2,919 research outputs found

    Innovative Techniques for Infection Control and Surveillance in Hospital Settings and Long-Term Care Facilities: A Scoping Review

    Get PDF
    Healthcare-associated infections (HAIs) pose significant challenges in healthcare systems, with preventable surveillance playing a crucial role. Traditional surveillance, although effective, is resource-intensive. The development of new technologies, such as artificial intelligence (AI), can support traditional surveillance in analysing an increasing amount of health data or meeting patient needs. We conducted a scoping review, following the PRISMA-ScR guideline, searching for studies of new digital technologies applied to the surveillance, control, and prevention of HAIs in hospitals and LTCFs published from 2018 to 4 November 2023. The literature search yielded 1292 articles. After title/abstract screening and full-text screening, 43 articles were included. The mean study duration was 43.7 months. Surgical site infections (SSIs) were the most-investigated HAI and machine learning was the most-applied technology. Three main themes emerged from the thematic analysis: patient empowerment, workload reduction and cost reduction, and improved sensitivity and personalization. Comparative analysis between new technologies and traditional methods showed different population types, with machine learning methods examining larger populations for AI algorithm training. While digital tools show promise in HAI surveillance, especially for SSIs, challenges persist in resource distribution and interdisciplinary integration in healthcare settings, highlighting the need for ongoing development and implementation strategies

    Focal Spot, Winter 1984/85

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1039/thumbnail.jp

    Automated Detection Of Surgical Adverse Events From Retrospective Clinical Data

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2017. Major: Health Informatics. Advisors: GENEVIEVE MELTON-MEAUX, GYORGY SIMON. 1 computer file (PDF); iv 101 pages.The Detection of surgical adverse events has become increasingly important with the growing demand for quality improvement and public health surveillance with surgery. Event reporting is one of the key steps in determining the impact of postoperative complications from a variety of perspectives and is an integral component of improving transparency around surgical care and ultimately around addressing complications. Manual chart review is the most commonly used method in identification of adverse events. Though the manual chart review is the most commonly used method that is considered the “gold-standard” for detecting adverse events for many patient safety studies (research setting), it could be very labor-intensive and time-consuming and thus many hospitals have found it too expensive to routinely use. In this dissertation, aiming to accelerate the process of extracting postoperative outcomes from medical charts, an automated postoperative adverse events detection application has been developed by using structured electronic health record (EHR) data and unstructured clinical notes. First, pilot studies are conducted to test the feasibility by using only completed EHR data and focusing on three types of surgical site infection (SSI). The built models have high specificity as well as very high negative predictive values, reliably eliminating the vast majority of patients without SSI, thereby significantly reducing the chart reviewers’ burden. Practical missing data treatments have also been explored and compared. To address modeling challenges, such as high-dimensional dataset, and imbalanced distribution, several machine learning methods haven been applied. Particularly, one single-task and five multi-task learning methods are developed and compared for their detection performance. The models demonstrated high detection performance, which ensures the feasibility of accelerating the manual process of extracting postoperative outcomes from medical chart. Finally, the use of structured EHR data, clinical notes and the combination of these data types have been separately investigated. Models using different types of data were compared on their detection performance. Models developed with very high AUC score have demonstrated that supervised machine learning methods can be effective for automated detection of surgical adverse events

    Can routinely collected electronic health data be used to develop novel healthcare associated infection surveillance tools?

    Get PDF
    Background: Healthcare associated infections (HCAI) pose a significant burden to health systems both within the UK and internationally. Surveillance is an essential component to any infection control programme, however traditional surveillance systems are time consuming and costly. Large amounts of electronic routine data are collected within the English NHS, yet these are not currently exploited for HCAI surveillance. Aim: To investigate whether routinely collected electronic hospital data can be exploited for HCAI surveillance within the NHS. Methods: This thesis made use of local linked electronic health data from Imperial College Healthcare NHS Trust, including information on patient admissions, discharges, diagnoses, procedures, laboratory tests, diagnostic imaging requests and traditional infection surveillance data. To establish the evidence base on surveillance and risks of HCAI, two literature reviews were carried out. Based on these, three types of innovative surveillance tools were generated and assessed for their utility and applicability. Results: The key findings were firstly the emerging importance of automated and syndromic surveillance in infection surveillance, but the lack of investigation and application of these tools within the NHS. Syndromic surveillance of surgical site infections was successful in coronary artery bypass graft patients; however it was an inappropriate methodology for caesarean section patients. Automated case detection of healthcare associated urinary tract infections, based on electronic microbiology data, demonstrated similar rates of infection to those recorded during a point prevalence survey. Routine administrative data demonstrated mixed utility in the creation of simplified risk scores or infection, with poorly performing risk models of surgical site infections but reasonable model fit for HCA UTI. Conclusion: Whilst in principle routine administrative data can be used to generate novel surveillance tools for healthcare associated infections; in reality it is not yet practical within the IT infrastructure of the NHS

    Studies on mechanisms of enterocutaneous fistula healing

    Get PDF
    This thesis reviewed and investigated several aspects of the management of enterocutaneous fistula (ECF). The best management of ECF, particularly complex fistulas, is in specialist units where there is a multidisciplinary structured approach. Surgical management of ECF at St. Mark’s National Intestinal Failure Unit is safe and improving over time. The highest incidence of ECF development occurs following abdominal surgery particularly in the presence of Crohn’s disease. The audit confirmed this in our unit. A retrospective audit of our unit revealed the majority of patients underwent definitive surgery. There were improved overall healing rates following both surgery and conservative management in the current cohort, with also improvement in the 30 day post fistula resection mortality compared with a previous series at our unit. Multivariate analysis revealed co-morbidity, source of referral and aetiology had significant associations with ECF healing. This thesis has included the first study and design of a scoring system for predicting ECF healing. The scoring systems devised were both validated. They can provide further information to aid clinical management and decision making for the multidisciplinary team and predict the possible long term outcome for patients at external institutions. Meta-analyses of randomised control trials has revealed somatostatin and octreotide increase the likelihood of fistula closure, reducing the time to fistula closure, and neither has an effect on mortality. 5 Immunological studies revealed an increased on-going production of cytokines, in particular TNF-α, in non-IBD ECF compared with control terminal ileum tissue. The data may provide evidence for the potential use of anti-TNF-α agents in the treatment of non-IBD ECF. A future pilot study has been designed with the aim to identify a potential novel therapy for patients with persistent enterocutaneous fistula not associated with inflammatory bowel disease. Any positive findings would equate to a major medical advance with a new use for anti-TNF-α agents.Open Acces

    Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for Multimodal Medical Diagnosis

    Full text link
    Driven by the large foundation models, the development of artificial intelligence has witnessed tremendous progress lately, leading to a surge of general interest from the public. In this study, we aim to assess the performance of OpenAI's newest model, GPT-4V(ision), specifically in the realm of multimodal medical diagnosis. Our evaluation encompasses 17 human body systems, including Central Nervous System, Head and Neck, Cardiac, Chest, Hematology, Hepatobiliary, Gastrointestinal, Urogenital, Gynecology, Obstetrics, Breast, Musculoskeletal, Spine, Vascular, Oncology, Trauma, Pediatrics, with images taken from 8 modalities used in daily clinic routine, e.g., X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Digital Subtraction Angiography (DSA), Mammography, Ultrasound, and Pathology. We probe the GPT-4V's ability on multiple clinical tasks with or without patent history provided, including imaging modality and anatomy recognition, disease diagnosis, report generation, disease localisation. Our observation shows that, while GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy, it faces significant challenges in disease diagnosis and generating comprehensive reports. These findings underscore that while large multimodal models have made significant advancements in computer vision and natural language processing, it remains far from being used to effectively support real-world medical applications and clinical decision-making. All images used in this report can be found in https://github.com/chaoyi-wu/GPT-4V_Medical_Evaluation
    • …
    corecore