1,812 research outputs found

    Using global analysis, partial specifications, and an extensible assertion language for program validation and debugging

    Get PDF
    We discuss a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from (global) static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be checked statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis

    An Approach to Static Performance Guarantees for Programs with Run-time Checks

    Full text link
    Instrumenting programs for performing run-time checking of properties, such as regular shapes, is a common and useful technique that helps programmers detect incorrect program behaviors. This is specially true in dynamic languages such as Prolog. However, such run-time checks inevitably introduce run-time overhead (in execution time, memory, energy, etc.). Several approaches have been proposed for reducing such overhead, such as eliminating the checks that can statically be proved to always succeed, and/or optimizing the way in which the (remaining) checks are performed. However, there are cases in which it is not possible to remove all checks statically (e.g., open libraries which must check their interfaces, complex properties, unknown code, etc.) and in which, even after optimizations, these remaining checks still may introduce an unacceptable level of overhead. It is thus important for programmers to be able to determine the additional cost due to the run-time checks and compare it to some notion of admissible cost. The common practice used for estimating run-time checking overhead is profiling, which is not exhaustive by nature. Instead, we propose a method that uses static analysis to estimate such overhead, with the advantage that the estimations are functions parameterized by input data sizes. Unlike profiling, this approach can provide guarantees for all possible execution traces, and allows assessing how the overhead grows as the size of the input grows. Our method also extends an existing assertion verification framework to express "admissible" overheads, and statically and automatically checks whether the instrumented program conforms with such specifications. Finally, we present an experimental evaluation of our approach that suggests that our method is feasible and promising.Comment: 15 pages, 3 tables; submitted to ICLP'18, accepted as technical communicatio

    Efficient Aggregated Deliveries with Strong Guarantees in an Event-based Distributed System

    Get PDF
    A popular approach to designing large scale distributed systems is to follow an event-based approach. In an event-based approach, a set of software components interact by producing and consuming events. The event-based model allows for the decoupling of software components, allowing distributed systems to scale to a large number of components. Event correlation allows for higher order reasoning of events by constructing complex events from single, consumable events. In many cases, event correlation applications rely on centralized setups or broker overlay networks. In the case of centralized setups, the guarantees for complex event delivery are stronger, however, centralized setups create performance bottlenecks and single points of failure. With broker overlays, the performance and fault tolerance are improved but at the cost of weaker guarantees

    Combined static and dynamic assertion-based debugging of constraint logic programs

    Get PDF
    We propose a general framework for assertion-based debugging of constraint logic programs. Assertions are linguistic constructions for expressing properties of programs. We define several assertion schemas for writing (partial) specifications for constraint logic programs using quite general properties, including user-defined programs. The framework is aimed at detecting deviations of the program behavior (symptoms) with respect to the given assertions, either at compile-time (i.e., statically) or run-time (i.e., dynamically). We provide techniques for using information from global analysis both to detect at compile-time assertions which do not hold in at least one of the possible executions (i.e., static symptoms) and assertions which hold for all possible executions (i.e., statically proved assertions). We also provide program transformations which introduce tests in the program for checking at run-time those assertions whose status cannot be determined at compile-time. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the pecifications. Finally, we report briefly on the currently implemented instances of the generic framework

    An assertion language for constraint logic programs

    Full text link
    In an advanced program development environment, such as that discussed in the introduction of this book, several tools may coexist which handle both the program and information on the program in different ways. Also, these tools may interact among themselves and with the user. Thus, the different tools and the user need some way to communicate. It is our design principie that such communication be performed in terms of assertions. Assertions are syntactic objects which allow expressing properties of programs. Several assertion languages have been used in the past in different contexts, mainly related to program debugging. In this chapter we propose a general language of assertions which is used in different tools for validation and debugging of constraint logic programs in the context of the DiSCiPl project. The assertion language proposed is parametric w.r.t. the particular constraint domain and properties of interest being used in each different tool. The language proposed is quite general in that it poses few restrictions on the kind of properties which may be expressed. We believe the assertion language we propose is of practical relevance and appropriate for the different uses required in the tools considered

    Inference of termination conditions for numerical loops in Prolog

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows overcoming these difficulties. Our approach is based on transforming a program in a way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows us to perform a correct analysis of such computations automatically, by extending previous work on a constraint-based approach to termination. Finally, we discuss possible extensions of the technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in Theory and Practice of Logic Programmin
    • …
    corecore