefly Algorithm is much faster than that of Genetic Algorithm

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms
    • …
    corecore