
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

Efficient Aggregated Deliveries with Strong
Guarantees in an Event-based Distributed System
Gregory Aaron Wilkin
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Wilkin, Gregory Aaron, "Efficient Aggregated Deliveries with Strong Guarantees in an Event-based Distributed System" (2015). Open
Access Dissertations. 1434.
https://docs.lib.purdue.edu/open_access_dissertations/1434

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1434?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Gregory Aaron Wilkin

Efficient Aggregated Deliveries with Strong Guarantees in an Event-based Distributed System

Doctor of Philosophy

Patrick T. Eugster
Chair

Sonia Fahmy

Xiangyu Zhang

Dongyan Xu

Patrick T. Eugster

William Gorman 10/15/2015

EFFICIENT AGGREGATED DELIVERIES WITH

STRONG GUARANTEES IN EVENT-BASED DISTRIBUTED SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Gregory Aaron Wilkin

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

LIST OF TABLES . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Request-reply Interaction . 2
1.2 Event-based Distributed Systems . 3
1.3 Engineering of Event-based Distributed Software 4

1.3.1 Engineering of Event-based Middleware 5
1.4 Thesis Statement . 6
1.5 Contributions . 6
1.6 Roadmap . 7

2 MULTICASTING IN THE PRESENCE OF AGGREGATED DELIVERIES 1 8
2.1 Preliminaries . 12

2.1.1 System Model . 12
2.1.2 Properties and Total Order Broadcast 12

2.2 Conjunction Multi-Delivery Multicast (C-MDMcast) 14
2.2.1 Predicate Grammar . 14
2.2.2 Predicate Types and Evaluation 15
2.2.3 Properties . 17

Basic Safety Properties . 18
Liveness . 18
Agreement . 19

2.3 Comparison of C-MDMcast with Total Order Broadcast 21
2.3.1 C-MDMcast Using TOBcast 21

Algorithm . 21
Correctness of FRIP with Respect to C-MDMcast 24

2.3.2 Total Order Broadcast Using Conjunction Multi-Delivery Multicast 25
Algorithm . 26
Correctness of TC�MDMcast!TOBcast (Alg. 2.2) with Respect to

TOBcast . 29
2.4 Subsumption . 32

1Published in JPDC 2012
Authors: G. A. Wilkin and P. Eugster

iii

Page
2.4.1 Motivation . 32
2.4.2 Property . 32
2.4.3 Correctness of FRIP with Respect to MDM COVERING CONJUNC-

TION AGREEMENT . 34
2.5 Disjunction Multi-delivery Multicast (D-MDMcast) 35

2.5.1 Predicate Grammar . 35
2.5.2 Algorithm . 36
2.5.3 Correctness of D-FRIP with Respect to D-MDMcast 36

2.6 Total Order . 38
2.6.1 Properties . 38
2.6.2 Correctness of FRIP and D-FRIP with Respect to Total Order Prop-

erties . 40
2.7 FIFO and Causal Order . 41

2.7.1 FIFO Order . 41
2.7.2 Causal Order . 43

2.8 Related Work . 46
2.9 Conclusions . 48

3 FAIDECS: FAIR DECENTRALIZED EVENT CORRELATION 2
. 49

3.1 Related Work . 52
3.2 Preliminaries . 54
3.3 FAIDECS Model . 55

3.3.1 Predicate Grammar . 55
3.3.2 Predicate Types and Evaluation 56
3.3.3 Properties . 58

Basic safety properties . 58
Liveness . 59
Agreement . 61

3.3.4 Total Order . 61
3.4 Algorithms . 63

3.4.1 Total Order Broadcast Black Box 63
Conjunctions . 63
Disjunctions . 65

3.4.2 FAIDECS Decentralized Ordered Merging 67
Conjunctions . 68
Disjunctions . 70
Joining . 71
Fault tolerance . 72

3.5 Evaluation . 73
3.5.1 Metrics and Experimental Setup 73

2Published in MIDDLEWARE 2011
Authors: G. A. Wilkin, K. R. Jayaram, P. Eugster and A. Khetrapal

iv

Page
3.5.2 Conjunctions . 75
3.5.3 Disjunctions . 77

3.6 Conclusions . 79

4 FAULT TOLERANT EVENT CORRELATION 3
. 80

4.1 FAIDECS . 81
4.1.1 Contributions . 82

4.2 FAIDECS Model and System Overview 84
4.2.1 System Model and Notation 84
4.2.2 Properties . 84
4.2.3 Predicate Grammar . 85
4.2.4 Predicate Types and Evaluation 86
4.2.5 Properties . 88

Basic Safety Properties . 88
Liveness . 88
Agreement . 90
Ordering . 91

4.2.6 Decentralized System . 92
Mergers . 92
Clients . 93

4.3 Semantic Options . 95
4.3.1 Event Matching Semantics 95
4.3.2 Event Consumption Semantics 96
4.3.3 Windows . 98
4.3.4 Properties of Semantic Options 100

First Received vs. Most-Recently Received 100
Contiguous vs. Non-contiguous Matching 103
Infix vs. Prefix+Infix vs. Infix+Postfix Event Consumption . . . 104
Tumbling vs. Sliding Windows 108

4.4 Case Studies . 111
4.4.1 The TESLA Language . 112

Event Occurrence/Selection 112
Event Composition . 112
Parameterization . 114
Timers . 114
Negations . 115
Aggregates . 115
Event Consumption . 115
Event Hierarchies . 116
Iterations . 116

3Published in ToIT 2013
Authors: G. A. Wilkin, K. R. Jayaram and P. Eugster

v

Page
4.4.2 The StreamSQL Language . 117

Overview . 117
Selection . 118
Windowing . 119
Event Composition . 120
Union and Merge . 120

4.4.3 The EQL Language . 121
4.4.4 The CEL Language . 122

4.5 Evaluation . 123
4.5.1 Metrics and Setup . 123
4.5.2 Results . 125

4.6 Related Work . 126
4.7 Conclusions . 129

LIST OF REFERENCES . 130

VITA . 136

vi

LIST OF FIGURES

Figure Page

2.1 Layered structure. 21

2.2 Message queue match. 21

2.1 First-Received matching with Infix&Prefix disposal (FRIP) algorithm. . . . 22

2.2 Algorithm TC�MDMcast!TOBcast implementing TOBcast with C-MDMcast. 27

2.3 Example demonstrating the total order of message delivery from Alg. 2.2 where
TO-DLVR(m1) . . . (mn) summarizes events TO-DLVR(m1) . . . TO-DLVR(mn). 29

2.4 Graph illustrating the order of reception of messages (e.g., m1
1) vs. when they

are delivered as part of a relation (e.g., [m1
1,m

2
1]). 33

2.3 D-FRIP algorithm implementing D-MDMcast using TOBcast. 36

2.5 Example showing difficulty/issue of defining generalized MDM JUNCTION TO-
TAL ORDER: �1 = T1, �2 = T2, �01 = �

0
2 = � = T3. 39

3.1 Conjunctions/disjunctions with Total Order Broadcast. 64

3.2 T 1^...^T j denotes the conjunction merger for the respective types t[T1, ...Tj]
(single instance per type). 67

3.3 Small-scale FAIDECS merger replication. The dotted ovals are “logical” merg-
ers; circles are processes. L denotes the leader. 67

3.4 Ordered merging for conjunctions: mergers. 68

3.5 Ordered merging for conjunctions: clients. 69

3.6 Disjunction-enabled ordered merging for conjunctions: mergers. 70

3.7 Ordered merging for conjunctions and disjunctions: clients. 70

3.8 Setup for conjunctions (scenarios A and B). 74

3.9 Setup for disjunctions (scenario D). 74

3.10 Comparing conjunction and disjunction algorithms to a sequencer based ap-
proach. 75

3.11 Conjunction averaged values. 77

3.12 Latency values (ms) for other total order approaches. 78

vii

Figure Page

3.13 Disjunction averaged values. 78

4.1 First received (FR) matching with prefix+infix (PI) disposal. 92

4.2 Overlay for conjunctions. Streams merging follows � 93

4.3 MR matching. 97

4.4 FRC matching. 97

4.5 MRC matching. 97

4.6 I disposal. 97

4.7 IP disposal. 97

4.8 FP disposal (sliding window). 97

4.9 Empirical evaluation of FAIDECS . 124

viii

LIST OF TABLES

Table Page

4.1 Table of semantic options specifying which properties are not met with ap-
plicable theorems in parentheses. Shaded area indicates default semantics for
FAIDECS. 100

4.2 Basic safety as well as liveness properties violated by various language opera-
tors. 111

4.3 Agreement and ordering (safety) properties violated by various language oper-
ators. 111

ix

ABSTRACT

Wilkin, Gregory Aaron PhD., Purdue University, December 2015. Efficient Aggregated
Deliveries with Strong Guarantees in Event-based Distributed Systems. Major Professor:
Patrick Eugster.

A popular approach to designing large scale distributed systems is to follow an event-

based approach. In an event-based approach, a set of software components interact by

producing and consuming events. The event-based model allows for the decoupling of

software components, allowing distributed systems to scale to a large number of compo-

nents. Event correlation allows for higher order reasoning of events by constructing com-

plex events from single, consumable events. In many cases, event correlation applications

rely on centralized setups or broker overlay networks. In the case of centralized setups, the

guarantees for complex event delivery are stronger, however, centralized setups create per-

formance bottlenecks and single points of failure. With broker overlays, the performance

and fault tolerance are improved but at the cost of weaker guarantees.

The goal of this dissertation is to develop an efficient middleware for event correlation

while still providing strong guarantees. First, we show what is necessary for strong guaran-

tees in asynchronous distributed event-based systems that perform event correlation. Sec-

ondly, we provide the main deliverable of this dissertation: a generic middleware system,

FAIDECS, which utilizes event types to efficiently correlate individually multicast events

while providing strong guarantees for asynchronous event-based distributed systems. We

then provide semantic alternatives to those provided in FAIDECS, showing what strong

guarantees are able to be provided given certain operators.

1

1 INTRODUCTION

An event-based system consists of a set of software components that interact using event

notifications. In this context, an event is any happening of interest, which is typically a

change in state of some component within a system. Examples of events include mouse

clicks, keyboard events, timers, OS and I/O interrupts, sensor readings, stock quotes and

news articles. Events contain data attributes, where a typed event consists in an ordered set

of attributes, each of which may be a simple or complex type respectively. For example, a

weather sensor reading might contain attributes such as location data (may be represented

by several individual attributes or a single complex attribute, which contains individual

elements), temperature readings (a simple floating point value), barometer readings, etc.,

and may contain more complex data such as satellite readings. The event handler, also

called a reaction, is executed when an event occurs, often a method call, and is executed

asynchronously to the caller. An increasing number of applications detect and react to

patterns of events, called complex events or composite events, and event correlation is the

detection of complex events.

Many software applications utilize the event-based programming paradigm. Example

applications include operating systems, graphical interfaces, news dissemination, algorith-

mic stock/commodity training, weather prediction and detection, network management,

intrusion detection, etc. Many mainstream programming languages support simple event

handling of singleton events. Examples include Java’s JFC/Swing, RTSJ’s AsynchEvents

and C’s POSIX condition variables.

Due to newer concepts such as pervasive computing, or the increasing connectivity of

several components (complex or simple) and the overall size of distributed systems in gen-

eral, a number of requirements emerge, the most basic being the availability of scalable

interaction mechanisms which are crucial for building and maintaining a broad range of

event based systems. Many such systems not only must support increasingly larger num-

2

bers of components, ranging from hundreds to thousands, but also face complex application

environments which require strong guarantees across these components, or even subsets of

components.

Further, automation of data processing is becoming more of the norm rather than the

traditional interactive user request/reply architecture. This gives rise to data-/information-

driven distributed applications which react to data according to a set of predefined, pro-

grammer specified rules. The stock market is nearly revolutionized by automated trades

by detecting events and trends in the market and reacting at the nano-second level. Large

office buildings on or near Wall Street, once full of humans trading equities, are now be-

ing emptied and filled with large, powerful machines to perform trades due to the close

proximity to the source tickers where every nano-second counts. Inventory in stores may

now be efficiently monitored, and low supplies quickly and automatically trigger orders for

replenishment. For any such computation to be automated, components must be provided

with the necessary data to constantly check for such conditions, where these conditions

often take the form of events.

1.1 Request-reply Interaction

Traditional distributed applications have worked under the assumption that data and/or

services are stored in a collection of objects or databases, and retrieval of this data is through

a request-reply interaction. Client-server architectures have risen as a result where process

roles are clearly defined, and a system component actively retrieves data for processing. An

example of this architecture is the Remote Proceduer Call (RPC), where similar techniques

exist. These techniques have been optimized through a successful history of engineering

experience where the principles are well understood. Many applications as a result nat-

urally fit into this paradigm, making the request-reply interaction model a very suitable

choice.

However, for many distributed applications, where the environment is far more dy-

namic and data must be communicated as events occur rather than in a predefined interval,

3

the request-reply interaction model has great limitations. Often, in this model, communi-

cation is synchronous, and only between any two machines at a time which enforces a tight

coupling of components and greatly hampers system scalability. Clients periodically poll

remote data sources, and must balance the tradeoffs of resources such as network band-

width, processing power, etc., for accuracy and timely relevance of data. Polling for data

by the clients too often results in better accuracy of data, but wastes many resources. On

the other hand, not polling often enough results in stale or irrelevant data, and may result

in higher update latencies. Further, as the needs evolve from such applications, software

extensibility is greatly restricted in the request-reply model. Control flow is encoded in

application components, which couples the system configuration with the application logic

of various components.

In contrast to the traditional request-reply model of interaction in distributed systems,

event-based design provides a better alternative for many applications. This is largely due

to the fact that event-based design inherently decouples system components, improving ex-

tensibility and scalability of the software, particularly for large scale distributed systems.

This may often improve the reasoning and even design process of such systems since indi-

vidual components may be designed independently of others.

1.2 Event-based Distributed Systems

In event-based distributed systems, components communicate through event notifica-

tions which are produced, transmitted and received by interested components. Middleware

systems allow for the sources (event producers/publishers) to be decoupled from the sinks

(event consumers/subscribers) since the middleware handles the transfer of events from the

former to the latter. Sources and sinks need not even have a priori knowledge of each other.

Decoupling avoids name binding of components, which yeilds modules that are largely

independent; thus, new components may be deployed into a running application without

the need for system reconfiguration. Communication using this specialized middleware is

4

greatly improved in terms of efficiency and scalability by aggregating and sharing traffic

among components when possible.

The event-based model also allows for more straightforward higher order reasoning of

data within an application. As event notifications convey a particular happening of interest,

multiple event notifications, when taken together as a single entity, may convey a more

meaningful occurence of interest. Often, when events occur in a particular order, if certain

events occur within a certain time relative to other events, or even if a number of different

events ever occur at some point in a system, more may be inferred than by simply viewing

the individual events. For example, monitoring weather systems requires the constant mon-

itoring of individual weather events. However, in order to determine certain future events,

e.g., a storm, multiple events must be correlated with other events in time and space to de-

termine if the conditions are conducive for bad weather. Such systems demand event-based

programming models since engineers may take advantage of their autonomic, reactive and

asynchronous nature.

1.3 Engineering of Event-based Distributed Software

Consider an event-based distributed application such as an algorithmic stock trading

application. For such an application, the interacting components are typically applications

at the stock exchanges, commodity exchanges, brokerage firms and high frequency traders.

Events which are produced and consumed in such a system include stock quotes, com-

modity price quotes, analyst reports, trading volumes, annual reports quarterly earnings

statements, etc. Using a traditional request-reply design for a high frequency trading com-

ponent at a brokerage to periodically poll the stock exchange component for stock quotes

severely hampers scalability and ability to react to changing events as quickly as they occur.

Thus, such a system is greatly improved by the use of a middleware layer which allows pro-

ducers to offload events immediately as they occur, and then consumers may receive these

events through the middleware using a push protocol. Thus, this middleware layer decou-

5

ples producers and consumers and allows for much greater scalability. Thus, most systems

consist of the following:

1. Producers and consumers, where the application/business logic (e.g., decisions re-

garding buying or selling stocks, posting a weather warning, etc.) is typically pro-

grammed in a language such as C, C++, Java, ML, etc.

2. Event transmission middleware, which are typically dedicated high bandwidth com-

munication links or publish/subscribe systems (topic-based, type-based or content-

based), achieving a form of multicast.

3. Event correlation middleware responsible for detecting complex events by correlat-

ing or matching singleton events.

Both 2 and 3 may be combined in the same middleware. Systems like Gryphon [85],

PADRES [60] and Hermes [66] are such examples.

1.3.1 Engineering of Event-based Middleware

In these scenarios, more than one process is receiving and possibly aggregating mes-

sages at a time, implying that the middleware implement some form of multicast. Cur-

rently, most middleware which offers complex event detection either utilize centralized

setups, which hampers performance and yields a single point of failure, or focus more on

efficiency and complexity of matching or on the number of possible aggregations and thus

yield only best-effort guarantees.

Thus, middleware that merges both 2 and 3 above while providing strong guarantees is

highly desirable. Such middleware would then be responsible for the transmission/dissem-

ination of both singleton events, when desired by a consumer, as well as the dissemination

and correlation of complex events when also desired by any number of consumers.

Problem Statement Many complex event processing applications require strong guaran-

tees. However, no such system exists which provides these strong guarantees in an efficient,

6

fault tolerant, fully distributed manner. Current trends are thus to trade efficiency to provide

these guarantees in a centralized setup or sacrifice strong guarantees to gain efficiency in a

distributed setting.

1.4 Thesis Statement

We propose an efficient model for distributed complex event processing which provides

strong guarantees in the face of process failures. We first prove what is necessary to achieve

these strong guarantees in a fault tolerant manner, proving certain fundamental impossibil-

ities. We then propose a model which allows for an efficient implementation by introducing

the proper determinism necessary to achieve stronger guarantees. We then provide a prac-

tical, concrete system application of that model, we call FAIDECS. Lastly, we investigate

the relationships between our model/system and more expressive languages, outlining the

trade-offs of the expressiveness of various operations.

1.5 Contributions

The contributions of this thesis are as follows: First, theoretical examination of strong

guarantees for complex event processing in a distributed setting will be provided, where

we prove what is necessary to meet these strong guarantees. Next, this thesis will present

FAIDECS, which is a decentralized event correlation middleware that provides strong guar-

antees efficiently by utilizing event types to provide a total order on subsets of event types

of a system. Lastly, we explore (in)feasibilities of additional strong guarantees and how the

addition of certain operators to FAIDECS would affect any such guarantees by exploring

operators from other event-based systems. The technical and theoretical contributions of

this thesis are thus:

1. We prove that in order to achieve agreement on correlated events among processes

with exact, or similar, interests, a total order on individually multicast events is re-

7

quired. We enumerate a number of strong guarantees, providing (in)feasibilities of

each.

2. FAIDECS, a “Fair Decentralized Event Correlation System” which achieves the above

mentioned strong guarantees by providing a total order on subsets of events of inter-

est utilizing event types. We prove that FAIDECS meets each of the presented strong

guarantees shown to be feasible and empirically evaluate its performance against

other systems which can provide the same guarantees.

3. We explore further guarantees, mixing different matching semantics and event dis-

posal semantics, proving which may be met in FAIDECS and which may not. We

contrast these guarantees with other systems providing trade-offs demonstrating the

scalability of our decentralized algorithms and exploring overall performance ben-

efits and tradeoffs by comparing two different Java implementations of FAIDECS

with three different implementations of a global total order of which two are fault

tolerant.

1.6 Roadmap

Chapter 2 presents proofs that a total order on individually multicast events is necessary

to achieve even simple forms of agreement in the context of correlation. Chapter 3 presents

FAIDECS, a fair decentralized event correlation system, which is the deliverable and im-

plementation of the concepts presented in Chapter 2. And Chapter 4 presents alternative

semantics to FAIDECS and (in)feasibilities of meeting each of the guarantees with these

new semantics with empirical evaluation/comparison of FAIDECS to other systems.

8

2 MULTICASTING IN THE PRESENCE OF AGGREGATED DELIVERIES 1

Several fundamental models of distributed systems leverage relationships among many

events [57], and an increasingly large number of distributed applications are explicitly built

on a form of message correlation. A traditional use of correlation consists in the verification

of safety conditions for intrusion detection [56]. Network monitoring, more generally [54],

also enables the improvement of resource usage, e.g., in data centers. Workflow monitoring

and production chain management are further application scenarios [26, 60]. More recent

application environments for correlation include embedded and pervasive systems [38], and

sensor networks [72].

The semantics of correlation in decentralized asynchronous systems prone to failures

remain, however, under-addressed. Seminal investigations of message correlation were

conducted in the context of active databases [17, 34, 35]. These attempted to formalize

different options in syntax and semantics of elementary correlation. A message m

k
l in the

following represents a message of type T k. A sequence of messages m1
1 · m1

2 · m2
1 can be

matched by a “subscription” correlating instances of message types T 1 and T 2 as [m1
1,m

2
1]

(first received first) or as [m1
2,m

2
1] (most recent first). However, such work, just like stream

processing [8, 24], considers events to be unicast, or focuses on individual processes, cen-

tralized setups, or synchronous systems. The more recent StreamCloud [40] strives for

ordering across nodes, but this ordering is, however, achieved based on timestamps assum-

ing synchronized clocks.

Message aggregation has also been investigated in the context of content-based pub-

lish/subscribe systems [15], which focus on multicast. Several systems have been extended

to support some form of correlation, broadening their scope from, say, the canonical stock

quote dissemination example for publish/subscribe systems to expressive algorithmic stock
1PUBLISHED IN JPDC 2012
AUTHORS: G. A. WILKIN AND P. EUGSTER

9

trading. Examples of such systems are Gryphon [85], PADRES [60] and Hermes [66].

However, most such extensions focus on efficiency and complexity of matching or on the

number of possible aggregations and thus yield only best-effort guarantees on message

delivery unless relying on centralized rendezvous nodes [66].

In summary, the above-mentioned approaches exhibit the following limitations: (1) no

guarantees on messages delivered or (2) no support for multicast and thus no guarantees

across individual processes; (3) no consideration of failures or (4) use of specific architec-

tural setups with centralized components assumed to be reliable.

The absence of guarantees or the violation of expectations due to failures can have

drastic effects [74]. Consider, for example, monitoring a network to decide which one of

two gateways to route certain traffic through. If the first gateway receives the sequence

m

1
1 ·m1

2 ·m2
1 outlined above, but the second one receives the sequence m2

1 ·m1
2 ·m1

1 instead,

each gateway might consider itself to be responsible for routing. Worse even, each can

consider the other to be responsible. Of course, individual systems can be designed to

deal with some of these issues (e.g., by using a proxy process to merge and multiplex

streams to replicas), but corresponding solutions are hardly generic and can easily introduce

bottlenecks to performance and dependability.

While several kinds of properties have been proposed and rigorously investigated for

single message delivery scenarios (e.g., agreed delivery [42], probabilistic delivery [13],

ordering properties [33]), the feasibility of guarantees in the presence of atomic, aggre-

gated deliveries of sets of messages which are multicast in asynchronous systems remains

unexplored. This paper thus makes the following contributions:

• A simple model of multicast with aggregated message delivery and properties are

proposed for the crash-stop failure model. The model includes a basic predicate

grammar for subscriptions of processes supporting message correlation. We term

this specification Conjunction Multi-Delivery Multicast (C-MDMcast).

• We show that to achieve agreement on delivered messages (message aggregates)

among processes subscribed with identical conjunctions, total order on individual

10

messages, or an equivalent oracle, is both useful (as conveyed by the example above)

and necessary. We show this by exhibiting an algorithm FRIP implementing C-

MDMcast on top of Total Order Broadcast (TOBcast) and vice-versa with a majority

of correct processes. This is opposed to single message deliveries where (total) order

and agreement can be separated.2

• We specify a stronger agreement property on conjunctions, which formalizes the

intuition that the aggregated messages delivered in response to a first subscription,

which “covers” a second subscription, should include the set of messages delivered

to the latter one. Such subsumption is trivial in single-message deliveries (and in

fact is paramount to scalability in publish/subscribe systems [4]) but more involving

when the delivery of a message depends on others, and does thus not simply boil

down to predicate inclusion. We prove that FRIP implements this stronger agreement

property.

• We add disjunctions and introduce corresponding properties, defining the problem

of Disjunction Multi-Delivery Multicast (D-MDMcast). We exhibit a derivation D-

FRIP of our algorithm FRIP, which implements D-MDMcast.

• We formulate total order properties for conjunctions and disjunctions: we can lever-

age the total order required on individual messages to achieve agreement on aggre-

gated deliveries in order to establish a total order on aggregated deliveries.

• We similarly propose ordering properties capturing the order in which messages are

produced (FIFO order) and capturing causal dependencies (causal order).

Note that the goal of this paper is not to exhibit the weakest failure detector [19] for

correlation or to propose efficient algorithms. The intent is to show that some total ordering

(or equivalent oracle) is required to achieve agreement (not ordering) on aggregated deliv-

eries, suggesting that system builders think of such order at the core of systems and not

simply by layering it atop. Thus, our algorithm implementing C-MDMcast with TOBcast,
2Many agreement and (total) order properties are unnecessarily intertwined with liveness [10].

11

for instance, is inefficient. More specialized algorithms achieving the same guarantees effi-

ciently with pragmatic fault tolerance assumptions without going through TOBcast are the

topic of a companion paper [82]. Recent work by others [84], also motivated by solving

agreed correlation, actually proposes a more generic yet inefficient TOBcast primitive for

publish/subscribe systems. Note also that total order on messages is not a panacea: we

describe feasible properties as well as infeasible ones for our algorithms.

In contrast to our initial work [80] this paper presents (a) proofs for relationships be-

tween primitives, (b) a more expressive subscription grammar with content-based predi-

cates and (c) more general corresponding properties, (d) a stronger agreement property for

subsumption relationships on subscriptions, and (e) ordering guarantees.

Roadmap. Section 2.1 presents background information. Section 2.2 then introduces C-

MDMcast. Section 2.3 investigates relationships between TOBcast and C-MDMcast. Sec-

tion 2.4 discusses coverage. Section 2.5 introduces disjunctions. Section 2.6 discusses

total order. FIFO and causal order are addressed in Section 2.7. Section 2.8 presents re-

lated work. Section 2.9 concludes with final remarks.

12

2.1 Preliminaries

2.1.1 System Model

We assume a system⇧ of processes,⇧={p1, ..., pu}, interconnected pairwise by reliable

channels [11] with primitives to SEND messages and receive (RECV) these messages. We

consider a crash-stop failure model [29], i.e., a faulty process may stop prematurely and

does not recover. Further, we assume the existence of a discrete global clock to which

processes do not have access and that an algorithm run R consists in a sequence of events

on processes. That is, similar to other models [5], one process performs an action per clock

tick which is either of (a) a protocol action (e.g., RECV), (b) an internal action, or (c) a “no-

op”. In the following sections, we may augment this model at times with certain primitives

(e.g., TOBcast, see below) for comparison.

A failure pattern F is a function mapping clock times to processes, where F (t) yields

all the processes that crashed by time t. Let crashed(F) be the set of all processes 2

⇧ that have crashed during R. Thus, for a correct process pi, pi 2 correct(F) where

correct(F) = ⇧� crashed(F) [20].

2.1.2 Properties and Total Order Broadcast

For brevity and clarity, we adopt in the following a more formal notation for properties

than common. Consider for instance the well-known problem of Total Order Broadcast

(TOBcast) [42] defined over primitives TO-BCAST(m) and TO-DLVR(m), which will be

used for comparison later on. We denote TO-DLVRi(m)t as the TO-delivery of message m

by process pi at time t, and similarly, TO-BCASTi(m)t denotes the TO-broadcasting of m

by pi at time t. We elide any of i, t, or m when not germane to the context. We write 9e for

an event e such as a SEND or TO-BCAST as a shorthand for 9e 2 R. The specification of

Uniform TOBcast thus becomes (where SDM stands for Single-Delivery Multicast):

SDM NO DUPLICATION 9TO-DLVRi(m)t) @TO-DLVRi(m)t0 | t0 6= t

SDM NO CREATION 9TO-DLVR(m)t) 9TO-BCAST(m)t0 | t0 < t

13

SDM VALIDITY 9TO-BCASTi(m) ^ pi 2 correct(F)) 9TO-DLVRi(m)

SDM AGREEMENT 9TO-DLVRi(m)) 8pj 2 correct(F)\{pi} 9TO-DLVRj(m)

SDM TOTAL ORDER 9TO-DLVRi(m)t
i

, TO-DLVRi(m0)t0
i

, TO-DLVRj(m)t
j

, TO-DLVRj(m0)t0
j

) (ti < t

0
i , tj < t

0
j)

SDM AGREEMENT is visibly a uniform property. Property SDM TOTAL ORDER corresponds

to Strong Uniform Total Order (SUTO) in the categorization of Baldoni et al. [10].

14

2.2 Conjunction Multi-Delivery Multicast (C-MDMcast)

In this section, we present a specification of multicast with message conjunctions.

2.2.1 Predicate Grammar

Sets of delivered messages — relations — are messages aggregated according to spe-

cific subscriptions. Such subscriptions are combinations of predicates on messages ex-

pressed in disjunctive normal form (DNF) according to the following grammar:

Subscription ::= � |� _ Predicate ⇢ ::= T[i].a op v |T[i].a op T[i].a |T[i] |>

Conjunction � ::= ⇢ | ⇢ ^ � Operation op ::= < | > |  | � | = | 6=

A type T is characterized by an ordered set of attributes [a1, ..., an] each of which has a type

of its own – typically a scalar type such as Integer or Float. A message m of type T

is an ordered set of values [v1, ..., vn] corresponding to the respective attributes of T . T[i].a

denotes an attribute a of the i-th instance of type T (T[i]). v is a value. As syntactic sugar,

we can allow predicates to refer to just T.a, which can be automatically translated to T[1].a.

We may use this in examples for simplicity.

A predicate that compares a single message attribute to a value or compares two mes-

sage attributes on the same message, i.e., on the same instance of a same type (e.g.,

Tk[i].a op Tk[i].a0) is referred to as a unary predicate. When two distinct messages (two

distinct types or different instances of the same type) are involved in a predicate, we speak

of a binary predicate (Tk[i].a op Tl[j].a0, k 6= l _ i 6= j). To simplify properties, we

also introduce the empty predicate > which trivially yields true. Predicates comparing an

attribute of a type instance to itself (Tk[i].a op Tk[i].a) constitute useless operations and

are prohibited. We also allow wildcard predicates of the form T (or T 1) to be specified;

such predicates simply specify a desired type T of messages of interest. T[i] implicitly also

declares T[k] 8k 2 [1..i � 1] if these are not already explicitly declared as part of other

predicates in the same subscription.

A process pj’s subscription is referred to as (pj). By abuse of notation but unam-

biguously, we sometimes handle disjunctions or conjunctions as sets (of conjunctions and

15

predicates respectively). We write, for instance, ⇢l 2 � , � = ⇢1^ ...^⇢k with l 2 [1..k],

or �r 2 , = �1 _ ... _ �n with r 2 [1..n]. For simplicity, we first consider a

subscription to consist in a single conjunction in the context of C-MDMcast.

An example subscription S for an increase in three successive stock quotes after a

quarterly earnings report in the above grammar is expressed as follows:
 S = StockQuote[0].time > EarningsReport[0].time ^

StockQuote[1].value > StockQuote[0].value ^

StockQuote[2].value > StockQuote[1].value
Our grammar is expressive enough to model concrete ones by capturing message streams

(via windows T [i]), joining of multiple streams/sources (represented by different types

T k), and attribute-based filtering (T.a), without however introducing specialized syntax

to support several different semantic choices for these (e.g., first received vs. most recent

matching, tumbling windows vs. sliding windows).

2.2.2 Predicate Types and Evaluation

We assume a deterministic order �N within subscriptions based on the names of mes-

sage types, attributes, etc., which can be used for re-ordering predicates within and across

conjunctions. This ordering can be lexical or based on priorities on message types, and is

necessary for even simplest forms of determinism and agreement. We consider subscrip-

tions to be already ordered accordingly for presentation simplicity.

The number of messages involved in a subscription is given by the number of types and

corresponding instances involved. More precisely, the types involved in a subscription are

represented as sequences. As alluded to by the index i in T[i], a same type can be admitted

multiple times. Such sequences can be viewed as predicate signatures:

T(� _) = T(�)] T() T(T[i].a op v) = T(T[i])

T(⇢ ^ �) = T(⇢)] T(�) T(>) = ;

T(T1[i].a1 op T2[j].a2) = T(T1[i])] T(T2[j]) T(T[i]) = [T, ..., T| {z }
i⇥

]

16

;] [T, ...] = [T, ...] [T, ...]] ; = [T, ...]

[T1, ..., T1| {z }
i⇥

, T

0
1, ...]

][T2, ..., T2| {z }
j⇥

, T

0
2, ...]

=

8
>>>>>>>>>><

>>>>>>>>>>:

[T1, ..., T1| {z }
i⇥

]� ([T 01, ...]] [T2, ..., T2| {z }
j⇥

, T

0
2, ...]) T1 �N T2

[T2, ..., T2| {z }
j⇥

]� ([T 02, ...]] [T1, ..., T1| {z }
i⇥

, T

0
1, ...]) T2 �N T1

[T1, ..., T1| {z }
max(i,j)⇥

]� ([T 01, ...]] [T 02, ...]) T1 = T2

Above,� represents simple concatenation and] stands for in-order union of sequences. In

the previous example, the types involved may thus be [EarningsReport, StockQuote,

StockQuote, StockQuote].

Any subscription � thus involves a sequence of message types T(�)=[T1, ..., Tn] where

we can have for i, j 2 [1..n], i < j such that 8k 2 [i..j] Tk = Ti = Tj , that is, a

subsequence of identical types. These represent a stream of messages of the respective type

of length j� i+1. A subscription is evaluated for an ordered set of messages [m1, ...,mn],

where mi is of type T i. We assume that types of values in predicates are checked statically

with respect to the types of messages. T (m) returns the type of a given message m. Note

that we do not introduce a set of uniquely identified types {T 1, T 2, ...}. This allows for

the set of types to be unbounded which does not violate our assumptions or guarantees,

and keeps notation more brief in that we can use [T 1, ..., T k] to refer to a sequence of k

arbitrary types, as opposed to, e.g., [Ti1 , ..., Ti
k

].

The evaluation of a conjunction � on a relation is written as �[m1, ...,mn]. For evalua-

tion of an attribute a on a message mi, we write mi.a. Evaluation semantics for predicates

are thus defined as follows:

17

(� _)[m1, ...,mn] = �[m1, ...,mn] _ [m1, ...,mn] (T)[m1, ...,mn] = true

(⇢ ^ �)[m1, ...,mn] = ⇢[m1, ...,mn] ^ �[m1, ...,mn] (>)[m1, ...,mn]= true

(T[i].a op v)

[m1, ...,mn] =

8
>>>>><

>>>>>:

mk+i�1.a op v T (mk) = T ^ (T (mk�1) 6= T

_ (k � 1) = 0)

false otherwise

(T1[i].a1 op T2[j].a2)

[m1, ...,mn] =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

mk+i�1.a1 op ml+j�1.a2 T (mk) = T1 ^

(T (mk�1) 6= T1 _ (k � 1) = 0)

^ T (ml) = T2 ^

(T (ml�1) 6= T2 _ (l � 1) = 0)

false otherwise

Parentheses are used for clarity. For brevity we write simply �[...] for �[...] = true.

The DLVR primitive to be generically typed, i.e., for delivering a relation [m1, ...,mn], we

write DLVR�([m1, ...,mn]) where mi is of type T i such that T(�)=[T1, ..., Tn]. Analogous

to TOBcast, DLVRi
�([...,m, ...])t defines the delivery event of a message m on process pi in

response to � at time t and MCASTi(m)t defines the multicasting of a message m by pi at

time t. i, t etc. may be omitted when not germane to the context.

2.2.3 Properties

Conjunction Multi-Delivery Multicast (C-MDMcast) is defined over primitives MCAST

and DLVR, where DLVR is parameterized by a subscription � and delivers ordered sets of

messages. In the remainder of this paper, deliver refers to DLVR (while TO-deliver refers

to TO-DLVR), and multicast refers to MCAST (vs. TO-broadcast).

18

Basic Safety Properties

We define three basic safety properties for C-MDMcast:

MDM NO DUPLICATION 9 DLVRi
�([...,m, ...])t) @DLVRi

�([...,m, ...])t0 | t0 6= t

MDM NO CREATION 9DLVR�([...,m, ...])t) 9MCAST(m)t0 | t0 < t

MDM ADMISSION 9DLVRi
�([m1, ...,mn]) | T(�) = [T1, ..., Tn]) � 2 (pi) ^

�[m1, ...,mn] ^ 8k 2 [1..n] : T (mk) = Tk

The MDM NO DUPLICATION property implies that a same message is delivered at most

once on any single process for a conjunction, which may be opposed to certain systems that

allow a same message to be correlated multiple times. Our property could be substituted to

allow a delivery for every instance of a type in a conjunction which would, however, make

the guarantees and proofs more complicated without affecting the feasibilities explored in

this paper.

Liveness

MDM ADMISSION can trivially hold while not performing any deliveries. We have to

be careful about providing strong delivery properties on individually multicast messages

though, as messages may depend on others to match a given conjunction. We propose the

two following complementary liveness properties:

MDM CONJUNCTION NON-TRIVIALITY 9MCAST(mk
l), k 2 [1..n], l 2 [1..1] ^

pi 2 correct(F) ^ 9� 2 (pi) | �[m1
l , ...,m

n
l]) 9DLVRi

�([...])tj | j 2 [1..1]

MDM MESSAGE NON-TRIVIALITY 9MCASTi(mx), MCASTk,l(mk
l), k 2 [1..n]\x,

l 2 [1..1] | {pi, pj , pk,l} ✓ correct(F) ^ � 2 (pj) ^ T(�) = [T1, ..., Tn] ^ 8z 2 [w..y],

Tz = T (mx) ^ @(T (mx)[x� w + 1].a1 op T[r].a2) 2 � | (T 6= T (mx) _ r 6= x� w + 1) ^

�[m1
l , ...,m

x�1
l ,m

x
,m

x+1
l , ...,m

n
l]) 9DLVRj

�([...,m
x
, ...])

These two properties deal with the two possible cases that can arise. The first prop-

erty deals with dependencies across messages and can be paraphrased as follows: “If for

a correct process pi, there is an infinite number of relations of matching messages that are

19

successfully multicast, then pi will deliver infinitely many such relations.” This property is

reminiscent of the FINITE LOSSES PROPERTY of fair-lossy channels [11]. It allows matching

algorithms to discard some messages for practical purposes or for agreement and order-

ing, yet ensures that when matching messages are continuously multicast, a corresponding

process will continuously deliver.

MDM MESSAGE NON-TRIVIALITY provides a property analogous to validity for single-

message deliveries (e.g., TOBcast): If a message is multicast by a correct process pi, and

its delivery in response to a conjunction on some correct process pj is not conditioned by

binary predicates with other message types, then the message must be delivered by pj if

messages of all other types matching each other are continuously multicast. This latter

condition is necessary because the delivery of the message even in the absence of binary

predicates requires the existence of other messages.

The condition also ensures that any unary predicates on the respective message type are

satisfied. Note that in the case of multiple instances of that type, for each of which there

are only unary predicates that match, the property does not force a message to be delivered

more than once as the position of the message is not fixed in the implied delivery. The

example in Section 2.2.1 does not contain a unary predicate, and thus is not affected by

this property. If the subscription S were extended to trigger only if the value of the U.S.

dollar is below some value v as in 0S = S ^ USDollar.value < v, then any message

matching this predicate will be delivered with the entire relation given by S .

Note that none of these properties is impacted by the presence of multiple instances of

a same type in a conjunction. An infinite flow of messages of some type implies multiple

(a finite number of) infinite flows of that type.

Agreement

We now turn to a stronger property for relations delivered across processes:

MDM CONJUNCTION AGREEMENT 9DLVRi
�([m1, ...,mn])) 8pj 2 correct(F)\{pi} |

� 2 (pj) : 9DLVRj
�([m1, ...,mn])

20

The uniform MDM CONJUNCTION AGREEMENT property ensures that two correct pro-

cesses pi and pj with identical subscriptions expressed by the conjunction � must deliver

the same relation, without constraining the respective orders of such deliveries.

21

Reliable Channels

Total Order Broadcast

Enqueue, Match, Dequeue

Disjunction-MDMcastConjunction-MDMcastConjunction-MDMcast T1 T3

7
3
2

T2

5
4

17
22Time

Figure 2.1.: Layered structure. Figure 2.2.: Message queue match.

2.3 Comparison of C-MDMcast with Total Order Broadcast

In this section, we show that by augmenting our system model with the TOBcast primi-

tive defined in Section 2.1.2, we can implement C-MDMcast and vice-versa with a majority

of correct processes. This substantiates the intuition that a total order on messages or an

equivalent oracle is not only useful to achieve agreement on conjoined messages, but also

necessary.

2.3.1 C-MDMcast Using TOBcast

We present FRIP (First-received matching with infix&prefix disposal), an algorithm

implementing C-MDMcast using TOBcast. FRIP exploits the total order on messages cre-

ated by TOBcast for agreement on relations. Fig. 2.1 represents a layered structure for

MDMcast. D-MDMcast is an extension of C-MDMcast presented later.

Algorithm

Our FRIP algorithm (Alg. 2.1) can be broken down into several components namely (1)

the buffering of TO-delivered messages (ENQUEUE), (2) the actual matching of messages

(MATCH), and (3) the disposal of messages after matching (DEQUEUE). Every process

pi has a subscription of one conjunction �. A process pi maintains exactly one queue Q

per message type appearing in its conjunction (regardless of the number of instances of that

22

Executed by every process p
i

1: Initialisation:
2: �
3: � ⇢1 ^ ... ^ ⇢

m

{Composite, |�| = m}
4: Q[T] ; {Msg queues by type T }
5: To MCAST(m):
6: TO-BCAST(m)

7: procedure DEQUEUE([m1, ...,ml

], Q) {GC}
8: for all Q[T (m

k

)] = ...�m

k

�m � ...,

k 2 [1..l] do
9: Q[T (m

k

)] m � ...

10: function ENQUEUE (m, �, Q) {Q mngmnt}
11: win max(j | 9(...T (m)[j].a...) 2 �)
12: if 8j = 1..win (9(T (m)[j].a op v) 2

� | ¬(m.a op v) _ 9(T (m)[j].a op

T (m)[j].a0) 2 � | ¬(m.a op m.a

0)) then
13: return false {Useless bc unary preds}
14: else
15: Q[T (m)] Q[T (m)]�m

16: return true

17: upon TO-DLVR(m) do
18: if T (m) 2 T(�) then
19: if ENQUEUE(m,�, Q) then
20: [m1, ...,ml

] MATCH(;,�, Q)
21: if l > 0 then {Not an empty set}
22: DEQUEUE([m1, ...,ml

], Q)
23: DLVR�([m1, ...,ml

])

24: function MATCH ([m0
1, ...,m

0
n

], �, Q)
25: T T

n+1 | T(�) = [T1, ..., Tn+1, ...]
26: l max(j |Q[T] =

m1 � ...�m

j

� ...) |m
j

= m

0
k

{Last}
27: for all k = (l + 1)..h | Q[T] = m1 � ...�m

h

do
28: if |T(�)| = n+ 1 then
29: if �[m0

1, ...,m
0
n

,m

k

] then {match}
30: return [m0

1, ...,m
0
n

,m

k

]
31: else if E = MATCH([m0

1, ...,m
0
n

,m

k

],
�, Q) 6= ; then

32: return E

33: return ;

Alg. 2.1.: First-Received matching with Infix&Prefix disposal (FRIP) algorithm.

type in its subscription). When TO-delivering a message, pi first checks whether the type of

the message is in its subscription and, if so, attempts to ENQUEUE it. Q[T (m)]�m denotes

appending a message m to the queue of m’s type T (m). The ENQUEUE primitive returns

true if the message has been ENQUEUEd, indicating it satisfies all unary predicates on the

respective type in the conjunction. This tells the algorithm to MATCH, as any received

message can complete a relation.

It is important that this matching is triggered deterministically on every process and that

the matching itself is deterministic. The procedure attempts to find the first instance of the

first type in� for which there are messages of the remaining types with which all predicates

in � are satisfied. Among all such possibilities, if any, the algorithm recursively seeks for

a match with the first instance of the second type in �, etc., until a match is found or no

more possibilities exist. In the case of messages of a same type, a first instance of that type

is recursively matched with the first follow-up instance of the same type until the number

of messages needed for that type are matched, or until all possibilities in the queue for that

23

type are exhausted. Thus in Alg. 2.1, on Line 11, l denotes the last matched instance of the

currently matched type. These semantics can be termed first-received matching semantics.

Consider the example of Section 2 where messages of two types T 1 and T 2 are matched

with wildcard predicates of the respective types. A message mk
l in the following represents

a message of type T k. A sequence m

1
1 · m1

2 · m2
1 received by a process pi will lead to the

match [m1
1,m

2
1] with the above matching semantics, while a permutation of the sequence,

m

1
2 ·m1

1 ·m2
1 will lead to the match [m1

2,m
2
1]. A simple permutation across processes can

thus lead to delivery of distinct relations, which intuitively conveys the need for total order.

The described matching algorithm performs an exhaustive search and is thus not effi-

cient; however, it suffices to illustrate the relevant properties and can be represented con-

cisely. More elaborate and efficient matching algorithms exist, offering the same semantics.

A common approach consists in storing partial matches in specialized data-structures for

matching a given message effectively (e.g., [50]). The goal of this paper is not to give

guidelines on how exactly correlation-enabled multicast systems should be devised but to

explore the foundations.

Upon a successful match, our FRIP algorithm in Alg. 2.1 discards not only consumed,

matched messages, but also predating buffered ones. We refer to these semantics as in-

fix&prefix disposal. More precisely, upon a successful match [m1, ...,mn], for each mes-

sage mi, all messages of the same type received prior to mi are discarded with mi via the

garbage collection mechanism DEQUEUE. This algorithm, thus, achieves agreement since

it is triggered deterministically and also behaves deterministically. Fig. 2.2 shows such an

example for a conjunction � = ⇢1 ^ ⇢2 where ⇢1 = T1.a1 < T2.a1 and ⇢2 = T3.a1 < 20

(recall that T1.a1, T2.a1 and T3.a1 are shorthand for T1[1].a1, T2[1].a1 and T3[1].a1 respec-

tively). The marked line shows a matched relation. The latest message received is of type

T2 with value 7. All messages in the respective queues in front of the matched messages

are DEQUEUEd.

24

Correctness of FRIP with Respect to C-MDMcast

Lemma 1 FRIP ensures MDM NO DUPLICATION.

Proof SDM NO DUPLICATION ensures that a message cannot be TO-delivered and thus

enqueued more than once. If the message results in a successful match, the corresponding

message is removed from the queue in the procedure DEQUEUE (Lines 33 - 35 in Alg. 2.1)

and, therefore, will not be delivered more than once. Line 11 further ensures that for each

matching instance of a same type, after the instance l, each subsequent instance message is

also delivered and dequeued only once.

Lemma 2 FRIP ensures MDM NO CREATION.

Proof SDM NO CREATION ensures that a message will only be TO-delivered if it has been

TO-broadcast. A message is only TO-broadcast if multicast by Lines 5 - 6. A message may

therefore only be delivered if it has been TO-delivered.

Lemma 3 FRIP ensures MDM ADMISSION.

Proof The function ENQUEUE (Lines 26 - 32) filters out all messages which do not satisfy

the unary predicates in the subscription �. MATCH (Lines 8 - 19) iterates through the

queues to find the first instance of the first type in � for which there are messages of

the remaining types (or further messages of the same type in such cases) with which all

predicates in � are satisfied. Hence, any relation [m1,. . .,mn] that is delivered matches the

subscription �.

Lemma 4 FRIP ensures MDM MESSAGE NON-TRIVIALITY.

Proof For a given type T of a matching message m which is not dependent on any other

type in a conjunction through a binary predicate, given an infinite number of messages of

each of the conjoined types, if m is TO-broadcast, it will eventually be TO-delivered by all

correct processes. Further, m will not be DEQUEUEd by some later message being matched

prior since MATCH (Lines 8-19) looks for the first found instance of a type which satisfies

the conjunction. m, as part of only a unary predicate, will always be a first found instance;

even when multiple messages of the same type such as m belong to a predicate, each

message will be matched according to the order in the queue and none will be DEQUEUEd

due to some later message being matched.

25

Lemma 5 FRIP ensures MDM CONJUNCTION NON-TRIVIALITY.

Proof If for any process’s conjunction, infinitely many matching messages are multicast,

MDM CONJUNCTION NON-TRIVIALITY is ensured. Every multicast namely leads to a TO-

broadcast, and since DEQUEUE is only called after a match, it cannot keep an infinite subset

of matching TO-broadcast messages from being correlated and matched. Every time mes-

sages are discarded from the buffer, including those not delivered, there will still be an

infinite number of matching messages TO-broadcast in the future.

Lemma 6 FRIP ensures MDM CONJUNCTION AGREEMENT.

Proof The underlying Total Order Broadcast guarantees that no two (correct or faulty)

processes TO-deliver the same two messages in different orders through SDM AGREEMENT

and SDM TOTAL ORDER. Hence, no two processes with the same subscription � have

message queue contents which diverge in time with respect to their (identical) streams of

TO-delivered messages. The deterministic matching of messages performed in the MATCH

function (Lines 8 - 19) ensures that the same relations are delivered at all processes with

subscription �.

Theorem 2.3.1 FRIP implements C-MDMcast.

Proof By Lemmas 1 � 6.

2.3.2 Total Order Broadcast Using Conjunction Multi-Delivery Multicast

Is total order on messages necessary for solving C-MDMcast After all, TOBcast can

be used to implement Causal Order Broadcast or FIFO Order Broadcast [42] (just like

C-MDMcast), but going the other way is not possible. Alg. 2.2 describes an algorithm

TC�MDMcast!TOBcast to implement Total Order Broadcast over C-MDMcast assuming a

majority dn+1
2 e of correct processes.

Together with Alg. 2.1, TC�MDMcast!TOBcast establishes the equivalence between C-

MDMcast and Total Order Broadcast in the system and failure model considered. Note that

Total Order Broadcast itself is unimplementable in this model; it is equivalent to Consen-

sus [19], which is unsolvable [29]. Thus, implementing the necessary total order requires

an oracle such as a failure detector or a more specific ordering oracle [65].

26

Algorithm

In short, the algorithm uses a single type of multicast message MIP , which contains the

actual application message of type M , the sending process’s current sequence number as

an Integer (I), as well as the process’s identifier of type P . Each process is interested in

conjunctions consisting in a number of instances of MIP equal to the size of the majority

partition of processes in the system. That is, � =
V

i=1..dn+1
2 e

MIP [i], or more simply

MIP [dn+1
2 e].

We must ensure a total order among all processes, so each process proceeds in lock-

step manner. More precisely, every process at every time has a message that is “under

correlation”, i.e., a message it has multicast but not yet delivered as part of a relation. This

is ensured by SENDER. If a process does not have any pending TO-broadcast messages (a

TO-BCAST message is simply added to a queue broadcasts of messages to be broadcast), it

simply uses an empty message?. This is necessary to ensure non-triviality (i.e., an infinite

sequence of messages) while a single process only multicasts a single message at a time –

less than a majority of processes might be TO-broadcasting.

Since a process can very well deliver several relations that do not contain any of its own

messages, and these relations are not necessarily delivered by the underlying C-MDMcast

layer in the same order on all processes, they are stored in a buffer upon arrival. The in-

ternal messages of the relation are only TO-delivered by the RECEIVER task when certain

conditions hold, i.e., the next relation of messages to be TO-delivered must contain mes-

sages for which each message sequence number is next in sequence for each respective

process. In fact, it is easy to see that any two relations must respectively contain a message

from at least one common process – only one message of a given process is under corre-

lation at a time and every relation contains dn+1
2 e messages. Those sequence numbers are

used to break ties. Given that at any point in time there is only one message per process

under correlation, we cannot have two relations with messages from two processes with

inverse respective sequence number orders. This argument can be extended to any number

of transitively connected relations.

27

Executed by every process p
i

1: Initialisation:
2: broadcasts ; {Output message buffer}
3: tbdelivered ; {To be delivered}
4: seq 0 {Last own message created}
5: last sent 0 {Last own message sent}
6: last recv 0 {Last own msg recved}
7: last delivered[] 0 {Seq # hash by PID}
8: task SENDER
9: if last recv = last sent then {no p

i

msg}
10: if broadcasts 6= ; then
11: C-MDMCAST([m, seq

0
, p

i

]) | seq0 =
min(seq00 | [..., seq00] 2 broadcasts)

12: broadcasts broadcasts\{[m, seq

0]}
13: last sent seq

0

14: else
15: seq seq + 1
16: C-MDMCAST([?, seq, p

i

])
17: last sent seq

18: To TO-BCAST(m):
19: seq seq + 1
20: broadcasts broadcasts [{[m, seq]}
21: upon C-MDMDLVR�=MIP^...^MIP

([m,

seq

0
, p

j

]1..dn+1
2 e) do

22: tbdelivered tbdelivered [
{[m, seq

0
, p

j

]1..dn+1
2 e}

23: if 9k 2 [1..dn+1
2 e] | pjk = p

i

then
24: last recv seq

0
k

25: task RECEIVER
26: if 9{[m, seq

0
, p

j

]1..dn+1
2 e} 2

tdbelivered | 8k 2 [1..dn+1
2 e] :

seq

0 = last delivered[p
jk] + 1 then

27: tbdelivered tbdelivered\
{[m, seq

0
, p

j

]1..dn+1
2 e}

28: for all k = 1..dn+1
2 e do

29: last delivered[p
j

k
]

last delivered[p
j

k
] + 1

30: if m
k

6= ? then
31: TO-DLVR(m

k

)

Alg. 2.2.: Algorithm TC�MDMcast!TOBcast implementing TOBcast with C-MDMcast.

Intuitively, this may be explained using Fig. 2.3. The graph in Fig. 2.3, for processes

p1, p2 and p3, starts where the queues of TO-BCAST messages already contain a number

to be C-MDMcast. Each process C-MDMcasts the first message in its queue and updates

its expected sequence number. After some time, the C-MDMcast layer matches m

1
1 and

m

2
1, (where an ellipse covers the processes from which the messages were matched), and

eventually MDM-delivers the relation [m1
1,m

2
1] to all processes. Note, that in the underlying

C-MDMcast layer, relations are not guaranteed to be MDM-delivered in the same order to

all processes as seen later by p1. Since for p3, this relation does not contain a message it has

previously C-MDMcast, it does not C-MDMcast another message. Since the relation has

been MDM-delivered to p2 and p3, each may TO-deliver the respective messages since each

is next in sequence. In the figure, TO-DLVR(m1
1) (m

2
1) denotes the events TO-DLVR(m1

1)

followed by TO-DLVR(m2
1). Process p2 may C-MDMcast another message since it has

received one it has previously C-MDMcast.

28

Later, the C-MDMcast layer matches another relation [m2
2,m

3
1] and eventually MDM-

delivers this relation to all processes. After this relation is MDM-delivered to both p2 and

p3, they may also TO-deliver the respective messages since the messages once again are

next in the expected sequence.

For process p1, the relations have been MDM-delivered in a different order than for the

other processes. The first relation that is MDM-delivered to p1 contains a message that

is out of sequence (i.e., message m

2
2) from what is expected, so this relation is buffered.

Then, the relation [m1
1,m

2
1] is MDM-delivered to p1. Now, since every message within

this relation is next in expected sequence, the respective messages may be TO-delivered

and the next expected sequence numbers may be updated. Also, since the message that p1

has previously C-MDMcast is in this relation, p1 may now C-MDMcast another message.

Finally, p1 may TO-deliver the messages from the relation [m2
2,m

3
1] since each message is

now next in sequence.

Thus, the intuition is that for any two relations r1 and r2 containing messages from

a majority dn+1
2 e of processes, each contain at least one message from the same process.

Among those two messages, one message will have a lower sequence number, and thus the

relation r1 which contains that message may be ordered before the relation r2 containing

the message with the higher sequence number. Inversely, it is not possible to have two

relations which contain messages from two respective processes with inverse sequence

numbers. Suppose a relation r1 contains a message with sequence number si1 from process

pi, and another relation r2 contains a message with sequence number si2 (where s

i
2 > s

i
1)

from the same process. The very existence of the relation r2 indicates that r1 has already

been MDM-delivered to p1, which then C-MDMcasts a second message of sequence s

i
2

since processes only C-MDMcast further messages after having received its previous C-

MDMcast message. It would thus be impossible for r1 to contain a message with sequence

number sj2 from process pj and r2 to contain a message with sequence number sj1 (where

s

j
2 > s

j
1). For this to have happened, either pi must have sent si1 and s

i
2 before ever

receiving a relation, or process pj would have had to send s

j
2 before s

j
1. Because processes

29

proceed in lock-step manner and sequence numbers are monotonically increasing, neither

case described is possible, demonstrating the intuition.

Figure 2.3.: Example demonstrating the total order of message delivery from Alg. 2.2
where TO-DLVR(m1) . . . (mn) summarizes events TO-DLVR(m1) . . . TO-DLVR(mn).

Correctness of TC�MDMcast!TOBcast (Alg. 2.2) with Respect to TOBcast

Lemma 7 TC�MDMcast!TOBcast ensures SDM NO DUPLICATION.

Proof MDM NO DUPLICATION ensures that no message can be delivered more than once.

Each message multicast is added to tbdelivered at most once. Thus, each message is TO-

delivered at most once since once a message is TO-delivered, the relation containing that

message is removed from tbdelivered.

Lemma 8 TC�MDMcast!TOBcast ensures SDM NO CREATION.

Proof MDM NO CREATION ensures a message is delivered only if multicast. Each message

is only multicast once it is placed in broadcasts by Lines 18 and 20 and correspondingly

placed in tbdelivered if delivered within a relation. Only messages (except ? messages)

in tbdelivered are TO-delivered.

30

Lemma 9 TC�MDMcast!TOBcast ensures SDM VALIDITY.

Proof The proof is in two steps. First, it will be shown that relations will be delivered

by correct processes in a lock-step manner, which assures that messages of some form are

delivered. Then, it will be shown that a relation containing message m which a process pi

has multicast will eventually be delivered by pi and thus TO-delivered.

Each process will multicast application (TO-broadcast) messages (Line 11 of Alg. 2.2)

when present, or ? messages (Line 16 of Alg. 2.2) when there are no application messages

to send. Because there is a majority dn+1
2 e of correct processes, there will always be at

least dn+1
2 e messages which may be correlated at any given time. Since each process only

multicasts one message at a time, each message a process receives of its own that is deliv-

ered in a relation will be a message in sequence; and that process may therefore multicast

another message. If a process delivers a relation containing any number of in-sequence

messages, there may be other messages in the same relation that are out-of-sequence from

the respective processes. However, a process will not TO-deliver any messages in a relation

unless all the messages are next in respective sequence by Line 26 of Alg. 2.2. Between

any two relations, there will always be at least one message of a same process pk in each of

the relations. There is, therefore, transitively an order that may be determined by the rela-

tion that pk delivered first. Therefore, there are further relations that contain the messages

which precede each of the out-of-sequence messages that the corresponding processes have

already delivered. By MDM CONJUNCTION AGREEMENT, those relations will eventually be

delivered and all the internal messages will therefore be TO-delivered.

When a correct process pi multicasts a message m, m may only be delivered when it

is correlated with bn2 c additional messages. By MDM MESSAGE NON-TRIVIALITY, since

the subscription � has no unary (or binary) predicates on any of the messages, m will

eventually be delivered. When the relation containing m is delivered, there may be other

messages in that relation that are out of sequence from the respective processes. Since the

relations containing those messages are guaranteed to be delivered and thus all the preced-

ing in-sequence messages TO-delivered (as shown above), m will thus be TO-delivered

ensuring SDM VALIDITY.

31

Lemma 10 TC�MDMcast!TOBcast ensures SDM AGREEMENT.

Proof All processes have the same subscription �. By SDM VALIDITY, if one process

pi multicasts a message m, m will be correlated with bn2 c other messages, matching �,

and thus be TO-delivered by pi. By MDM CONJUNCTION AGREEMENT, all processes will

deliver the relation containing m and place that relation in tbdelivered. As was first shown

for SDM VALIDITY, if for some process, there are messages out-of-sequence in the same

relation as m, the in-sequence messages will eventually be TO-delivered so that m and all

the messages in the same relation may also be TO-delivered by that process. By MDM

CONJUNCTION AGREEMENT, all processes will eventually deliver all the same relations.

Through the deterministic order (as shown in Lemma 9) in which relations are delivered,

all messages in the respective delivered relations will eventually be TO-delivered, thus,

Alg. 2.2 ensures SDM AGREEMENT.

Lemma 11 TC�MDMcast!TOBcast ensures SDM TOTAL ORDER.

Proof Correct processes deliver the same relations (by Lemma 10), and these can be or-

dered deterministically (cf. Lemma 9). SDM TOTAL ORDER holds as the messages within

these relations are TO-delivered deterministically (Lines 26 - 31 of Alg. 2.2).

Theorem 2.3.2 TC�MDMcast!TOBcast implements Total Order Broadcast.

Proof By Lemmas 7 � 11.

32

2.4 Subsumption

This section discusses a stronger agreement property, capturing the intuition that sub-

scriptions can include others, and transposing it to the respective delivered relations.

2.4.1 Motivation

Subscription subsumption, i.e., the recognition of inclusion or covering relationships

among subscriptions, is an important concept in publish/subscribe systems [4, 15, 77]. It

is used both for scaling, in terms of time needed to match a message against subscriptions

(first matching a message against the broadest subscription before matching it, only if the

match succeeds, to any covered subscriptions, etc.), as well as in terms of space (by using

intermediate nodes and covering subscriptions to abstract many subscriptions or nodes).

The same intuition — that any message matching a given subscription is delivered also

to any subscription covering the former one — can be applied to multi-message delivery

scenarios, yet a precise definition of corresponding properties and their implementation is

much more involving when the delivery of a message depends on others.

2.4.2 Property

We now introduce MDM COVERING CONJUNCTION AGREEMENT, a stronger property

than MDM CONJUNCTION AGREEMENT presented previously in Section 2.2.3.

Formalizing such a property is not trivial because one would also want to retain agree-

ment on (sub-)relations, i.e., that messages delivered together as part of the more specific

subscription are delivered together as well for the more generic one. This leads to funda-

mental limitations. MDM COVERING CONJUNCTION AGREEMENT only holds for conjunc-

tions which are respectively “extended to the right” with respect to the subscription order

�N , and the condition on disjointness of the sets of types, e.g., between � and �0, makes

the sub-conjunctions independent:

33

MDM COVERING CONJUNCTION AGREEMENT 9DLVRi
�^�0([m1, ...,mn,...]) |

((T(�) = [T1, ..., Tn]) \ T(�0)) = ;) 8pj 2 correct(F)\{pi} | � 2 (pj) :

9DLVRj
�([m1, ...,mn])

MDM COVERING CONJUNCTION AGREEMENT is not defined as a symmetric implication

(with �(pj)=� ^ �00). The presence of a matching set of messages for a sub-relation

given by �0 namely does not imply a timely or even eventual occurrence of a matching

set for �00 conjoined by pj with �, not even by MDM CONJUNCTION NON-TRIVIALITY.

MDM COVERING CONJUNCTION AGREEMENT becomes trivially symmetric if �0 = > (thus

subsuming MDM CONJUNCTION AGREEMENT).

Also note that not only must the types of the conjunction � be equal, but the predicates

must also be equivalent, i.e., no process may extend � with another predicate of the same

respective types. Consider that process pj has defined a predicate �j = T1 ^ T2 which

could simply mean to deliver the first found instance of a message of type T 1 with the

first instance of a message of type T 2. Second, a process pi has defined a predicate �i =

�j ^ T2.a1 < 3. Now suppose, as shown in Fig. 2.4, that a sequence of messages of types

T 1 and T 2 arrive in the following order: m1
1 ·m1

2 ·m2
1 ·m2

2. It is clear that �j[m1
1,m

1
2] holds,

but assume that m2
1.a1 = 4 (> 3) and m

2
2.a1 = 2 (< 3). Process pj would then deliver

[m1
1,m

2
1] followed by [m1

2,m
2
2] but process pi would deliver [m1

1,m
2
2]. Since m2

2 is matched

with different messages in both cases, neither the agreement property of Section 2.2.3 nor

MDM COVERING CONJUNCTION AGREEMENT is met.

Figure 2.4.: Graph illustrating the order of reception of messages (e.g., m1
1) vs. when they

are delivered as part of a relation (e.g., [m1
1,m

2
1]).

34

Thus, by example, if process pj defines a conjunction �j = T1.a1 = v and a second

process pi wishes to extend the conjunction �j with another predicate, it could be such

that �i = �j ^ T2.a2 = v

0 but not be of the form (a) �i = T1.a1 = v

0 ^ �j , (b) �i =

�j ^ T2.a2 = T1.a1, or (c) �i = T1.a1  v. (a) is impossible since matching on several

message types at any given process must proceed in a deterministic order, and any choice

for a given type will affect all the choices for subsequent types. (b) and (c) would require

all processes to know of the subscriptions of all other processes (and many messages to be

discarded), which we deem overconstraining.

The example subscriptions S , as defined in Section 2.2.1, and 0S , defined in Sec-

tion 3.3.3, would exhibit the necessary conditions for MDM COVERING AGREEMENT. That

is, the common predicates over the EarningsReport and StockQuote types would yield

the same (sub)-relations for S and 0S , where 0S would deliver relations containing the

above with an additional message of type USDollar.

2.4.3 Correctness of FRIP with Respect to MDM COVERING CONJUNCTION AGREEMENT

Theorem 2.4.1 FRIP ensures MDM COVERING CONJUNCTION AGREEMENT.

Proof MDM COVERING CONJUNCTION AGREEMENT is provided as messages of individual

types are handled independently by the matching in Alg. 2.1. If two processes pi and

pj define conjunctions � ^ �i and � respectively, as long as �i is disjoint with � (thus

messages that match with � are independent of messages matching �i), then if a match is

found for pi, there is a subset s of the relation for which � is true.

Because of SDM AGREEMENT and SDM TOTAL ORDER, no two processes enqueue the

same two messages in different orders. Thus, for every type in �, both pi and pj will have

queue contents which remain identical since any messages received by pi of any type in �i

will be placed in different queues. Thus, if pi delivers a relation, one of two possibilities

occur; either the last message received that triggered the match on pi is in s, thus of a type

in �, or the last message received is not in s, thus of a type in �i.

If the last message received by pi is in s, due to SDM AGREEMENT and SDM TOTAL

ORDER, then pi and pj’s queues over the set of types for� were identical before the message

35

was received by either pi or pj . Further, by SDM AGREEMENT, if a message is received by

pi, pj will also receive that message, making the queues identical again. Because of the

deterministic matching on Lines 8-19 of Alg. 2.1, pj will also deliver s.

Conversely, if the last message received by pi is not in s, then there are messages already

in the queues for the types of � which match s. Thus, by SDM AGREEMENT and SDM

TOTAL ORDER, pj will have already received the messages in s which would have triggered

a match on pj . Messages matching �i do not affect the order of matching or cause any of

the messages in s to be dequeued on pi when delivering messages corresponding to �^�i.

Thus, MDM COVERING CONJUNCTION AGREEMENT holds.

2.5 Disjunction Multi-delivery Multicast (D-MDMcast)

We now extend C-MDMcast to support disjunctions, thus defining the problem of Dis-

junction Multi-delivery Multicast (D-MDMcast) over primitives MCAST and DLVR.

2.5.1 Predicate Grammar

We now consider lifting the limitation made so far on the number of conjunctions in

a disjunction, allowing the full grammar of Section 3.3.1 to be used. For simplicity we

however rule out the case of a disjunction that contains several identical conjunctions, i.e.,

8 = �1 _ ... _ �n, l, k 2 [1..n]: �k = �l) k = l. In practice, we can remove all but

one copy.

DLVR is still parameterized by a conjunction �k for a given invocation, which can be,

however, any �k 2 (pj) for a given process pj’s subscription (pj).

Note at this point that _ is not interpreted as an eXclusive OR. Our non-triviality and

agreement properties introduced in Section 2.2.3 as well as the stronger property introduced

in Section 2.4 thus remain valid for disjunctions since conjunctions within a disjunction are

handled independently with respect to messages deliveries.

36

Executed by every process p
i

. Reuses ENQUEUE, DEQUEUE, and MATCH from FRIP.

1: init
2: �1 _ . . . _ �

o

3: �
l

 ⇢1 ^ . . . ^ ⇢

m

4: Q

l

[T] ; {MQs by type T for �
l

}
5: To MCAST(m):
6: TO-BCAST(m)

7: upon TO-DLVR(m) do
8: for all �

l

2 in order do
9: if T (m) 2 T(�

l

) then
10: if ENQUEUE(m,�

l

, Q

l

) then
11: [m1, ...,mk

] MATCH(;,�
l

, Q

l

)
12: if k 6= 0 then {Not an empty set}
13: DEQUEUE([m1, ...,mk

], Q
l

)
14: DLVR�l([m1, ...,mk

])

Alg. 2.3.: D-FRIP algorithm implementing D-MDMcast using TOBcast.

2.5.2 Algorithm

We now present an algorithm D-FRIP (Disjunction-FRIP) to implement the properties

provided by D-MDMcast using TOBcast. This algorithm (see Alg. 2.3) reuses the auxiliary

functions ENQUEUE, DEQUEUE, and MATCH from FRIP in Alg. 2.1. In D-FRIP, however,

every process maintains one message queue per message type per conjunction (queues

could trivially be shared across conjunctions). For example, for a disjunction = �1 _

�2 where T(�1)=T(�2)=[T1, T2], �1 = ⇢1 ^ ⇢2 where ⇢1 = T1.a1 < T2.a2 and ⇢2 =

T1.a1 < 20 and �2 = ⇢3 ^ ⇢4 where ⇢3 = T1.a1 > T2.a2 and ⇢2 = T2.a1 < 20, a

process maintains two queues for type T 1 and T 2, one each for �1 (Q1[T1] and Q1[T2]) and

�2 (Q2[T1] and Q2[T2]).

The primary change with respect to FRIP consists in a new response to a TO-delivery.

The new primitive dispatches a message to conjunctions in a deterministic order, as a same

message can now lead to multiple MATCHes and DLVRies.

2.5.3 Correctness of D-FRIP with Respect to D-MDMcast

Lemma 12 D-FRIP ensures MDM NO DUPLICATION.

Proof From Lemma 1, no message will be enqueued, delivered and/or dequeued more

than once for any conjunction. D-FRIP holds a separate queue per conjunction. The prim-

itives ENQUEUE and DLVR are each called at most once per message, per conjunction in

37

Lines 8 - 14 in Alg. 2.3 and DEQUEUE is called per conjunction only after a match. There-

fore, D-FRIP ensures MDM NO DUPLICATION for each conjunction.

Lemma 13 D-FRIP ensures MDM NO CREATION.

Proof No message is TO-broadcast and hence TO-delivered unless multicast, and Alg. 2.3

only delivers TO-delivered messages.

Lemma 14 D-FRIP ensures MDM ADMISSION.

Proof By Lemma 3, FRIP ensures MDM ADMISSION for any one conjunction. Since

ENQUEUE (Line 10) and MATCH (Line 11) are called per conjunction upon the reception

of a message in Alg. 2.3, only valid relations that match at least one conjunction in a

subscription are delivered in D-FRIP.

Lemma 15 D-FRIP ensures MDM MESSAGE NON-TRIVIALITY

Proof By Lemma 4, FRIP ensures MDM MESSAGE NON-TRIVIALITY for any one conjunc-

tion. Since individual messages are matched in a first-received order for a conjunction, and

since D-FRIP calls the match in Line 11 of Alg. 2.3 for each conjunction in a subscription,

D-FRIP ensures MDM MESSAGE NON-TRIVIALITY.

Lemma 16 D-FRIP ensures MDM CONJUNCTION NON-TRIVIALITY.

Proof By Lemma 5, as long as infinitely many matching messages are multicast, FRIP

ensures MDM CONJUNCTION NON-TRIVIALITY for any single conjunction. The proofs for

D-FRIP follows from a match for each conjunction within a subscription being indepen-

dently triggered upon receiving matching messages in Line 11 of Alg. 2.3.

Lemma 17 D-FRIP ensures MDM COVERING CONJUNCTION AGREEMENT.

Proof By Theorem 2.4.1, FRIP ensures MDM COVERING CONJUNCTION AGREEMENT. If

two processes pi and pj define conjunctions � ^ �i and � respectively, then since MATCH

is reused from Alg. 2.1 and is called deterministically in Alg. 2.3, the conjunctions will

be evaluated independently and thus deliver matching messages when they are received.

Since these conjunctions are matched independently of one another, and since FRIP en-

sures MDM COVERING CONJUNCTION AGREEMENT per conjunction, D-FRIP ensures MDM

COVERING CONJUNCTION AGREEMENT.

Theorem 2.5.1 D-FRIP implements D-MDMcast.

Proof By Lemmas 12 � 17.

38

2.6 Total Order

Section 2.3 showed that total order is required on single messages to achieve some

form of agreement on relations in C-MDMcast. The same mechanisms for achieving such

ordering might, however, help provide total order properties for relations.

2.6.1 Properties

We define three total order properties for MDMcast below:

MDM TYPE TOTAL ORDER 9DLVRi
�([...,m, ...])t

i

, DLVRi
�([...,m

0
, ...])t0

i

,

DLVRj
�0([...,m, ...])t

j

, DLVRj
�0([...,m0, ...])t0

j

| T(m) = T(m0)) (ti < t

0
i , ¬(t0j < tj))

MDM CONJUNCTION TOTAL ORDER 9DLVRi
�^�0([m1, ...,mn, ...])t

i

,

DLVRi
�^�0([m01, ...,m

0
n, ...])t0

i

, DLVRj
�^�00([m1, ...,mn, ...])t

j

,

DLVRj
�^�00([m01, ...,m

0
n, ...])t0

j

| ((T(�) = [T1, ..., Tn]) \ T(�0)) = ; ^

(T(�) \ T(�00)) = ;) (ti < t

0
i , tj < t

0
j)

MDM DISJUNCTION TOTAL ORDER 9DLVRi
�([m1, ...,mn])t

i

, DLVRi
�0([m01, ...,m

0
m])t0

i

,

DLVRj
�([m1, ...,mn])t

j

, DLVRj
�0([m01, ...,m

0
m])t0

j

) (ti < t

0
i , tj < t

0
j)

None of the properties includes any of the others. MDM TYPE TOTAL ORDER ensures

that there is a total (sub-)order on the messages of a same type. MDM CONJUNCTION

TOTAL ORDER ensures that (sub-)relations delivered to identical (sub-)conjunctions are de-

livered in a total order. An implementation which never enforces MDM CONJUNCTION

TOTAL ORDER, i.e., delivers no two same relations on two processes with identical (sub-

)conjunctions, could still ensure MDM TYPE TOTAL ORDER. Perhaps more obvious is that,

inversely, MDM TYPE TOTAL ORDER does not imply MDM CONJUNCTION TOTAL ORDER.

MDM DISJUNCTION TOTAL ORDER further sets our model apart from many single-message

delivery multicast settings (e.g., traditional publish/subscribe [15]), where subscriptions

are conjunctions, and disjunctions are handled independently through multiple conjunc-

tions. Our property strives for total order across relations delivered to distinct conjunctions

in a disjunction.

39

One might imagine extending MDM CONJUNCTION - and MDM DISJUNCTION TOTAL

ORDER to a similar property as below:

MDM JUNCTION TOTAL ORDER 9DLVRi
�1^�0

1
([m1, ...,mn, ...])t

i

,

DLVRi
�2^�0

2
([m01, ...,m

0
m, ...])t0

i

, DLVRj
�1
([m1, ...,mn])t

j

, DLVRj
�2
([m01, ...,m

0
m])t0

j

|

((T(�1) = [T1, ..., Tn]) \ T(�01)) = ; ^ ((T(�2) = [T 01, ..., T
0
m]) \ T(�02)) = ;

) (ti < t

0
i , tj < t

0
j)

However, due to the (left-to-right) deterministic order in which disjunctions are evaluated,

pi and pj could deliver commonly received messages in different orders. If a message m

2
1

of type T 2 is received by both processes, followed by a message m

1
1 of type T 1, where

�1 = T1 _ T2, then pj delivers m2
1 before m

1
1. However, if message(s) are received by pi

that trigger �01 before any that satisfy �02, then pi will deliver m1
1 before m

2
1. Even in a

more constraining case, when �01 = �02 as in Fig. 2.5 where �01 = �02 = � = T3, when

the message arrives that triggers � after receiving messages for �2 followed by �1, the

matching for pi is performed left to right and thus, pi delivers m

1
1 before m

2
1. Defining

the combination of total orders on conjunctions and disjunctions is different from simply

ensuring both properties. It is difficult since processes can each have conjunctions which

extend conjunctions of the other.

Figure 2.5.: Example showing difficulty/issue of defining generalized MDM JUNCTION

TOTAL ORDER: �1 = T1, �2 = T2, �01 = �
0
2 = � = T3.

40

2.6.2 Correctness of FRIP and D-FRIP with Respect to Total Order Properties

Theorem 2.6.1 FRIP ensures MDM TYPE TOTAL ORDER.

Proof MDM TYPE TOTAL ORDER is ensured in that TO-BCAST determines a total order

for the messages of any specific type, and that first-received matching and infix&prefix

disposal retain this order.

Theorem 2.6.2 FRIP ensures MDM CONJUNCTION TOTAL ORDER.

Proof MDM CONJUNCTION TOTAL ORDER is ensured because the matching deterministi-

cally proceeds along types in order of their occurrence in conjunctions and by respecting

orders for individual message types.

Theorem 2.6.3 D-FRIP ensures MDM TYPE TOTAL ORDER.

Proof The proof for MDM TYPE TOTAL ORDER follows that for FRIP as queueing and

matching (from FRIP) happen deterministically at each message reception.

Theorem 2.6.4 D-FRIP ensures MDM DISJUNCTION TOTAL ORDER.

Proof MDM DISJUNCTION TOTAL ORDER is ensured when two processes, pi and pj , define

two separate but equivalent conjunctions. D-FRIP ensures that after receiving each mes-

sage, both processes deterministically perform matching on those respective conjunctions

in the same order (left to right). Since it has been shown that FRIP ensures MDM CON-

JUNCTION TOTAL ORDER, and D-FRIP reuses MATCH (Line 11) from FRIP per conjunction,

D-FRIP, therefore, ensures MDM DISJUNCTION TOTAL ORDER.

41

2.7 FIFO and Causal Order

This section investigates the two other ordering properties which are common in the

context of Reliable/Total Order Broadcast, namely FIFO order and causal order [42].

2.7.1 FIFO Order

In Total Order Broadcast [42], (uniform) FIFO order may be defined as follows:

SDM FIFO ORDER 9TO-BCASTi(m)t
i

, TO-BCASTi(m0)t0
i

, TO-DLVRj(m)t
j

,

TO-DLVRj(m0)t0
j

| ti < t

0
i) tj < t

0
j

Similarly to MDM TYPE TOTAL ORDER, the following property’s depends on the equiv-

alence of message types among ordered messages:

MDM TYPE FIFO ORDER 9MCASTi(m)t
i

, MCASTi(m0)t0
i

, DLVRj
�([...,m, ...])t

j

,

DLVRj
�([...,m

0
, ...])t0

j

| T (m) = T (m0) ^ ti < t

0
i) tj  t

0
j

This property differs from SDM FIFO ORDER in two ways. Note, that the delivery

of m does not imply the delivery of m0 within a relation. If m were to be delivered, the

only implication is that m matches all predicates for conjunction �, but m0 may contain

attributes which do no match all predicates in �; thus, the property may only specify the

necessary conditions when both m and m

0 are delivered.

Firstly, the types T (m) and T (m0) must be identical. Secondly, because messages of a

same type may be delivered together as part of a stream, the property allows m and m

0 to

be delivered at the same time, i.e., in the same relation.

Theorem 2.7.1 If TOBcast ensures SDM FIFO ORDER, FRIP ensures MDM TYPE FIFO

ORDER.

Proof Messages are queued as they are received in the respective type queues by Line 15

of Alg. 2.1. If two messages of the same type are received, they will appear in the queue

in the order received. If m0 is delivered before m, then by infix&prefix disposal, m will

be discarded since it appears earlier in the queue for T (m) and T (m0). Thus, if both m

and m

0 are delivered, since Alg. 2.1 uses first-received matching, either m must have been

delivered before m

0 or they are delivered in the same relation.

42

The matching semantics and garbage collection can have a direct effect on meeting

MDM TYPE FIFO ORDER. The use of last-received matching semantics, for example, would

not violate this property when infix&prefix disposal is still used. However, if last-received

matching were used with, say, infix (only) disposal, then it is possible to violate MDM

TYPE FIFO ORDER. In fact, even first-received matching with infix (only) disposal can

violate MDM TYPE FIFO ORDER due to the nature of binary predicates: A message m

x
i

may currently not match with any other currently received messages. However, some later

received message of type Tx from the same sender, e.g., mx
j , might match with other current

messages and thus be delivered. With infix (only) disposal, mx
i will remain in the queue.

Later, upon the reception of some new message m

y
k from any sender, mx

i and m

y
k may now

match a binary predicate and thus be delivered as part of a relation, violating FIFO order

between m

x
i and m

x
j .

One could imagine an alternative guarantee MDM CONJUNCTION FIFO ORDER that

allows for any single source to multicast messages of any types and maintain FIFO order

between any two subsequent messages. It is easy to see that such a guarantee is not im-

plemented in FRIP. To illustrate this, suppose that some process has a conjunction � over

two types T1 and T2. Further, suppose that the queue for T1 is empty but the queue for

T2 contains many received messages that have not yet been delivered as part of a relation.

If another process were to multicast a message m

2
i of type T2 followed by a second mes-

sage m

1
j of type T1, the messages will be received in the same order they were multicast.

However, upon the reception of m

2
i , it is queued and no match is found since there are

no messages of type T1 in the queue to complete a match. Then, once m

1
j is received,

the matching is performed. Since first-received matching is used, it is possible that m1
j

is matched with an earlier received message in the queue for type T2. Further, it is pos-

sible that another message of type T1 is later received that is matched and delivered with

m

2
i . Since relations containing the messages m2

i and m

1
j were delivered in such a manner

that the two messages were delivered in a different order than they were multicast, MDM

CONJUNCTION FIFO ORDER is violated.

43

It is possible to modify FRIP to implement MDM CONJUNCTION FIFO ORDER. A possi-

ble solution would be to include tags or sequence numbers in messages and when a process

performs a match, it assures that no message is about to be delivered such that after garbage

collection, other messages with lower sequence numbers or tags are left. However, this can

drastically increase the matching complexity. Another implementation would be to discard

all messages in every queue upon a match, but this is impractical for most scenarios. While

the above example scenario would be avoided by using most recent matching, there are

other, more complex scenarios in using most recent matching that could be constructed

that still violate MDM CONJUNCTION FIFO ORDER even while using infix&prefix disposal.

2.7.2 Causal Order

Causal order can be expressed as the combination of SDM FIFO ORDER and the fol-

lowing SDM LOCAL ORDER property [42]:

SDM LOCAL ORDER 9TO-DLVRi(m)t
i

, TO-BCASTi(m0)t0
i

, TO-DLVRj(m)t
j

,

TO-DLVRj(m0)t0
j

| ti < t

0
i) tj < t

0
j

We propose the following property which, combined with MDM TYPE FIFO ORDER,

yields a type-specific form of causal order for relations:

MDM TYPE LOCAL ORDER 9DLVRi
�([...,m, ...])t

i

, MCASTi(m0)t0
i

, DLVRj
�0([...,m, ...])t

j

,

DLVRj
�0([...,m0, ...])t0

j

| T (m) = T (m0) ^ ti < t

0
i) tj  t

0
j

This property again brings to surface a number of issues that do not appear in Total Or-

der Broadcast. Here, a message must be delivered as part of a relation before the multicast

of another message such that MDM TYPE LOCAL ORDER holds. This can be one necessary

condition for a causal relationship. However, there may be other forms of causality that

might be considered that still relate to this form. For instance, consider a process that is not

delivering sets of messages, but rather is waiting for a single message before it multicasts

another. This case, although seemingly different, is still covered by the above property if

the predicate for a relation is looking for a single message of a single type that satisfies

certain conditions. Although the relation is a single message, this scenario is supported by

44

our model. This illustrates that the properties presented in this paper are more general than

those for Total Order Broadcast.

As with MDM TYPE FIFO ORDER, the delivery of m does not imply the delivery of

m

0 within a relation. The types T (m) and T (m0) must be equivalent here as well. The

reasons are slightly different than for FIFO order, however. If a message m is delivered

and causes the multicast of another message m

0, then it is clear that before m

0 may be

multicast, m must have been received and delivered by the sending process and thus m has

been received first by all processes in the presence of total order. Further, as with MDM

TYPE FIFO ORDER, since the types are equal, the messages will appear in the same queue

in the correct order. Thus, by first-received matching and infix&prefix disposal, either both

m and m

0 will be delivered as part of relations in a correct order, or one or both will be

discarded.

Lemma 18 FRIP implements MDM TYPE LOCAL ORDER.

Proof Because FRIP is implemented over Total Order Broadcast, then if a process pi has

received and delivered a message m, another process pj will have at least received and

queued m. Then, any message m

0 of the same type as m that pi may multicast will be re-

ceived after m and thus placed in the queue after m by process pj . Thus, if pj has delivered

both m and m

0 within relations, then because of first-received matching and infix&prefix

disposal, m must have been either delivered first or with m

0 in the same relation, or m

would have been discarded if m0 was delivered first.

Theorem 2.7.2 If TOBcast ensures SDM FIFO ORDER FRIP implements MDM TYPE CAUSAL

ORDER.

Proof By Theorem 2.7.1 and Lemma 18

As with MDM CONJUNCTION FIFO ORDER, a more general MDM CONJUNCTION LOCAL

ORDER property could be defined. Its implementation, albeit not impossible, would be yet

more constrained than that of MDM CONJUNCTION FIFO ORDER.

45

Note that an application that requires such FIFO or causal order properties ranging

across types could always achieve those in our framework by mapping the desired sets of

types to single union types (a.k.a. algebraic types), e.g., T1 + etc. + Tk.

46

2.8 Related Work

Many early approaches for message aggregation are based on active databases that

employ fully centralized detection of unicast messages [17]. An aggregated message is a

pattern of messages that a subscriber may be interested in. A composite subscription is a

pattern describing the interests of the subscriber for each individual subscription. In the

Ode object database [35], a composite subscription can be specified using a regular expres-

sion type language and detection is performed using finite state automata. The SAMOS

database [34] employs colored Petri Nets for message aggregation.

Message aggregation has been vigorously investigated in the context of content-based

publish/subscribe systems. Most content-based publish/subscribe systems rely on a broker

network responsible for routing messages to the subscribers. Advertisements are typically

used to form routing trees in order to avoid flooding of subscriptions throughout the broker

network. Upon receiving a message m, a broker determines the subset of parties (sub-

scribers, brokers) with matching interests, and forwards m to them. Well-known examples

of such systems include SIENA [15] and Gryphon [85]. A broker network can be used

to gather all publications, e.g., conjunctions, for the individual subscriptions and match.

A successful match results in the generation of a composite event in the broker network,

which needs to be delivered to the interested subscribers. Typically, no guarantees are pro-

vided on correlation in this case. If two subscribers correlate the same types of messages,

which are published by two producers respectively, then unless the subscribers are con-

nected to a same edge broker, they may receive the messages through different routes. This

leads to different orders among the messages and, consequently, to different matching out-

comes even if the two subscribers have the same composite events. Hermes, REBECCA,

PADRES and Gryphon are all examples of publish/subscribe systems where recent works

([60, 66, 79, 85] respectively) provide extensions for correlation. None of these provide

agreement properties with multicast, failures, and a decentralized implementation.

Recent work by Zhang et. al. [84] proposes an extension to existing broker network

infrastructure in content-based publish/subscribe systems to achieve the equivalent of total

47

order broadcast as a module for PADRES [60]. Several total order properties are discussed,

outlying the advantages of total order in current systems. The implemented total order

assures that subscribers belonging to the same destination group for any pair of messages

are guaranteed not to receive messages in conflicting orders by brokers holding conflicting

messages indefinitely until predating messages have been forwarded. While the benefits

of total order are demonstrated, stronger properties such as uniform agreement (when pro-

cesses may fail) are not achieved, and some processes may receive messages that other

processes do not in order to assure safety.

Stream processing, which denotes a form of aggregation on streams of data, has been

the object of intense research. Examples of corresponding systems are Borealis [8] and

Cayuga [24]. However, most work considers events to be unicast, or focuses on individual

processes and centralized setups in attempt to provide best-effort guarantees. This becomes

even more apparent through widely adopted load shedding techniques, which constitute a

pragmatic attempt of maintaining timely delivery while sacrificing strong delivery guar-

antees. Ordering guarantees are discussed in StreamCloud [40]. A proposed guarantee

is to ensure that operations being split into sub-operations executing in parallel behave

equivalently to non-parallel ones. Ordering is achieved based on timestamps assuming

well-synchronized clocks implying a synchronous system, and some form of placeholder

messages are also employed in the absence of application messages which allows redundant

stream operations to agree.

48

2.9 Conclusions

As we show in this paper, ordering and agreement are intertwined in aggregated de-

liveries unlike in single message deliveries. Alas, total order on individual messages is a

prerequisite for agreement on delivery of relations; this order can, however, be exploited to

order relations. While specific correlation and stream processing models have more expres-

sive subscription grammars, our feasibility results are generic, and apply to more specific

models. Indeed, a number of deterministic grammar extensions such as arithmetic oper-

ators as in � = T1.a1 < T2.a1 + 5 straightforwardly increase expressiveness yet do not

contradict our findings or properties.

In practice, using a Consensus-based TO-Broadcast to implement correlation yields

high availability yet is very expensive; inversely, a pragmatic sequencer-based approach

exposes a single point of failure and a performance bottleneck. The findings presented

in this paper have guided the design of FAIDECS (FAir Decentralized Event Correlation

System) [82]: a pragmatic scalable correlation-specific total order approach based on a

distributed hash-table that determines merger processes which handle specific conjunctions

or disjunctions among given message types. These merger processes are interconnected

in a way which is fundamentally geared at achieving total order, and are replicated to

achieve some degree of fault tolerance which is weaker but far less expensive than that

achieved by solving Total Order Broadcast in a peer-based manner. The properties provided

by FAIDECS include those presented herein for FRIP and D-FRIP, including all per-type

ordering properties. Supporting any discussed intra-type (as opposed to per-type) FIFO

and causal ordering properties are likely to lead to more substantial performance penalties.

As mentioned though, union types can be used in the model to achieve such properties at

the desired granularity.

49

3 FAIDECS: FAIR DECENTRALIZED EVENT CORRELATION 1

The abstraction of application events is useful not only for reasoning about distributed

systems [57], but also for building such systems [15, 85].

Events: Composition and correlation Event correlation [24] enables higher-level rea-

soning about interactions by supporting the assembly of composite events from elementary

events [60, 66]. Traditional uses of correlation include intrusion detection [56]; network

monitoring [54] enables the improvement of resource usage, e.g., in data centers. More

recent application scenarios for correlation include embedded and pervasive systems [38],

and sensor networks [72]. Complex event processing (CEP) is a computing paradigm based

on event correlation, with applications to business process management and algorithmic

trading.

Challenges for event correlation middleware Reasoning about event composition is,

however, far from non-trivial. Early work in active databases [17] explored syntax and

semantics of correlation, pinpointing options. Consider a sequence of events e

1
1 · e12 · e21,

where e

k
l is a the l-th received event (instance) of event type T k. This sequence can be

matched by a “subscription” correlating two event types T1 and T2 as [e11, e21] (first received

first) or as [e12, e21] (most recent first). However, corresponding systems are centralized and

consider events to be unicast.

Many theoretical and practical efforts on event correlation in publish/subscribe sys-

tems [15] consider decentralized setups and multicast but focus on efficiency or the number

of aggregations, yielding only best-effort guarantees on event delivery. Consider an online

auction where the bidding price of a product or advertisement slot is event-driven. If two
1PUBLISHED IN MIDDLEWARE 2011
AUTHORS: G. A. WILKIN, K. R. JAYARAM, P. EUGSTER AND A. KHETRAPAL

50

processes participating in the auction observe the same events in different orders (e.g., one

receives the sequence above, the second one receiving e

2
1 · e12 · e11), then the event correla-

tion middleware might be unfair to the first process if e21 has information that is critical to

placing an optimal bid. Or, consider assembly line surveillance through two monitors for

fault tolerance. If they observe events differently, they might yield contradicting reports or

alarms. During decentralized event correlation, one might not only expect that processes

with identical subscriptions deliver identical sets of events, but also that if the subscription

of a first process pi “covers” that of a second process pj , then pi would deliver anything that

pj does. In production chains, the same complex events triggering alarms can be combined

with further events for taking actions further down the chain or triggering more specific

alarms. Such subsumption is natural in publish/subscribe systems and even key to scal-

ability [15]. Of course, correlation-based systems can currently be designed individually

to achieve such properties, e.g., by using proxy processes to merge and multiplex event

streams to replicas agreement; corresponding solutions are hardly generic though, and can

introduce bottlenecks to performance and dependability.

Contributions This paper presents FAIDECS (a FAIr Decentralized Event Correlation

System – pronounced “Fedex”), a middleware system for fair decentralized correlation of

events multicast among processes. Our exact contributions are:

• We present clear and feasible properties for aggregated deliveries of sets of events

based on a concise and generic event correlation sub-grammar in FAIDECS. While

in single event (message) delivery scenarios, several families of properties have been

proposed and investigated (e.g., agreed delivery [42], probabilistic delivery [13], or-

dering properties [33]), corresponding properties for better understanding correlation-

based systems and ensuring “logical correctness and integrity” [69] are namely still

lacking. Our properties provide fairness in the face of failures of processes responsi-

ble for merging events: either all or none of the depending processes cease to receive

the desired events, while common overlays (e.g., [60]) might continue to deliver dif-

51

fering sets of events to subsets of interested processes. Our properties also include a

notion of subsumption on correlation patterns.

• We introduce novel pragmatic algorithms implementing our delivery properties. For

illustration purposes, we first describe simple algorithms based on a group broadcast

black box. Then we present decentralized solutions implemented in FAIDECS based

on a distributed hash-table (DHT), and present the use of lightweight redundancy

mechanisms used for fault tolerance.

• An implementation of our algorithms in FAIDECS is evaluated under different work-

loads. We quantify the benefits of our decentralized approach by comparing them

with sequencer-based and token-based total order broadcast protocols providing com-

parable properties.

Roadmap Section 3.1 presents related work. Section 3.2 introduces the system model

and assumptions. Section 3.3 presents our correlation model and properties. Section 3.4

proposes corresponding algorithms. In Section 3.5 we empirically evaluate FAIDECS.

Section 3.6 concludes with final remarks.

52

3.1 Related Work

Many early approaches for composite event detection are based on active data-bases

that employ centralized detection of events (e.g., [17]). A composite event is a pattern

of events that a subscriber may be interested in. A composite subscription is a pattern

describing the interests of the subscriber.

Event correlation has been vigorously investigated in the context of content-based pub-

lish/subscribe systems. Most such systems rely on a broker network for routing events to

the subscribers (e.g., SIENA [15] and Gryphon [4]). Advertisements are typically used to

form routing trees in order to avoid propagating subscriptions by flooding the broker net-

work. Upon receiving an event e, a broker determines the subset of parties (subscribers and

brokers) with matching interests, and forwards e to them. Subscription subsumption [15] is

used to summarize subscriptions and avoid redundant matching on brokers and redundant

traffic among them. If any event e that matches a first subscription also matches a second

one, then the latter subscription subsumes the former one.

A broker network can be used to gather all publications for the elementary subscriptions

and perform correlation matching. A successful match yields a composite event which

is delivered to interested subscribers, where no guarantees are typically provided on cor-

relation. If the events matching a composite subscription shared by two subscribers are

produced by several publishers, then unless the subscribers are connected to a same edge

broker, they may receive the events through different routes. This leads to different orders

among the events and consequently to different composite events for the two subscribers.

PADRES [60] performs composite event detection for each subscription at the first bro-

ker that accumulates all the individual subscriptions, providing no global properties. In

the context of Hermes [66], complex event detectors using an interval timestamp model

are proposed as a generic extension for existing middleware architectures. Hermes uses

a DHT to determine rendezvous nodes for publishers and subscribers; however, this can

create single points of failure. The framework we propose is inspired by Hermes in that

our framework uses specific merger nodes for specific combinations of types, determined

53

by a DHT. However, we replicate the mergers for availability and connect them such as to

ensure agreement, ordering and subsumption on composite events.

Stream processing is a paradigm closely related to event correlation and much investi-

gated in the last few years. Research around database-backed systems like Aurora [3] or

Borealis [76] has led the path. These systems, however, focus on correlation over streams

of events with respect to single destinations and do not consider multicasting. Straight-

forwardly merging two same streams at two different nodes leads to different outcomes.

StreamBase2 is a commercial offspring of these efforts. Cayuga [24] is a generic cor-

relation engine supporting correlation across streams and is based on a very expressive

language but is centralized. The Gryphon publish/subscribe systems has similarly added

support for streams [85]. Again, the focus is efficiency, leaving properties unclear.

2
http://www.streambase.com/.

http://www.streambase.com/

54

3.2 Preliminaries

We assume a system ⇧ of processes, ⇧={p1, ..., pu} connected pairwise by reliable

channels [11] offering primitives to SEND (non-blocking) and receive (RECEIVE) messages.

We consider a crash-stop failure model [42], i.e., a faulty process may stop prematurely and

does not recover. We assume the existence of a discrete global clock to which processes do

not have access and that an algorithm run R consists in a sequence of events on processes.

That is, one process performs an action per clock tick which is either of a (a) protocol

action (e.g., RECEIVE), (b) an internal action, or (c) a “no-op”. A process is faulty in a run

R if it fails during R, otherwise correct.

A failure pattern F is a function mapping clock times to processes, where F (t) gives all

the crashed processes at time t. Let crashed(F) be the set of all processes 2 ⇧ that have

crashed during R. Thus, for a correct process pi, pi 2 correct(F) where correct(F) =

⇧� crashed(F) [42].

For brevity and clarity, we adopt in the following a more formal notation for properties

than common. Consider, for instance, the well-known problem of Total Order Broadcast

(TOBcast) [42] defined over primitives TO-BROADCAST and TO-DELIVER, which will be

used for comparison later on. We denote TO-DELIVERi(e)t as the TO-delivery of a message

conveying an event e by process pi at time t, and similarly, TO-BROADCASTi(e)t denotes

the TO-broadcasting of e by pi at time t. We elide any of i, t, or e when not germane to

the context. We write 9a for an action a (e.g., SEND, TO-BROADCAST) as a shorthand for

9a 2 R. The specification of Uniform TOBcast thus becomes:

TOB-NO DUPLICATION: 9TO-DELIVERi(e)t) @TO-DELIVERi(e)t0 | t0 6= t

TOB-NO CREATION: 9TO-DELIVER(e)t) 9TO-BROADCAST(e)t0 | t0 < t

TOB-VALIDITY: 9TO-BROADCASTi(e) ^ pi 2 correct(F)) 9TO-DELIVERi(e)

TOB-AGREEMENT: 9TO-DELIVERi(e)) 8pj 2 correct(F)\{pi}, 9TO-DELIVERj(e)

TOB-TOTAL ORDER: 9TO-DELIVERi(e)t
i

, TO-DELIVERi(e0)t0
i

, TO-DELIVERj(e)t
j

,

TO-DELIVERj(e0)t0
j

) (ti < t

0
i , tj < t

0
j)

55

3.3 FAIDECS Model

Following, we specify composite events in FAIDECS and the properties achieved for

corresponding deliveries (DELIVER) with respect to individually generated (MULTICAST)

events. In contrast to traditional settings, DELIVER is parameterized by a “subscription” �

and delivers ordered sets of typed messages representing events.

3.3.1 Predicate Grammar

Sets of delivered events — relations — represent events aggregated according to spe-

cific subscriptions. Subscriptions are combinations of predicates on events in disjunctive

normal form based on the following grammar (extended BNF):

Disjunction ::= � | � _ Operation op ::= < | > |  | � | = | 6=

Conjunction � ::= ⇢ | ⇢ ^ � Predicate ⇢ ::= T[i].a op v | T[i].a op T[i].a

| T[i] | >

T[i].a denotes an attribute a of the i-th instance of type T (T[i]) and v is a value. As

syntactic sugar, we can allow predicates to refer to just T , which can be automatically

translated to T [1]. We may use this in examples for simplicity. A type T is characterized

by an ordered set of attributes [a1, ..., an], each of which has a type of its own – typically a

scalar type such as Integer or Float. An event e of type T is an ordered set of values

[v1, ..., vn] corresponding to the respective attributes of T . We assume that types of values

in predicates conform with the types of events (e.g., through static type-checking [27]).

T (e) returns the type of a given event e. It is important to note that we do not introduce a

set of uniquely identified types {T 1, ..., Tw} as we do for processes. This keeps notation

more brief in that we can use [T 1, ..., T k] to refer to an arbitrary ordered set of k types, as

opposed to something of the form [Tj1 , ..., Tj
k

].

To later simplify properties, we introduce the empty predicate >, which trivially yields

true. A predicate that compares a single event attribute to a value or two event attributes

on the same event, i.e., on the same instance of a same type (e.g., Tk[i].a op Tk[i].a0), is a

unary predicate. When two distinct events (two distinct types or different instances of the

56

same type) are involved, we speak of binary predicates (Tk[i].a op Tl[j].a0, k 6= l _ i 6= j).

We also allow wildcard predicates of the form T[i] to be specified; such predicates simply

specify a desired type T[i] of events of interest. T[i] implicitly also declares T[k] 8k 2

[1..i� 1] if not already explicitly declared as part of other predicates in the subscription.

We assume, for presentation brevity, a single subscription per process. The disjunction

representing process pi’s subscription is represented as (pi). We also rule out disjunctions

with several identical conjunctions. In practice, we can simply remove all but one copy. By

abuse of notation but unambiguously, we sometimes handle disjunctions (or conjunctions)

as sets of conjunctions (or predicates). We write, for instance, ⇢l 2 � , � = ⇢1 ^ ... ^ ⇢k

with l 2 [1..k].

For the following, consider an example subscription S for an increase in three succes-

sive stock quotes after a quarterly earnings report:
 S = StockQuote[0].time > EarningsReport[0].time ^

StockQuote[1].value > StockQuote[0].value ^

StockQuote[2].value > StockQuote[1].value
We would probably want to introduce arithmetic operators on values [53] to express, e.g.,

that the local publication time of the first stock quote is within some interval of that of

the earnings report. Our grammar can be easily extended by such deterministic constructs

but is intentionally kept simple for presentation and to illustrate the independence of our

algorithms from specific grammars.

3.3.2 Predicate Types and Evaluation

We assume that a deterministic order � exists within subscriptions based on the names

of event types, attributes, etc., which can be used for re-ordering predicates within and

across conjunctions. This ordering can be lexical or based on priorities on event types

and is necessary for even simplest forms of determinism and agreement. We consider

subscriptions to be already ordered accordingly.

The number of events involved in a subscription is given by the number of its types and

corresponding instances. More precisely, the types involved in a subscription are repre-

57

sented as sequences as they are ordered, and the same type can be admitted multiple times.

Such sequences can be viewed as the signatures of predicates, defined as follows:

T(� _) = T(�)] T() T(T[i].a op v) = T(T[i])

T(⇢ ^ �) = T(⇢)] T(�) T(>) = ;

T(T1[i].a1 op T2[j].a2) = T(T1[i])] T(T2[j]) T(T[i]) = [T, ..., T| {z }
i⇥

]

] stands for in-order union of sequences defined below:

;] [T, ...] = [T, ...] [T, ...]] ; = [T, ...]

[T1, ..., T1| {z }
i⇥

, T

0
1, ...]

][T2, ..., T2| {z }
j⇥

, T

0
2, ...]

=

8
>>>>>>>>>><

>>>>>>>>>>:

[T1, ..., T1| {z }
i⇥

]� ([T 01, ...]] [T2, ..., T2| {z }
j⇥

, T

0
2, ...]) T1 � T2

[T2, ..., T2| {z }
j⇥

]� ([T 02, ...]] [T1, ..., T1| {z }
i⇥

, T

0
1, ...]) T2 � T1

[T1, ..., T1| {z }
max(i,j)⇥

]� ([T 01, ...]] [T 02, ...]) T1 = T2

Above, � represents simple concatenation. In the previous example, the types involved are

thus [EarningsReport, StockQuote, StockQuote, StockQuote].

Any subscription thus involves a sequence of event types T()=[T1, ..., Tn], where

we can have for i, j 2 [1..n], i < j such that 8k 2 [i..j]Tk = Ti = Tj . That is, we can have

subsequences of identical types. Such a subsequence represents a stream of events of the

respective type of length j � i+ 1 (Tk[1], ..., Tk[j � i+ 1]).

A subscription is correspondingly evaluated for an ordered set of events [e1, ..., en],

where ei is of type T i. The evaluation of a conjunction � on a relation is written as

�[e1, ..., en]. For evaluation of an attribute a on an event ei, we write ei.a. Evaluation

semantics for predicates are defined as follows:

58

(� _)[e1, ..., en] = �[e1, ..., en] _ [e1, ..., en] (T)[e1, ..., en] = true

(⇢ ^ �)[e1, ..., en] = ⇢[e1, ..., en] ^ �[e1, ..., en] (>)[e1, ..., en] = true

(T[i].a op v)

[e1, ..., en] =

8
>>>>><

>>>>>:

ek+i�1.a op v T (ek) = T ^ (T (ek�1) 6= T

_ (k � 1) = 0)

false otherwise

(T1[i].a1 op T2[j].a2)

[e1, ..., en] =

8
>>>>>>>><

>>>>>>>>:

ek+i�1.a1 op el+j�1.a2 T (ek) = T1 ^ (T (ek�1) 6= T1

_ (k � 1) = 0) ^ T (el) = T2

^ (T (el�1) 6= T2 _ (l � 1) = 0)

false otherwise

For brevity we may write simply �[...] for �[...] = true.

A process pi delivers events in response to its subscription (pi) through DELIVER.

We consider this primitive to be generically typed, i.e., we write DELIVER�([e1, ..., en])

to deliver a relation [e1, ..., en], where ej is of type T j such that T(�)=[T1, ..., Tn]. DE-

LIVERi
�([e1, ..., en])t denotes a delivery on process pi in response to � at time t, and

MULTICASTi(e)t defines the multicast of an event e by pi at time t. Again i, t, etc. may be

omitted when not germane to the context.

3.3.3 Properties

We now present properties for composite events in FAIDECS defined over primitives

MULTICAST and DELIVER. From here on, deliver refers to DELIVER (vs. TO-deliver for

TO-DELIVER), and multicast refers to MULTICAST (vs. TO-broadcast).

Basic safety properties

The basic safety properties for FAIDECS are MDM-NO DUPLICATION, MDM-NO

CREATION and ADMISSION as shown below:

59

MDM-NO DUPLICATION: 9DELIVERi
�([..., e, ...])t) @DELIVERi

�([..., e, ...])t0 | t0 6= t

MDM-NO CREATION: 9DELIVER�([..., e, ...])t) 9MULTICAST(e)t0 | t0 < t

ADMISSION: 9DELIVERi
�([e1, ..., en]) | T(�) = [T1, ..., Tn]) � 2 (pi) ^�[e1, ..., en] ^ 8k 2

[1..n] : T (ek) = Tk

The MDM-NO DUPLICATION property implies that a same event is delivered at most

once for a given conjunction, which may be opposed to certain systems that allow a same

event to be correlated multiple times. Our property could easily be substituted to allow a

delivery for every instance of a type in a given conjunction. We omit this for simplicity of

the presented properties and algorithms. MDM-NO CREATION is similar to TO-broadcast

specifications [42] in that an event may only be delivered if multicast. ADMISSION ensures

type safety and that all events in a relation match the subscription.

Liveness

ADMISSION can trivially hold while not delivering anything. We have to be care-

ful about providing strong delivery properties on individually multicast events though, as

events may depend on others to match a given conjunction. Nonetheless, we want to rule

out bogus implementations which simply discard all events. We thus propose the following

complementary liveness properties:

CONJUNCTION VALIDITY: 9MULTICAST(ekl), k 2 [1..n], l 2 [1..1] ^ pi 2 correct(F) ^ 9� 2

 (pi) |�[e1l , ..., e
n
l]) 9DELIVERi

�([...])tj | j 2 [1..1]

EVENT VALIDITY: 9MULTICASTi(ex), MULTICASTk,l(ekl), k 2 [1..n]\x, l 2 [1..1]

{pi, pj , pk,l} ✓ correct(F) |� 2 (pj) ^ T(�) = [T1, ..., Tn] ^ 8z 2 [w..y]Tz = T (ex) ^

@(T (ex)[x� w + 1].a1 op T[r].a2) 2 � | (T 6= T (ex) _ r 6= x� w + 1) ^

�[e1l , ..., e
x�1
l , e

x
, e

x+1
l , ..., e

n
l]) 9DELIVERj

�([..., e
x
, ...])

These two properties handle the two possible cases that can arise. The first property

deals with dependencies across events and can be paraphrased as follows: “If for a correct

process pi, there is an infinite number of relations of matching events that are successfully

60

multicast, then pi will deliver infinitely many such relations.” This property is reminiscent

of the FINITE LOSSES property of fair-lossy channels [11]. It allows matching algorithms

to discard some events for practical purposes such as agreement and ordering, yet ensures

that when matching events are continuously multicast, a corresponding process will con-

tinuously deliver. From the example presented in Section 3.3.1, as long as events of both

types are inifinitely published such that infinitely often, three successive, increasing stock

quotes are multicast after an earnings report, there will be an infinite number of delivered

relations.

EVENT VALIDITY provides a property analogous to validity for single-message deliv-

eries (e.g., TOBcast): If an event is multicast by a correct process pi, and its delivery in

response to a conjunction on some correct process pj is not conditioned by binary predi-

cates with other event types, then the event must be delivered by pj if matching events of

all other types are continuously multicast. This latter condition is necessary because the

delivery of the event, even in the absence of binary predicates, requires the existence of

other events (by nature of correlation). The condition also ensures that any unary predi-

cates on the respective event type are satisfied. Note that in the case of multiple instances

of that type, for each of which there are only unary predicates that match, the property does

not force an event to be delivered more than once as the position of the event is not fixed

in the implied delivery. The example in Section 3.3.1 does not present a unary predicate,

and thus would not be affected by this property. If the subscription S were extended

to trigger only if the value of the U.S. dollar is below some value v as in 0S = S ^

USDollar.value < v, then any event matching this predicate will be delivered with the

entire relation given by S .

Note also that none of these properties is impacted by the presence of multiple instances

of a same type in a conjunction. An infinite flow of events of some type implies multiple

(a finite number) of infinite flows of that type.

61

Agreement

The properties so far ensure that as long as matching events are being multicast, pro-

cesses will eventually deliver relations. We are, however, interested in stronger properties

for these delivered relations, which ensure fairness for relations delivered across processes.

We define COVERING AGREEMENT:

COVERING AGREEMENT: 9DELIVERi
�^�0([e1, ..., en,...]) | ((T(�) = [T1, ..., Tn]) \ T(�0)) =

;) 8pj 2 correct(F)\{pi} | � 2 (pj) : 9DELIVERj
�([e1, ..., en])

Subsumption only allows “extending conjunctions to the right” as determinism requires

some given order for matching. Intuitively, subsumption in the presence of binary predi-

cates is limited since, when comparing two subscriptions with same types, an event of a

first type might match both subscriptions without implying that the same holds for a second

event.

Note that COVERING AGREEMENT is not defined in a symmetric way (with � ^ �00 2

 (pj)), as the presence of a matching set of events for a conjunction �0 does not imply a

timely or even eventual occurrence of a matching set for another sub-relation �00 conjoined

by pj with �.

Thus, the example subscriptions S , as defined in Section 3.3.1, and 0S , defined

in 3.3.3, would exhibit the necessary conditions for COVERING AGREEMENT. That is,

the common predicates over the EarningsReport and StockQuote types would yield

the same (sub)-relations for S and 0S , where 0S would deliver relations containing the

above with an additional event of type USDollar.

3.3.4 Total Order

Intuitively, and as we will illustrate in the following sections, a total order on individual

events can be used to achieve agreement on relations. In fact, it is necessary to do so (see

Chapter 2 for a formal proof). On the upside, this can be exploited to provide corresponding

relation-level properties. We define three types of total order properties below:

62

EVENT TOTAL ORDER: 9DELIVERi
�([..., e, ...])ti , DELIVERi

�([..., e
0
, ...])t0

i

,

DELIVERj
�0([..., e, ...])t

j

, DELIVERj
�0([..., e0, ...])t0

j

|T(e) = T(e0)) (ti < t

0
i , tj < t

0
j)

CONJUNCTION TOTAL ORDER: 9DELIVERi
�^�0([e1, ..., en, ...])t

i

,

DELIVERi
�^�0([e01, ..., e

0
n, ...])t0

i

, DELIVERj
�^�00([e1, ..., en, ...])t

j

,

DELIVERj
�^�00([e01, ..., e

0
n, ...])t0

j

| ((T(�) = [T1, ..., Tn]) \ T(�0)) = ; ^ (T(�) \ T(�00)) =

;) (ti < t

0
i , tj < t

0
j)

DISJUNCTION TOTAL ORDER: 9DELIVERi
�([e1, ..., en])ti , DELIVERi

�0([e01, ..., e
0
m])t0

i

,

DELIVERj
�([e1, ..., en])tj , DELIVERj

�0([e01, ..., e
0
m])t0

j

) (ti < t

0
i , tj < t

0
j)

None of the properties includes any of the others. EVENT TOTAL ORDER ensures that

there is a total (sub-)order on the events of a same type. CONJUNCTION TOTAL ORDER

ensures that (sub-)relations delivered to identical (sub-)conjunctions are delivered in a total

order. An implementation which never enforces COVERING CONJUNCTION AGREEMENT,

i.e., delivers no two same relations on two processes with identical (sub-)conjunctions,

could still ensure EVENT TOTAL ORDER. Perhaps more obvious is that, inversely, EVENT

TOTAL ORDER does not imply CONJUNCTION TOTAL ORDER. DISJUNCTION TOTAL

ORDER further sets our model apart from many single-event delivery multicast settings

(e.g., traditional publish/subscribe), where subscriptions are conjunctions, and disjunctions

are viewed as being expressed independently through multiple conjunctions. Our property

strives for total order across relations delivered to distinct conjunctions in a same disjunc-

tion.

63

3.4 Algorithms

We now present ways to implement the properties proposed in the previous section.

For illustration purposes, we first outline an approach relying straightforwardly on a total

order across multicast events of all types. Then, we present novel decentralized algorithms

achieving the same properties, leveraging our notion of subscription subsumption.

3.4.1 Total Order Broadcast Black Box

A straightforward solution for deterministic event correlation across all processes is

to rely on a Total Order Broadcast “black box,” with primitives TO-BROADCAST and TO-

DELIVER for individual events, ensuring that all correct processes eventually TO-deliver all

TO-broadcast events in the same order. To multicast an event e of any type, a process sim-

ply performs TO-BROADCAST(e); a TO-DELIVER(e) is handled in a deterministic manner

described shortly. Many implementations exist, tolerating different failure patterns [23].

Conjunctions

For simplicity, we first focus on single conjunctions for the algorithm in Figure 3.1

before expounding on generic disjunctions. That is, subscription i of process pi consists

in a single conjunction �i. DISJUNCTION TOTAL ORDER, in this case, becomes subsumed

by CONJUNCTION TOTAL ORDER.

The algorithm in Figure 3.1 uses first received matching semantics and prefix+infix dis-

posal. In short, the former means that events are matched on a process in the order received

by that process. The latter implies the following: Upon a successful match [e1, . . . , en], for

each event ei, all events of the same type received prior to ei are discarded via the garbage

collection mechanism DEQUEUE. These semantics are further elaborated on below.

Each process pi maintains one queue Q per event type in its conjunction �= (pi).

For example, for a conjunction � = ⇢1 ^ ⇢2 where ⇢1 = T1.a1 < T2.a2 and ⇢2 =

T1.a1 < 20, the subscriber maintains one queue for events of type T 1 and one for events

64

Executed by every process p
i

1: init
2: �1 _ . . . _ �

o

3: �
l

 ⇢1 ^ . . . ^ ⇢
m

4: Q
l

[T] ;
5: To MULTICAST(e):
6: TO-BROADCAST(e)

7: function MATCH ([e01, ..., e
0
n

], �, Q)
8: T T

n+1 | T(�) = [T1, ..., Tn+1, ...]
9: l max(j |Q[T] = e1 � ...� e

j

� ...� e
h

) |
9k 2 [1..n] : e

j

= e0
k

10: for all k = (l + 1)..h do
11: if |T(�)| = n+ 1 then
12: if �[e01, ..., e

0
n

, e
k

] then
13: return [e01, ..., e

0
n

, e
k

]
14: else
15: E MATCH([e01, ..., e

0
n

, e
k

],�, Q)
16: if E 6= ; then
17: return E
18: return ;

19: upon TO-DELIVER(e) do
20: for all �

l

2 |T (e) 2 T(�
l

) in order do
21: if ENQUEUE(e,�

l

, Q
l

) then
22: [e1, ..., e

k

] MATCH(;,�
l

, Q
l

)
23: if k 6= 0 then
24: DEQUEUE([e1, ..., e

k

], Q
l

)
25: DELIVER�l

([e1, ..., e
k

])

26: function ENQUEUE (e, �, Q)
27: win max(j | 9...T (e)[j].a... 2 �)
28: if 8j = 1..win ((9⇢ = (T (e)[j].a op v) 2

� | ¬⇢[e]) _ (9(⇢ = T (e)[j].a op
T (e)[j].a0) 2 � | ¬⇢[e])) then

29: return false
30: else
31: Q[T (e)] Q[T (e)]� e
32: return true

33: procedure DEQUEUE([e1, ..., em], Q)
34: for all Q[T] = ...� e

k

� e � ..., k 2 [1..m] do
35: Q[T] e � ...

Figure 3.1.: Conjunctions/disjunctions with Total Order Broadcast.

of type T 2. When TO-delivering an event, pi will loop once by line 20 and first checks

whether the type of the event is in pi’s subscription. If so, pi attempts to ENQUEUE the

event. Q[T (e)] � e denotes the appending of event e to the queue of type T (e). The

ENQUEUE primitive returns true if the event has been ENQUEUEd, which means that it

satisfies all unary predicates on the respective types in the conjunction. Then pi proceeds

to MATCHing. Any single received event may complete up to one relation. If a match

[e1, . . . , en] is identified, the corresponding events are discarded (DEQUEUE) and for each

event ei, all preceding events of the same type are discarded from the respective queue for

that type. MATCH iterates through the queues deterministically. The semantics attempt to

find the first instance of the first type in � for which there are events of the remaining types

with which � is satisfied. Among all such possibilities, the algorithm recursively seeks

for a match with the first instance of the second type in �, etc. until a match is found or

all possibilities are exhausted. For multiple instances of a same type, a first instance is

recursively matched with the first follow-up instance in the same queue until the needed

number of instances is found for that type or the queue is exhausted.

65

Assuming that the underlying TOBcast primitive ensures TOB-NO CREATION and

TOB-NO DUPLICATION (see Section 3.2), it is easy to see how the algorithm of Fig-

ure 3.1 ensures the corresponding MDM-NO CREATION and MDM-NO DUPLICATION

properties defined in Section 4.2.5. An event e, matching all unary predicates of a conjunc-

tion �, is successfully added to the corresponding queue Q[T (e)] in ENQUEUE (line 31,

Figure 3.1). The only way in which e can be removed (and delivered) is together with a

matching set of other events fulfilling � (line 23, Figure 3.1), thus ensuring ADMISSION.

If matching sets of such events are continuously TO-broadcast, then a match will eventu-

ally be determined at line 13 thus ensuring EVENT VALIDITY. CONJUNCTION VALIDITY

holds by a similar line of reasoning. The first matching, together with prefix+infix disposal,

and the independent handling of events of distinct types ensures EVENT TOTAL ORDER.

If two processes pi and pj define conjunctions � ^ �0 and � respectively, as long as �

and �0 are type-disjoint, then events that match with � are independent of any events that

match with �0. Thus, if there is a matching relation for pi, there is a subset of the relation

for which � is true. Since garbage collection is deterministic and is triggered every time

an event of a type in T(�) is TO-delivered and in the same order on pi and pj with respect

to those deliveries, pi and pj will handle respective events identically, ensuring COVERING

AGREEMENT. Similarly, CONJUNCTION TOTAL ORDER holds as all processes TO-deliver

all relevant events. When pi identifies a match for � ^ �0, with � and �0 type-disjoint, pj

will have TO-delivered the respective subset of events in � already in the same sub-order

and thus DELIVERs the respective sub-relations in the same order with any events identified

for a �00 type-disjoint with �.

Disjunctions

When the subscription is a disjunction of several conjunctions, a process maintains one

event queue per event type per conjunction. For example, for a disjunction = �1 _ �2

where T(�1)=T(�2)=[T1, T2], a process maintains two queues for type T 1 and then two

queues for type T 2, one each for �1 (Q1[T1] and Q1[T2]) and for �2 (Q2[T1] and Q2[T2]).

66

Figure 3.1 supports multiple conjunctions in a single disjunction. The primary distinc-

tion is in the response to TO-deliveries. The primitive dispatches events to conjunctions in

order of subscriptions. In contrast to subscriptions of one conjunction, an event can lead to

multiple MATCHes and DELIVERies.

Because the MATCHing is performed deterministically as explained previously for a

given conjunction, and all processes ENQUEUE the same sets of events in the same order,

COVERING AGREEMENT across any two conjunctions is met for the same reasons as for

single conjunctions. This property would also be met by any unordered dispatching for

multiple conjunctions. The other properties established for conjunctions remain valid due

to the duplication of events appearing in distinct conjunctions of a same subscription.

DISJUNCTION TOTAL ORDER is met as any pi and pj defining two identical separate

conjunctions TO-deliver the respective events (possibly interleaved by those for other con-

junctions in (pi) and (pj) respectively) in the same order. Thus, the correlation for

respective relations occurs in the same order.

A simple optimization of the algorithm for subscriptions containing several conjunc-

tions �1,...,�m with a common event type T , omitted for brevity, consists in sharing the

queue for T across conjunctions. An event in a queue is then tagged by the index k of

a conjunction �k to indicate that the event has previously been used in a match and DE-

LIVERed for �k. Earlier events of that type should then also be tagged with k. Events with

tags {1, ..., m} may then be discarded. Also, the portrayed matching algorithm performs

an exhaustive search and is thus not efficient; however, it suffices to illustrate the rele-

vant properties and can be represented concisely. More elaborate and efficient matching

algorithms exist, which offer the same semantics. A common approach consists in stor-

ing partial matches in specialized data-structures to avoid matching a given event multiple

times with same events (cf. [27]). In our implementation of FAIDECS and all evaluated

algorithms, we make use of the Rete [30] matching algorithm.

67

T1 Λ T2

T1 Λ T2 Λ T3

T1 Λ T2 Λ T3 Λ ... Λ Tk

T1 T2 T3 Tk

T1 Λ T2 Λ T4

T4

Figure 3.2.: T 1^...^T j denotes the
conjunction merger for the respective
types t[T1, ...Tj] (single instance per
type).

Figure 3.3.: Small-scale FAIDECS merger
replication. The dotted ovals are “logical”
mergers; circles are processes. L denotes the
leader.

3.4.2 FAIDECS Decentralized Ordered Merging

One of the simplest and most popular approaches in practice for Total Order Broadcast

consists in a sequencer, which orders all events. As long as the sequencer remains available

(e.g., through replication), the properties presented earlier hold under respective assump-

tions on failure patterns. A Consensus-based textbook Total Order Broadcast [42] yields

the same properties with much better fault tolerance (typically a minority of all processes

may fail), yet with a higher overhead. We now present a decentralized solution imple-

menting the same properties, yet with much better scalability characteristics than both and

inherently better fault-tolerance than a sequencer-based approach. The solution assumes a

distributed hashtable (DHT) or similar mechanism for uniquely identifying a process for a

given “role.” Lightweight replication mechanisms used for fault-tolerance of such roles are

discussed separately thereafter.

68

Executed by every process p
i

=PROCESS(t[T1, ..., Tk

])
1: init
2: left PROCESS([tT1, ..., T

k�1])
3: right PROCESS([T

k

])
4: subs[p

j

]
5: kids[p

j

]
6: INITPARENTS()

7: procedure INITPARENTS()
8: 0

W
 2kids[subs

 \
{⇢ 2 |T(⇢) 62 {[T1], ..., [T

k�1]}}
9: SEND(CON, 0) to left
10: 00

W
 2kids[subs

 \
{⇢ 2 |T(⇢) 6= [T

k

]}
11: SEND(CON, 00) to right

12: upon RECEIVE(CON,) from p
j

do
13: kids[p

j

]
14: INITPARENTS()

15: upon RECEIVE(SUB,�) from p
j

do
16: subs[p

j

] �\{⇢ 2 � | |T(⇢)| > 1}
17: INITPARENTS()

18: upon RECEIVE(EV, e) do
19: for all = kids[p

j

] do
20: if 9l,� 2 | 8⇢ = T (e)[l]... 2 � : ⇢[e] then
21: SEND(EV, e) to p

j

22: for all � = subs[p
j

] do
23: if 9l | 8⇢ = T (e)[l]... 2 � : ⇢[e] then
24: SEND(EV, e) to p

j

Figure 3.4.: Ordered merging for conjunctions: mergers.

Conjunctions

We first describe an algorithm focusing on single conjunctions, providing the same

properties as that of Figure 3.1. All processes with conjunctions on a sequence of event

types [T1, ..., Tk] send their subscriptions to a same process, which is identified as pj =

PROCESS(t[T1, ..., Tk]), responsible for handling all conjunctions on the involved sequence

of types without duplicates3:

t[T1, ..., T1, T2, ...] = [T1]� t[T2, ...]

The function PROCESS relies on a DHT (e.g., a deterministic lookup facility) to de-

terministically identify such responsible processes, called mergers. Lodged at the root

of the thereby created overlay network (see Figure 3.2) are mergers responsible for in-

dividual event types T 1, T 2, etc. To ensure the properties with respect to extensions

of conjunctions to the right, events undergo an ordered merge by type where a merger

pj=PROCESS(t[T1, ..., Tk]) gets events of types T 1, ..., T k from two processes: those iden-

tified as PROCESS(t[T1, ..., Tk�1]) and PROCESS([Tk]). We term processes in the role of

subscribers/publishers as clients.
3We could use different mergers but deduplication simplifies the algorithm.

69

Executed by every p

i

. Reuses ENQUEUE, MATCH, DEQUEUE of Figure 3.1
1: init
2: �
3: � ⇢1 ^ . . . ^ ⇢

m

4: Q[T] ;
5: SEND(SUB,�) to PROCESS(tT(�))
6: To MULTICAST(e):
7: SEND(EV, e) to PROCESS([T (e)])

8: upon RECEIVE(EV, e) do
9: if ENQUEUE(e,�, Q) then
10: [e1, ..., e

l

] MATCH(;,�, Q)
11: if l > 0 then
12: DEQUEUE([e1, ..., e

l

], Q)
13: DELIVER� ([e1, ..., el])

Figure 3.5.: Ordered merging for conjunctions: clients.

Figure 3.4 presents the algorithm for merging event types and handling subscriptions

corresponding to the merged types. Figure 4.1 presents the algorithm for client processes.

Unary predicates are propagated from subscribers to mergers (line 16, Figure 3.4), and from

mergers to their ancestor mergers in the form of disjunctions (lines 8-11) since a potential

match (i.e., compliant with any unary predicates) for any merger or subscriber means a

potential match for a parent merger. Forwarding of events received by mergers from their

respective parent mergers (left) or processes for merged event types (right) happens with-

out interruptions by other events and can be achieved by simple local synchronization.

For simplicity, the algorithm in Figure 4.1 handles event queues at clients. The use of

shared queues on mergers as described at the end of Section 3.4.1, could lead to savings in

global memory overhead by avoiding redundancies. In practice, we have observed that this,

however, overburdens mergers, just like a propagation of complete conjunctions instead of

only unary predicates to mergers.

Assuming that all subscribers are connected to mergers which are connected to each

other before events are multicast, the properties described in Section 3.3.3 are also met by

the algorithm in Figures 3.4 and 4.1 thanks to the type-ordered merging of events. COV-

ERING AGREEMENT and CONJUNCTION TOTAL ORDER are ensured as processes with

a common “prefix” in their conjunctions, which is type-disjoint with any conjoined predi-

cates, will receive the same events for the prefix and in the same order from the correspond-

ing conjunction merger process.

70

Executed by every process p
i

=PROCESS(t[T1, ..., Tk

]). Reuses lines 1-11 of Figure 3.4

18: uponRECEIVE(EV, e) {Rplcs lines 18-24}
19: for all = kids[p

j

] do
20: if 9l,� 2 | 8⇢ = T (e)[l]... 2 � : ⇢[e] then
21: SEND(EV, e) to p

j

{end for}

22: time current time {cont frm Line 21}
23: for all � = subs[p

j

] do
24: if 9l | 8⇢ = T (e)[l]... 2 � : ⇢[e] then
25: SEND(EV, e, time) to p

j

Figure 3.6.: Disjunction-enabled ordered merging for conjunctions: mergers.

Executed by every p

i

. Reuses ENQUEUE, MATCH, DEQUEUE of Figure 3.1

1: init
2: �1 _ . . . _ �

o

3: �
l

 ⇢1 ^ . . . ^ ⇢
m

4: Q
l

[T] ;
5: R ;
6: S[T] 0
7: for all �

l

2 do
8: SEND(SUB,�

l

) to PROCESS(tT(�
l

))

9: To MULTICAST(e):
10: SEND(EV, e) to PROCESS([T (e)])

11: upon RECEIVE(EV, e, ts) do
12: if ts > S[T (e)] then
13: S[T (e)] ts
14: R0 {he0, t0i 2 R | t0 < ts}
15: R00 {he0, t0i 2 R | t0 > ts}
16: R R0 [{he, tsi} [R00

17: for all he0, t0i 2 R ordered on t0 |
t0 < MIN

T

(S[T]) do
18: for all �

l

in order do
19: if ENQUEUE(e0,�

l

, Q
l

) then
20: R R\{he0, t0i}
21: [e1, ..., e

k

] MATCH(;,�
l

, Q
l

)
22: if k > 0 then
23: DEQUEUE([e1, ..., e

k

], Q
l

)
24: DELIVER�l

([e1, ..., e
k

])

Figure 3.7.: Ordered merging for conjunctions and disjunctions: clients.

Disjunctions

For disjunctions, we essentially need to solve Total Order Multi-cast [39] on the event

sequences output by conjunction mergers. Using time-stamps and extending the conjunc-

tion algorithm of Figures 3.4 and 4.1, order of events is established for clients as needed

for disjunctions. More precisely, conjunction mergers following the algorithm of Figure 3.6

timestamps all received messages before passing them to clients which do the actual cor-

relation (Figure 3.7). There is no need for specialized disjunction mergers, which are thus

omitted here for simplicity. (If using dedicated disjunction mergers, these can be arbitrarily

connected among each other to cover the respective conjunctions.)

If processes send timestamps with events, to achieve order of DELIVERy for relations,

an event is only ENQUEUEd (and correspondingly MATCHed) when a receiving process has

received events for all other types in its subscription, and the timestamp of that event is less

71

than all the other respective timestamps of other types. As long as all processes which are

MULTICASTing events of the respective types continue to do so, for any receiving process,

an event will eventually be ENQUEUEd after other events with lower timestamps of other

types. This guarantees that all processes receiving the same events over a set of types will

ENQUEUE and thus perform a MATCH on them one by one in the same order.

If there are any processes which multicast events at a slower rate than others, then the

approach may not be as efficient with the requirement that each event of a type (before

being ENQUEUEd) must wait for events of every other type with higher timestamps to be

received. To solve this problem for the algorithm in Figure 3.7, if an event has not been

received in some time interval by a conjunction merging process, then an “empty” event e?

may be sent to all processes in subs[pj], indicating that pending events of other types may

be respectively ENQUEUEd. Depending on the targeted scenarios (e.g., publication rate,

topology) other information such as rates may be used (additionally).

MDM-NO CREATION and MDM-NO DUPLICATION are met as ENQUEUE and MATCH

are only performed on received events, and for a given type, only events with a higher times-

tamp than the last event of that type are further added to the ordered set R and queue Ql.

Since an event is never ENQUEUEd unless its type exists in the process’s subscription, and

MATCH is performed over every received event, ADMISSION holds. As in Section 3.4.2,

EVENT VALIDITY and CONJUNCTION VALIDITY are retained here despite the filtering

and discarding of certain events. It is easy to see that the timestamps generated by merg-

ers follow the observed order of event reception, thus respecting CONJUNCTION TOTAL

ORDER. Given that events are compared based on timestamps and merged in order of

conjunctions, DISJUNCTION TOTAL ORDER is also ensured.

Joining

The algorithms presented so far all rely on a consistent set of event queues across all

processes with the same composite subscription if any subscription is issued prior to pub-

lications. However, this consistency is violated when two such related processes subscribe

72

to an event stream at different times with respect to the multicasting of events. In order

to maintain consistency, we thus employ a simple synchronization algorithm between (a)

a joining subscriber process, (b) the corresponding conjunction merger(s), and (c) one of

the existing subscriber processes with identical conjunctions, if any. This ensures that a

joining process starts with a valid state of the respective queues copied from any existing

subscriber and does not miss any subsequent events from the merger received also by that

existing subscriber after copying the state of its queues.

Fault tolerance

For presentation simplicity, the algorithms described thus far stipulated single processes

returned by function PROCESS() as responsible for given conjunctions, which obviously

provides little fault tolerance. In FAIDECS, PROCESS() returns a small fixed number of

processes; i.e., the underlying DHT determines a set of replicas for such merger roles.

A membership layer monitors the merger processes and ensures that their membership is

consistent. Figure 3.3 provides an overview of the replication. A role, or “logical” merger

process, is represented by 3 replicas which are contoured by a dotted line. L represents a

leader process which determines the order between the merged types and communicates

that order (only) to its peers. These receive the actual events independently as depicted in

the figure. When a physical merger process (solid circles) pi fails, its descendant(s) connect

to one of pi’s peers. To ensure that no events are missed in the meantime, all replicas

regularly acknowledge received and forwarded events to each other; events prior to such

acknowledgements are buffered. If a process lags or fails, its peers will attempt to replace

it. Using majority-based voting, a minority of (suspected) process failures can typically be

tolerated at a time. In addition to benefitting fault tolerance, this small-scale replication also

benefits load distribution, in that down-stream processes, including subscribers, distribute

uniformly over the replicas.

73

3.5 Evaluation

To demonstrate the scalability of our decentralized algorithms and explore overall per-

formance benefits and tradeoffs, we compare a Java implementation of FAIDECS to the

algorithm of Figure 3.1 with 3 different JGroups-based4 implementations for the Total Or-

der Broadcast black box: (1) a sequencer algorithm, (2) a replicated sequencer (3 replicas)

and (3) a token-based algorithm. Figures 3.10, 3.11 and 3.13 summarize our findings.

3.5.1 Metrics and Experimental Setup

We used two metrics – Throughput: the average number of events delivered per sec-

ond by a subscriber, and Latency: the average delay between the multicasting time of an

event and its delivery to a subscriber. The number of subscribers was increased from 10

to 600, and each subscriber had a randomly generated set of subscriptions. Each event

consisted of 3 integer attributes with values chosen uniformly at random within [0..1000].

All processes were run on 65 nodes in a LAN. Each node is equipped with an Intel Xeon

3.2GHz dual-core processor and 2GB RAM, and runs Linux. A maximum of 15 subscriber

processes were run on a single node. The maximum multicast rates varied by setup (e.g.,

different components became the bottleneck, selectivity of subscriptions varied). We tested

scalability of FAIDECS first in terms of conjunctions and then disjunctions.

For conjunctions, we used 3 different distributions of subscriptions, which led to differ-

ent workloads for actual routing and filtering of events. In scenarios A and B, we followed

the setup of Figure 3.8, increasing the maximum number of conjoined types (and thus the

depth) k from 2 to 4. For scenario A, all filtering occurred at end nodes rather than in

mergers through the selectivity of binary predicates, which differed across conjunctions

to achieve the same expected delivery rates at all subscribers in a respective level. This

scenario demonstrated the limits of the overlay. In scenario B, events were filtered at the

mergers through unary predicates propagated upwards from subscriptions, allowing higher

aggregate multicast rates than in scenario A. Scenario C invariably had 4 event types, and
4
http://www.jgroups.org

http://www.jgroups.org

74

subscriptions were over all 6 possible conjunctions (
�
4
2

�
). This allowed us to explore the

potential of traffic separation. For evaluating scalability with respect to disjunctions, we

used scenario D, which is the merger overlay shown in Figure 3.9. The maximum level

was also varied (from 2 to 4). Subscribers were uniformly distributed across all merger

processes and throughput/latency values were averaged for each group of subscribers for a

given level.

We expect that the bottleneck in our decentralized algorithms would occur at the merger

process(es) which would merge all involved types, limiting throughput consistently for

all k. All values in Figure 3.10 are normalized with respect to the values obtained with

FAIDECS with 10 subscribers connected to a single merger for 2 types in scenario A, and

with respect to the relations with the largest number of types (independent of the algo-

rithm). Throughput here was approximately 31,400 events/s and latency 150ms. Normal-

ization does not introduce any bias but makes comparison clear, so that values could be

reported independent of subscriptions, and so that values may be reported for each level

independently.

T1 T2

T1 Λ T2

Tk

T1 Λ T2 Λ T3 Λ ... Λ Tk

T1 T2

T1 V T2

T3 T4

T3 V T4

T5 T6

T5 V T6

T1 V T2 V T3 T3 V T4 V T5 T2 V T5 V T6

T1 V T2 V T3 V T4 T2 V T4 V T5 V T6 T1 V T3 V T5 V T6

Level 2

Level 3

Level 4

Level 1

Figure 3.8.: Setup for conjunctions
(scenarios A and B).

Figure 3.9.: Setup for disjunctions (scenario D).

75

6000 100 200 300 400 500

0.1

0.3

0.5

0.7

0.9

Number of Subscribers

Ev
en

ts
/s

 (
N

or
m

al
iz

ed
)

4 Types
3 Types
2 Types

1.0

(a) Scenario A/B throughput for conjunctions.

5000 100 200 300 400

0.03

0

0.005

0.01

0.015

0.02

0.025

Number of Subscribers

Ev
en

ts
/s

 (
N

or
m

al
iz

ed
)

Sequencer
Sequencer (replicated)
Token-based
total order

(b) Other total order implementations.

6000 100 200 300 400 500

2.2

0

0.4

0.8

1.2

1.6

Number of Subscribers

Ev
en

ts
/s

 (
N

or
m

al
iz

ed
)

6 Conjunction
4 Types,

Mergers

(c) Scenario C throughput for conjunctions.

6000 100 200 300 400 500

2.7

0

0.5

1

1.5

2

Number of Subscribers

La
te

nc
y

(N
or

m
al

iz
ed

)

2 Types

3Types

4Types

2 Types
3 Types
4 Types

(d) Scenario A latency for conjunctions.

6000 100 200 300 400 500

0.1

0.3

0.5

0.7

0.9

Number of Subscribers

Ev
en

ts
/s

 (
N

or
m

al
iz

ed
)

Level 4
Level 3
Level 2

1.0

(e) Scenario D throughput for disjunctions.

6000 100 200 300 400 500

2.7

0

0.5

1

1.5

2

Number of Subscribers

La
te

nc
y

(N
or

m
al

iz
ed

)

Level 2
Level 3
Level 4

(f) Scenario D latency for disjunctions.

Figure 3.10.: Comparing conjunction and disjunction algorithms to a sequencer based
approach.

3.5.2 Conjunctions

Figure 3.10(a) displays the trend in throughput as the system scales to more sub-

scribers in scenarios A and B with varying number of event types/levels k (see Figure 3.8).

76

FAIDECS scales very well compared to the approaches shown in Figure 3.10(b), shown

separately for a clear relationship among the three implementations since the values start

at nearly 3% (about 950 events/s) and remained consistent in all scenarios. Note that IP-

multicast was turned off in the test environment which could help throughput for both

FAIDECS and the JGroup implementations. In Figure 3.10(b), the token-based algorithm

starts with a higher throughput than the sequencer-based one as there were few multicasters

competing over the token, but its performance degrades faster due to the inherent cost of its

high fault tolerance. Replication helps performance in both FAIDECS and the replicated

sequencer due to the load balancing of replicas of a same logical merger process, though

less and with an initial cost for the replicated sequencer. The total throughput remained

approximately the same in scenarios A and B since propagation of events by mergers was

the bottleneck.

Figure 3.10(c) illustrates the scalability and the high throughput of FAIDECS when

subscriber interests are in largely disjoint types, following scenario C. Thus, FAIDECS

scales very well with the addition of an arbitrary number of types to a system, even with

transitive correlation across them as in scenario C, given enough merger process nodes

to support them – the high throughput (about double that of two types for scenario A)

occurs because every merger only handles relatively few subscribers compared to the other

scenarios.

Figure 3.10(d) reports the latency of our algorithms for scenario A. As expected,

increased depth (conjunctions with increasing number of types) leads to increased la-

tency. Here the “depth” k is fixed to 4, but latency is reported independently at different

depths.The observed latency, averaged over all subscribers within each level, was approxi-

mately the same with replicated and non-replicated mergers.

Figure 3.11 shows the non-normalized values for conjunctions in Scenarios A and B in

FAIDECS. For every level, as shown in Figure 3.8, the values are averaged over all sub-

scribers at the current level as well as the levels with fewer types. That is, by Figure 3.11(a),

the throughput values for 4 types are averaged over all subscribers to 4 types as well as with

subscribers to 2 and 3 types since the subscribers were evenly distributed across all merger

77

processes. FAIDECS throttles publishers if any merger process becomes saturated. Thus,

when publish rates are approximately equal across all publishers, merger processes which

merge only a small number of types, as well as the subscribers connected to them, perceive

a lower throughput than the merger and subscriber processes interested in more types since

the latter mergers tend to become saturated first. Since this was the case in Figure 3.11(a),

the throughput for 4 types, when averaged with the throughput for 2 types, resulted in a

slightly lower overall average throughput. Figure 3.11(b) shows the averaged latency val-

ues. Because the latency values for 4 types were also averaged with the latency values for

2 and 3 types, the line for 2/3/4 Types resulted in a slightly lower overall average latency.

6000 100 200 300 400 500

5000

10,000

15,000

20,000

25,000

30,000

Number of Subscribers

Ev
en

ts
/s

2/3/4 Types
2/3 Types
2 Types

1.0

(a) Scenario A/B averaged throughput for conjunc-
tions.

6000 100 200 300 400 500

350

0

50

100

150

200

250

300

Number of Subscribers

La
te

nc
y

2 Types
2/3 Types
2/3/4 Types

(b) Scenario A averaged latency (ms) for conjunc-
tions.

Figure 3.11.: Conjunction averaged values.

Figure 3.12 shows the latency in milliseconds for the three JGroups implementations

for total order. Again, the token-based total order does not perform as well as the other two

approaches because of the cost of high fault tolerance.

3.5.3 Disjunctions

Figure 3.10(e) compares the scalability of FAIDECS with respect to throughput in sce-

nario D. The 3 curves represent different depths of the hierarchy (between 2 to 4 levels).

For each curve, the throughput is averaged at the respective level. We observe that the im-

pact on throughput is minimal when the disjunctions are made more complex. As shown

78

6000 100 200 300 400 500

3500

0

500

1000

1500

2000

2500

3000

Number of Subscribers

La
te

nc
y

Sequencer

Sequencer
Token-based

(replicated)

Figure 3.12.: Latency values (ms) for other total order approaches.

in Figure 3.10(f), the latency for 4 types improves slightly. This is because disjunctions

provide more than one possibility for event delivery, and the system is no longer throttled

by the rate of the slowest upstream process as with conjunctions.

Figure 3.13 shows the non-normalized values for disjunctions in Scenario D. As previ-

ously explained for Figure 3.11, the values at each level are averaged over all subscribers

in a given level as well as the levels with fewer types. Figure 3.13(a) shows the averaged

throughput for subscribers and Figure 3.13(b) shows the averaged latency for the propoga-

tion of events from publishers to subscribers.

6000 100 200 300 400 500

5000

10,000

15,000

20,000

25,000

30,000

Number of Subscribers

Ev
en

ts
/s Level 2/3/4

Level 2/3
Level 2

1.0

(a) Scenario D averaged throughput for disjunc-
tions.

6000 100 200 300 400 500

350

0

50

100

150

200

250

300

Number of Subscribers

La
te

nc
y

Level 2
Level 2/3
Level 2/3/4

(b) Scenario D averaged latency (ms) for dis-
junctions.

Figure 3.13.: Disjunction averaged values.

79

3.6 Conclusions

We have presented decentralized algorithms for event correlation, which are imple-

mented in FAIDECS. Our algorithms provide clear properties, hinging on a novel notion

of subscription subsumption tailored to correlation. The same properties can be achieved

by less specialized solutions such as sequencer-based schemes, yet our solutions are inher-

ently more scalable and reliable, leading to strong properties with practical performance;

our solutions are also more scalable than peer-based approaches, e.g., relying on tokens,

while still achieving practical fault-tolerance. We are currently exploring extensions of our

algorithms and additional properties (e.g., causal order).

80

4 FAULT TOLERANT EVENT CORRELATION 1

Event correlation enables higher-level reasoning about interactions in distributed applica-

tions by supporting the assembly of composite events from elementary ones [60,66]. Event

correlation is widely used in algorithmic trading, intrusion detection [56], network mon-

itoring [54], or many emerging application scenarios. As we detail in Section 4.6 while

presenting related work, most approaches to event correlation exhibit important limitations

in decentralized asynchronous systems prone to crash failures: (A) no guarantees on com-

posite event deliveries, or (B) no support for multicast and thus no guarantees across indi-

vidual processes; (C) specific architectural setups with centralized components assumed to

be reliable or other strong assumptions.

Seminal work on event correlation in the context of active databases [17, 34, 35], for

instance, just like stream processing [8, 24], considers events to be unicast and focuses on

individual processes (cf. B) and centralized correlation engines or components (cf. C). Es-

pecially in the presence of failures, processes with the same subscriptions may thus receive

differing sets and combinations of events (if any at all) and thus reach differing outcomes.

Event correlation has also been investigated in the context of content-based publish/sub-

scribe systems [15] centered on multicast. Examples include Gryphon [85], PADRES [60]

and Hermes [66]. However, most such extensions focus on efficiency and matching com-

plexity or on the number of possible combinations and thus yield only best-effort guar-

antees on event delivery (cf. A) unless relying on centralized rendezvous nodes [66] (cf.

C).

The absence of guarantees or the violation of expectations due to failures can have

drastic effects [74]. Consider, for example, monitoring a network to decide which one of

two gateways to route certain traffic through. Even if the two gateways receive the same
1PUBLISHED IN TOIT 2013
AUTHORS: G. A. WILKIN, K. R. JAYARAM AND P. EUGSTER

81

events but in different orders, each gateway might consider itself to be responsible for

routing. Worse even, each can consider the other to be responsible. Of course, individual

systems can be designed to deal with some of these issues (e.g., by using a proxy process

to merge and multiplex streams to replicas), but corresponding solutions are hardly generic

and can easily introduce bottlenecks to performance and dependability.

4.1 FAIDECS

As demonstrated by a wealth of literature, achieving strong guarantees in the presence

of failures is a hard problem, even for single event/message delivery scenarios [23]. As we

showed recently [81], achieving agreement on composite events delivered among processes

with identical subscriptions in the presence of process crash failures is as hard as solving the

problem of Total Order Broadcast [42] on individual events, which in turn is equivalently

hard to the fundamental Consensus [29] problem. Intuitively, we considered total order

as a suggestion to focus on achieving that in an efficient manner, and proposed FAIDECS

(FAIr Decentralized Event Correlation System – “fedex”) [82] which builds specific over-

lay graphs to consistently merge streams, providing correlation-specific strong guarantees

with practical performance. As we demonstrate, this is more efficient than a straightfor-

ward solution based on a peer-based (global) total order [42] and also more scalable than a

less fault tolerant setup with a centralized “sequencer” [82]. Others have recently proposed

solutions to totally order events, albeit layered on top of an order-agnostic overlay [84].

However, the FAIDECS system and model consider very special restricted semantics to

achieve strong guarantees. More precisely, only first received matching semantics together

with prefix+infix disposal semantics have been considered thus far: the former means that

events from a stream (type in FAIDECS) are invariably matched and consumed in their or-

der of reception; the latter means that after matching and delivering an event from a stream,

all previously received and still buffered events on the same stream are discarded together

with the consumed one. As a consequence, FAIDECS only supports tumbling windows on

streams of events, but does not support the popular sliding windows. In short, FAIDECS

82

thus far provides strong guarantees but with an idiosyncratic model of correlation and sub-

scriptions, making it hard to transpose any results to other systems and languages.

4.1.1 Contributions

The goal of this paper is to bridge the gap between strong guarantees proposed for

FAIDECS and known correlation models and languages. Achieving this goes through sev-

eral steps: First, we increase the expressiveness of FAIDECS in order to accommodate

existing languages. To that end, we present alternative implementations for the matching

and disposal modules of the FAIDECS correlation engine, yielding alternative semantics

to the fixed matching and disposal in FAIDECS [81, 82]. Together with some variations

of properties, this allows us to express popular features like sliding windows. Second,

we investigate properties that are violated by individual combinations of matching and dis-

posal semantics. Third, we map features of existing correlation languages to these semantic

options. This allows us to state the properties that are retained by specific operators and

features of these languages if the corresponding engine is substituted for that of FAIDECS

in the nodes of the FAIDECS overlay network. If we construct complex events by com-

bining operators, intuitively, the set of properties we achieve for the combination is the

intersection of the properties retained by each of the operators. This paper thus makes

the following contributions. After presenting a comprehensive overview of the FAIDECS

model [81] and system [82] (Section 4.2), we

• increase its expressiveness by describing alternative matching and disposal semantics

for its correlation engine (Section 4.3);

• pinpoint which properties of the FAIDECS model are violated by which combina-

tions of matching and disposal semantics (Section 4.3.4);

83

• map four concrete correlation languages — TESLA [21], StreamSQL [49], CEL [25]

and EQL2 — to the semantic framework for FAIDECS, identifying the properties

retained by their core operators (Section 4.4).

• demonstrate the scalability of our decentralized algorithms and explore overall per-

formance benefits and tradeoffs by comparing two different Java implementations of

FAIDECS with three different implementations of a global total order of which two

are fault tolerant (Section 4.5).

Section 4.6 presents related work. Section 4.7 concludes with final remarks. Sec-

tion 4.4.1 presents an overview of a less popular language TESLA, while Sections 4.4.2–

4.4.3 present overviews of the well-known StreamSQL, CEL, and EQL languages.

2http://esper.codehaus.org/

84

4.2 FAIDECS Model and System Overview

This section summarizes the FAIDECS model [81] and system [82].

4.2.1 System Model and Notation

FAIDECS assumes a system ⇧ of processes, ⇧={p1, ..., pu}, interconnected pairwise

by reliable channels [11] with primitives to SEND events and receive (RECV) them. The

crash-stop failure model is considered [29], i.e., a faulty process may stop prematurely

and does not recover. Further, the existence of a discrete global clock is assumed, which

processes cannot access. An algorithm run R consists in a sequence of “system” events

(not to be confused with the “higher-level” events correlated) on processes. Similar to

other models [5], one process thus performs an action per clock tick, which is either of (a)

a protocol action (e.g., RECV), (b) an internal action, or (c) a “no-op.”

A failure pattern F is a function mapping clock times to processes, where F (t) yields

all the processes that crashed by time t. Let crashed(F) be the set of all processes 2

⇧ that have crashed during R. Thus, for a correct process pi, pi 2 correct(F) where

correct(F) = ⇧� crashed(F) [20].

4.2.2 Properties

A formal notation is adopted for properties. Consider the well-known problem of Total

Order Broadcast (TOBcast) [42] defined over primitives TO-BCAST(e) and TO-DLVR(e)

with event e. If TO-DLVRi(e)t and TO-BCASTi(e)t denote the TO-delivery of e by process

pi at time t, and the TO-broadcasting of e by pi at time t, respectively, then the property

SDM Agreement [42] (“if some process delivers an event e all correct processes eventually

deliver e”) is defined as follows (note that we elide any of i, t, or e when not germane to

the context, and write 9s for a system event s such as a SEND or TO-BCAST as shorthand

for 9s 2 R): 9TO-DLVRi(e)) 8pj 2 correct(F)\{pi}, 9TO-DLVRj(e)

85

4.2.3 Predicate Grammar

In FAIDECS, ordered sets of delivered events — relations — are events aggregated

according to specific subscriptions. Such subscriptions are combinations of predicates on

events expressed in disjunctive normal form according to the following grammar:

Subscription ::= �1 _ ... _ �n Predicate ⇢ ::= T[i].a op v |T[i].a op T[i].a |T[i] |>

Conjunction � ::= ⇢1 ^ ... ^ ⇢m Operation op ::= < | > |  | � | = | 6=

A type T can be viewed as a stream of events with identical structure. Such a structure

encompasses an ordered set of attributes [a1, ..., an], each of which has a type of its own –

typically a scalar type, e.g., Integer or Float. An event e of type T is an ordered set of

values [v1, ..., vn] corresponding to the respective attributes of T . T[i].a denotes an attribute

a of the i-th instance of type T (T[i]) – multiple instances of a same type allow windows

over streams to be captured. v is a value. As syntactic sugar, predicates can refer to just

T.a, which is automatically translated to T[1].a.

A predicate that compares a single event attribute to a value or compares two event at-

tributes on the same event, i.e., on the same instance of a same type (e.g., Tk[i].a op Tk[i].a0)

is referred to as a unary predicate. A binary predicate involves two distinct events (two dis-

tinct types or different instances of the same type) in a predicate (Tk[i].a op Tl[j].a0, k 6=

l _ i 6= j). To simplify properties, an empty predicate > is also introduced, which triv-

ially yields true. Pointless predicates, such as those comparing an attribute of an event to

itself (Tk[i].a op Tk[i].a) are prohibited. Wildcard predicates of the form T (or T k for some

k) simply specify a desired type T of events of interest. T[i] implicitly also declares T[j]

8j 2 [1..i� 1] if these are not already explicitly declared in the same subscription.

A process pj’s subscription is referred to as (pj). By abuse of notation but unam-

biguously, disjunctions or conjunctions are sometimes handled as sets (of conjunctions and

predicates respectively). We write, for instance, ⇢l 2 � , � = ⇢1^ ...^⇢k with l 2 [1..k],

or �r 2 , = �1 _ ..._�n with r 2 [1..n]. Due to space limitations, and as done in a

first step in [81] as well, we focus on subscriptions consisting in single conjunctions in the

following.

86

As an example, a subscription for an increase in three successive stock quotes following

an earnings report is expressed in the above grammar as:

�S = SQuote[0].time > EReport[0].time ^ SQuote[1].value > SQuote[0].value

^ SQuote[2].value > SQuote[1].value

4.2.4 Predicate Types and Evaluation

FAIDECS assumes a deterministic order � within subscriptions based on the names

of event types, attributes, etc., which can be used for re-ordering predicates within and

across conjunctions. This ordering can be lexical or based on priorities on event types

and is necessary for even simplest forms of determinism and agreement. We consider

subscriptions to be already ordered accordingly.

The number of events involved in a subscription is given by the number of types and

corresponding instances involved. i.e., the types involved in a subscription are represented

as sequences. As alluded to by the index i in T[i], a same type can be admitted multiple

times. Such sequences can be viewed as predicate signatures:

T(⇢1 ^ ... ^ ⇢m) = T(⇢1)] ...] T(⇢m) T(>) = ;

T(T1[i].a1 op T2[j].a2) = T(T1[i])] T(T2[j]) T(T[i]) = [T, ..., T| {z }
i⇥

]

T(T[i].a op v) = T(T[i])

] stands for in-order union of sequences defined below (� represents simple concatena-

tion): ;] [T, ...] = [T, ...] [T, ...]] ; = [T, ...]

[T1, ..., T1| {z }
i⇥

, T

0
1, ...]

][T2, ..., T2| {z }
j⇥

, T

0
2, ...]

=

8
>>>>>>>>>><

>>>>>>>>>>:

[T1, ..., T1| {z }
i⇥

]� ([T 01, ...]] [T2, ..., T2| {z }
j⇥

, T

0
2, ...]) T1 � T2

[T2, ..., T2| {z }
j⇥

]� ([T 02, ...]] [T1, ..., T1| {z }
i⇥

, T

0
1, ...]) T2 � T1

[T1, ..., T1| {z }
max(i,j)⇥

]� ([T 01, ...]] [T 02, ...]) T1 = T2

87

Any subscription � thus involves a sequence of event types T(�)= [T1, ..., Tn], where

we can have for i, j 2 [1..n], i < j such that 8k 2 [i..j] Tk = Ti = Tj , that is, a

subsequence of identical types. These imply each a window of j � i + 1 events of the

respective type. A subscription is evaluated for an ordered set of events [e1, ..., en], where

ei is of type T i. We assume that types of values in predicates are checked statically with

respect to the types of events. T (e) returns the type of a given event e. Note that we do not

introduce a set of uniquely identified types {T 1, T 2, ...}. This allows for the set of types

to be unbounded, which does not violate the assumptions or properties and keeps notation

more brief in that we can use [T 1, ..., T k] to refer to a sequence of k arbitrary types, as

opposed to, e.g., [Ti1 , ..., Ti
k

].

The evaluation of a conjunction � on a relation is written as �[e1, ..., en]. ei.a denotes

the evaluation of an attribute a on an event ei. Evaluation semantics for predicates are thus

defined as:

(� _)[e1, ..., en] = �[e1, ..., en] _ [e1, ..., en] (T)[e1, ..., en] = true

(⇢ ^ �)[e1, ..., en] = ⇢[e1, ..., en] ^ �[e1, ..., en] (>)[e1, ..., en] = true

(T[i].a op v)

[e1, ..., en] =

8
>>>>><

>>>>>:

ek+i�1.a op v T (ek) = T ^ (T (ek�1) 6= T

_ (k � 1) = 0)

false otherwise

(T1[i].a1 op T2[j].a2)

[e1, ..., en] =

8
>>>>>>>><

>>>>>>>>:

ek+i�1.a1 op el+j�1.a2 T (ek) = T1 ^ (T (ek�1) 6= T1

_ (k � 1) = 0) ^ T (el) = T2

^ (T (el�1) 6= T2 _ (l � 1) = 0)

false otherwise

Parentheses are used for clarity. For brevity, we write simply �[...] for �[...] = true.

We consider the DLVR primitive to be generically typed, i.e., for delivering a relation

[e1, ..., en], we write DLVR�([e1, ..., en]) where ei is of type T i such that T(�)=[T1, ..., Tn].

Analogous to TOBcast, DLVRi
�([..., e, ...])t defines the delivery event of an event e on pro-

88

cess pi in response to � at time t and MCASTi(e)t defines the multicasting of an event e by

pi at time t.

4.2.5 Properties

FAIDECS provides primitives MCAST and DLVR, where DLVR is parameterized by a

subscription � and delivers relations. From here on, deliver refers to DLVR and multicast

refers to MCAST.

Basic Safety Properties

FAIDECS defines three basic safety properties:

MDM No Duplication 9 DLVRi
�([..., e, ...])t) @DLVRi

�([..., e, ...])t0 | t0 6= t

MDM No Creation 9DLVR�([..., e, ...])t) 9MCAST(e)t0 | t0 < t

MDM Admission 9DLVRi
�([e1, ..., en]) | T(�) = [T1, ..., Tn]) � 2 (pi) ^

�[e1, ..., en] ^ 8k 2 [1..n] : T (ek) = Tk

MDM No Duplication implies that a same event is delivered at most once on any single

process for a conjunction, which may be opposed to certain systems that allow a same event

to be correlated multiple times. We present an alternative property for sliding windows later

on.

Liveness

MDM Admission can trivially hold while not performing any deliveries. We have to be

careful about providing strong delivery properties on individually multicast events though,

as events may depend on others to match a given conjunction. FAIDECS proposes the two

following complementary liveness properties:

89

MDM Conjunction Validity 9MCAST(ekl), k 2 [1..n], l 2 [1..1] ^ pi 2 correct(F) ^

9� 2 (pi) | �[e1l , ..., enl]) 9DLVRi
�([...])tj | j 2 [1..1]

MDM Event Validity 9MCASTi(ex), MCASTk,l(ekl), k 2 [1..n]\x, l 2 [1..1] |

{pi, pj, pk,l} ✓ correct(F) ^ � 2 (pj) ^ T(�) = [T1, ..., Tn] ^ 8z 2 [w..y],

Tz = T (ex) ^ @(T (ex)[x� w + 1].a1 op T[r].a2) 2 � | (T 6= T (ex)_r 6= x�w+1) ^

�[e1l , ..., e
x�1
l , e

x
, e

x+1
l , ..., e

n
l]) 9DLVRj

�([..., e
x
, ...])

These two properties deal with the two possible cases that can arise. The first property

deals with dependencies across events and can be paraphrased as follows: “If for a correct

process pi there is an infinite number of relations of matching events that are successfully

multicast, then pi will deliver infinitely many such relations.” This property is reminiscent

of the Finite Losses property of fair-lossy channels [11]. It allows matching algorithms

to discard some events for practical purposes (e.g., agreement, ordering), yet ensures that

when matching events are continuously multicast, a corresponding process will continu-

ously deliver.

MDM Event Validity provides a property analogous to validity for single event/mes-

sage deliveries (e.g., TOBcast): If an event is multicast by a correct process pi, and its

delivery in response to a conjunction on some correct process pj is not conditioned by bi-

nary predicates with other event types, then the event must be delivered by pj if events of

all other types matching each other are continuously multicast. This latter condition is nec-

essary because the delivery of the event even in the absence of binary predicates requires

the existence of other events.

The condition also ensures that any unary predicates on the respective event type are

satisfied. Note that in the case of multiple instances of that type, for each of which there are

only unary predicates that match, the property does not force an event to be delivered more

than once as the position of the event is not fixed in the implied delivery. The example in

Section 4.2.3 does not contain a unary predicate, and thus is not affected by this property.

If the subscription �S were extended to trigger only if the value of the U.S. dollar is below

90

some value v as in �0S = �S ^ USDollar.value < v, then any event matching this

predicate will be delivered with the entire relation given by �S .

Agreement

We now consider a stronger property for relations delivered across processes:

MDM Conjunction Agreement 9DLVRi
�([e1, ..., en])) 8pj 2 correct(F)\{pi} | � 2

 (pj) : 9DLVRj
�([e1, ..., en])

The uniform MDM Conjunction Agreement property ensures that two correct pro-

cesses pi and pj with identical subscriptions expressed by the conjunction � must deliver

the same relation, without constraining the respective orders of such deliveries.

FAIDECS also defines a stronger agreement property, which supports subscription sub-

sumption on complex events [81], i.e., the recognition of inclusion or covering relationships

among subscriptions, a fundamental concept in publish/subscribe systems [4, 15, 77].

MDM Covering Agreement 9DLVRi
�^�0([e1, ..., en,...]) |

((T(�) = [T1, ..., Tn]) \ T(�0)) = ;) 8pj 2 correct(F)\{pi} | � 2 (pj) :

9DLVRj
�([e1, ..., en])

Formalizing such a property is not trivial because one would also want to retain agreement

on (sub-)relations, i.e., that events delivered together as part of the more specific subscrip-

tion are delivered together as well for the more generic one. This leads to fundamental

limitations. MDM Covering Agreement only holds for conjunctions which are respec-

tively “extended to the right” with respect to the subscription order �, and the condition

on disjointness of the sets of types, e.g., between � and �0, makes the sub-conjunctions

independent.

91

Ordering

FAIDECS defines a number of ordering properties [81], corresponding to the classic

FIFO, total, and causal order properties [42]. We consider two total order properties:

MDM Type Total Order 9DLVRi
�([..., e, ...])ti , DLVRi

�([..., e
0
, ...])t0

i

, DLVRj
�0([..., e, ...])t

j

,

DLVRj
�0([..., e0, ...])t0

j

| T(e) = T(e0)) (ti < t

0
i , ¬(t0j < tj))

MDM Conjunction Total Order 9DLVRi
�^�0([e1, ..., en, ...])t

i

, DLVRi
�^�0([e01, ..., e

0
n, ...])t0

i

,

DLVRj
�^�00([e1, ..., en, ...])t

j

, DLVRj
�^�00([e01, ..., e

0
n, ...])t0

j

|

((T(�) = [T1, ..., Tn]) \ T(�0)) = ; ^ (T(�) \ T(�00)) = ;) (ti < t

0
i , tj < t

0
j)

MDM Type Total Order ensures that there is a total (sub-)order on the messages of a

same type. MDM Conjunction Total Order ensures that (sub-)relations delivered to iden-

tical (sub-)conjunctions are delivered in a total order. An implementation which never

enforces MDM Conjunction Total Order, i.e., delivers no two same relations on two pro-

cesses with identical (sub-)conjunctions, could still ensure MDM Type Total Order. In-

versely, MDM Type Total Order does not imply MDM Conjunction Total Order.

Similarly to MDM Type Total Order, the following property depends on the equiva-

lence of event types among ordered events:

MDM Type FIFO Order 9MCASTi(e)t
i

, MCASTi(e0)t0
i

, DLVRj
�([..., e, ...])tj ,

DLVRj
�([..., e

0
, ...])t0

j

| T (e) = T (e0) ^ ti < t

0
i) tj  t

0
j

The following property yields a type-specific form of causal order for relations when

combined with MDM Type FIFO Order (like Local Order and FIFO Order for single-

event deliveries [42]):

MDM Type Local Order 9DLVRi
�([..., e, ...])ti , MCASTi(e0)t0

i

, DLVRj
�0([..., e, ...])t

j

,

DLVRj
�0([..., e0, ...])t0

j

| T (e) = T (e0) ^ ti < t

0
i) tj  t

0
j

92

Executed by every p
i

.

1: init
2: �
3: � ⇢1 ^ . . . ^ ⇢

m

4: Q[T] ;
5: SEND(SUB,�) to PROCESS(tT(�))
6: To MCAST(e):
7: SEND(EVENT, e) to PROCESS([T (e)])

8: function MATCH ([e01, ..., e
0
n

], �, Q)
9: T T

n+1 | T(�) = [T1, ..., Tn+1, ...]
10: l max(j |Q[T] = e1 � ...� e

j

� ...� e
h

) |
9k 2 [1..n] : e

j

= e0
k

11: for all k = (l + 1)..h do
12: if |T(�)| = n+ 1 then
13: if �[e01, ..., e

0
n

, e
k

] then
14: return [e01, ..., e

0
n

, e
k

]
15: else
16: E MATCH([e01, ..., e

0
n

, e
k

],�, Q)
17: if E 6= ; then
18: return E
19: return ;

20: upon RECV(EVENT, e) do
21: if ENQUEUE(e,�, Q) then
22: [e1, ..., e

l

] MATCH(;,�, Q)
23: if l > 0 then
24: DEQUEUE([e1, ..., e

l

], Q)
25: DLVR� ([e1, ..., el])

26: function ENQUEUE (e, �, Q)
27: win max(j | 9...T (e)[j].a... 2 �)
28: if 8j = 1..win ((9⇢ = (T (e)[j].a op v) 2

� | ¬⇢[e]) _ (9(⇢ = T (e)[j].a op
T (e)[j].a0) 2 � | ¬⇢[e])) then

29: return false
30: else
31: Q[T (e)] Q[T (e)]� e
32: return true

33: procedure DEQUEUE([e1, ..., em], Q)
34: for all Q[T] = ...� e

k

� e � ..., k 2 [1..m] do
35: Q[T] e � ...

Figure 4.1.: First received (FR) matching with prefix+infix (PI) disposal.

4.2.6 Decentralized System

FAIDECS implements the above properties with much better scalability than central-

ized sequencers or peer-based Consensus approaches [42], and inherently better fault-

tolerance than a sequencer-based approach. The solution assumes a distributed hashtable

(DHT) for uniquely identifying processes for given “roles.” Lightweight replication mech-

anisms of such roles are used for reliabiliy.

Mergers

All processes with conjunctions on a sequence of event types [T1, ..., Tk] send their

subscriptions to a same process, identified as pj=PROCESS(t[T1, ..., Tk]), responsible for

handling all conjunctions on the involved sequence of types without duplicates3:

t[T1, ..., T1, T2, ...] = [T1]� t[T2, ...]

3Different processes could be used but deduplication simplifies the algorithm [82].

93

The function PROCESS relies on a DHT to deterministically identify such responsible

processes, called mergers. Lodged at the root of the thereby created overlay network (see

Figure 4.2) are mergers responsible for individual event types T 1, T 2, etc. To ensure the

properties with respect to extensions of conjunctions to the right, events undergo an or-

dered merge by type where a merger pj=PROCESS(t[T1, ..., Tk]) gets events of types T 1, ...,

T k from two processes: those identified as PROCESS(t[T1, ..., Tk�1]) and PROCESS([Tk]).

Mergers are replicated in FAIDECS to increase fault tolerance, which emphasizes the fo-

cus on total order as opposed to FIFO order (which would trivially solve the former in the

absence of multiple destinations).

Clients

The core constitutents of the algorithm in Figure 4.1 which performs full correlation

T1 T2

T1 Λ T2

Tk

T1 Λ T2 Λ T3 Λ ... Λ Tk

Figure 4.2.: Overlay for
conjunctions. Streams merging
follows �

at subscribers based on merged streams are two-

fold: (1) matching (MATCH, Line 8) and (2) disposal

(DEQUEUE, Line 33). The presented implementations

of these modules provide first received (FR) match-

ing and prefix+infix (PI) disposal respectively [81,82].

In short, the former means that events are matched on

a process in the order received by that process. The

latter implies the following: Upon a successful match

[e1, . . . , en], for each event ei, all events of the same

type received prior to ei are discarded via the garbage

collection mechanism DEQUEUE. Each process pi

maintains one queue Q per event type in its conjunc-

tion �= (pi). For example, for a conjunction � = ⇢1 ^ ⇢2 where ⇢1 = T1.a1 < T2.a2

and ⇢2 = T1.a1 < 20, the subscriber maintains one queue for events of type T 1 and one for

events of type T 2. When receiving an event, pi will check if the type of the event is in pi’s

subscription. If so, pi attempts to ENQUEUE the event. Q[T (e)]� e denotes the appending

94

of event e to the queue of type T (e). The ENQUEUE primitive returns true if the event

has been ENQUEUEd, meaning it satisfies all unary predicates on the respective types in the

conjunction. Then pi proceeds to MATCHing. Any single received event may complete up

to one relation. If a match [e1, . . . , en] is identified, the corresponding events are discarded

(DEQUEUE) and for each event ei, all preceding events of the same type are discarded from

the respective queue for that type. MATCH iterates through the queues deterministically.

The semantics attempt to find the first instance of the first type in � for which there are

events of the remaining types with which � is satisfied. Among all such possibilities, the

algorithm recursively seeks for a match with the first instance of the second type in �, etc.,

until a match is found or all possibilities are exhausted. For multiple instances of a same

type, a first instance is recursively matched with the first follow-up instance in the same

queue until the needed number of instances is found for that type or the queue is exhausted.

[81] shows how the algorithm of Figure 4.1 ensures all properties previously outlined.

Obviously, there are more efficient ways to implement matching and disposal semantics

and will be presented later in Section 4.4 when we present other correlation languages and

also in Section 4.5 when evaluating the FAIDECS overlay network using these correlation

languages.

95

4.3 Semantic Options

This section presents semantic alternatives to the default FAIDECS matching algorithm

of Figure 4.1. For the purpose of this section, we will use an example to demonstrate the

different semantics described below. For this example, suppose a process p1 has a queue

for type T1 such that Q[T1] = {e1, e2, e3, e4, e5} and a second queue for type T2 such that

Q[T2] = {ea, eb, ec, ed} at some instant in time.

4.3.1 Event Matching Semantics

The algorithm of Figure 4.1 makes use of first received non-contiguous (FR) matching.

In this case, events in each respective queue are considered in the FIFO order for matching.

(In the example queues above, p1 would thus consider e1 for a match before e2, and so on

within the queue Q[T1] with this type of matching and ea before eb for queue Q[T2]. Note,

with non-contiguous matching, e1 and e3 could appear in the same relation without e2.)

However, in real-time systems and algorithmic stock trading, which require the most up-

to-date information, first received matching may not be the most efficient matching when

more recent events tend to be the most pertinent. In this instance, most-recently received

(MR) matching may be a preferred matching semantic: when an event is received, the last

instance of an event of a first type is matched with the last found instance of the next,

etc., moving backwards in the queues as necessary until either a match is found, or all

queues are exhausted. (In the example queues above, p1 would thus scan Q[T1] starting

with e5, then e4 for type T1 and correspondingly ed first for the queue Q[T2].) Figure 4.3

provides the MATCH function for most-recently received non-contiguous (MR) matching,

which replaces MATCH of Figure 4.1. As mentioned, Figure 4.1 is an exhaustive search,

thus the following extensions are presented for readability rather than efficiency. Later, in

Section 4.4, we present three correlation languages with more efficient matching semantics.

The matching is thus still non-contiguous, meaning that if more than one event of a

same type is matched, these events are not guaranteed to be consecutive events from the

queue, but rather may be interleaved by other events in the queue. Some applications may

96

also require that matched events of the same type (i.e., from the same stream) are matched

in a contiguous manner (meaning, for instance, that if e1 and e3 were to appear in the

same relation, either e2 must also appear in that relation, or it is not considered a match).

Figure 4.4 shows first received contiguous (FRC) matching while Figure 4.5 shows most-

recently received contiguous (MRC) matching. Both MATCH functions assure that a first

found instance of an event is only matched with the next consecutive event if possible.

4.3.2 Event Consumption Semantics

The needs of applications may dictate also how events are discarded/consumed when

relations are delivered. There are four main possibilities (suppose, for the following, from

the queues Q[T1] and Q[T2] given in Section 4.3, that a relation [e2, e4, eb, ec] is delivered

by process p1 for the following semantics).

Prefix+infix (PI) disposal is the default disposal semantics shown in Figure 4.1. It

discards all events which have been consumed and all events which have been received

prior to the last matched event in each respective type queue. Many events which have

never been delivered may be discarded. With this type of disposal semantics, if the above

relation is delivered, then Q[T1] will then contain {e5} and Q[T2] will contain {ed}.

Infix only (I) disposal exclusively discards events which have been consumed, i.e., de-

livered as part of a relation. Undelivered events remain in the queue until they are delivered.

This is shown by the DEQUEUE function of Figure 4.6 which replaces that of Figure 4.1.

With this type of disposal semantics, when the above relation is delivered, then Q[T1] will

contain {e1, e3, e5} and Q[T2] will contain {ea, ed}.

Infix+postfix (IP) disposal discards all events which have been consumed and all cur-

rently queued events received after these delivered events. Again, many events which have

never been delivered may be discarded. This disposal semantic may allow for an alert of

some occurrence of interest, but can eliminate repetitive alerts when only one is desired in

a certain time frame. IP disposal is demonstrated by the DEQUEUE function of Figure 4.7,

97

Replaces Lines 8-19 of Figure 4.1.

1: function MATCH ([e01, ..., e
0
n

], �, Q)
2: T T

n+1 | T(�) = [T1, ..., Tn+1, ...]
3: l min(j |Q[T] = e1 � ...� e

j

� ...� e
h

) |
9k 2 [n..1] : e

j

= e0
k

4: for all k = (l � 1)..1 do
5: if |T(�)| = n+ 1 then
6: if �[e01, ..., e

0
n

, e
k

] then
7: return [e01, ..., e

0
n

, e
k

]
8: else
9: E MATCH([e01, ..., e

0
n

, e
k

],�, Q)
10: if E 6= ; then
11: return E
12: return ;

Figure 4.3.: MR matching.

Replaces Lines 8-19 of Figure 4.1.

1: function MATCH ([e01, ..., e
0
n

], �, Q)
2: T T

n+1 | T(�) = [T1, ..., Tn+1, ...]
3: if T

n

6= T
n+1 then {if this type is a new type}

4: h |Q[T]|
5: l 1
6: else {look only to the contiguously next event}
7: l max(j |Q[T] = e1 � ...� e

j

� ...� e
h

) |
9k 2 [1..n] : e

j

= e0
k

8: h l + 1
9: l l + 1 {assure loop only looks at next event}

10: for all k = l..h do
11: if |T(�)| = n+ 1 then
12: if �[e01, ..., e

0
n

, e
k

] then
13: return [e01, ..., e

0
n

, e
k

]
14: else
15: E MATCH([e01, ..., e

0
n

, e
k

],�, Q)
16: if E 6= ; then
17: return E
18: return ;

Figure 4.4.: FRC matching.

Replaces Lines 8-19 of Figure 4.1.

1: function MATCH ([e01, ..., e
0
n

], �, Q)
2: T T

n+1 | T(�) = [T1, ..., Tn+1, ...]
3: if T

n

6= T
n+1 then {if this type is a new type}

4: h |Q[T]|
5: l 1
6: else {look only to the contiguously next event}
7: l min(j |Q[T] = e1 � ...� e

j

� ...� e
h

) |
9k 2 [n..1] : e

j

= e0
k

8: h l � 1
9: l l � 1 {assure loop only looks at next event}

10: for all k = h..l do {loop backwards}
11: if |T(�)| = n+ 1 then
12: if �[e01, ..., e

0
n

, e
k

] then
13: return [e01, ..., e

0
n

, e
k

]
14: else
15: E MATCH([e01, ..., e

0
n

, e
k

],�, Q)
16: if E 6= ; then
17: return E
18: return ;

Figure 4.5.: MRC matching.

Replaces Lines 33-35 of Figure 4.1.

1: procedure DEQUEUE([e1, ..., em], Q)
2: for all Q[T] = ...� e

i

� e
k

� e � ..., k 2 [1..m] do
3: Q[T] ...� e

i

� e � ...

Figure 4.6.: I disposal.

Replaces Lines 33-35 of Figure 4.1.

1: procedure DEQUEUE([e1, ..., em], Q)
2: for all Q[T] = ...� e � e

k

� ..., k 2 [1..m] do
3: Q[T] ...� e

Figure 4.7.: IP disposal.

Replaces Lines 33-35 of Figure 4.1.

1: procedure DEQUEUE([e1, ..., em], Q)
2: Q[T] e2 � ...

Figure 4.8.: FP disposal (sliding window).

98

replacing that of Figure 4.1. In this case, if the above relation is delivered, then Q[T1] will

contain {e1} and Q[T2] will contain {ea}.

Lastly, in what we call first prefix (FP) disposal, every event in each type queue which

appears before the first matched event is discarded along with the very first matched event.

As will be shown, this type of disposal is tailored to sliding windows. FP disposal is shown

in Figure 4.8. Here, if the above relation is delivered, then Q[T1] will contain {e3, e4, e5}

and Q[T2] will contain {ec, ed}.

4.3.3 Windows

Much like in stream processing, along with reasoning about the above in terms of

matching and disposal semantics, events can be grouped together and discarded accord-

ing to the current “window” in which events may be matched. If Tk[i] is the largest i for

type T k occurring in a predicate, then the subscription involves a window of size i. A

window may be viewed as moving forward as time progresses, as events are received or as

events are delivered, allowing a certain number, or subset, of events to be considered for

matching at any one instance. When the window has passed events, these events may be

discarded, while only events within the window may be considered for matching.

Tumbling windows consider a number of events, and when the window is to move

forward, it “tumbles” to the next set of events in the queue, which is a completely new set,

i.e., no events are considered more than once. In FAIDECS, the disposal semantics (i.e., PI

disposal) equate to that of a tumbling window: The window starts as a single event per type,

and events are added to the window when a match is not found. After a match is found, the

window tumbles over to the immediate next set of events in the respective queues, which

have not yet been considered.

Sliding windows are common in stream processing. Most commonly, a sliding window

considers a fixed number of events, and moves forward by one event at a time as it pro-

gresses. Within a window, events may be matched so that they are contiguous, i.e., if more

than one event is used from the same window for a single operation, each event must have

99

been immediately received after the previous in the set. In other variations, events may be

matched that are non-contiguous, as long as they are each a part of the same window. Slid-

ing windows allow for a same message to be matched more than once in multiple relations,

which immediately violates the MDM No Duplication property given above. Another vari-

ation of the property could allow for a single event to be delivered more than once, but never

in the same position within two different relations, for instance. A variation of the property

which allows for sliding windows is as follows.

MDM No Duplication0 9 DLVRi
�([e1, ..., en])t) @DLVRi

�([e
0
1, ..., e

0
n])t0 | ej = e

0
j ^ t0 6= t

In the case for correlation, sliding windows might be implemented slightly differently.

Firstly, as in the FAIDECS algorithm, there could be one window per type. And instead

of moving a window one event per round when an event is received, a window might

start at the beginning of a match for each type, and then once the corresponding relation is

delivered, move each window per type queue by one event. This would assure that no event

is delivered twice in the same position of a window, thus ensuring MDM No Duplication0.

The above described sliding window is equivalent to FP disposal found in Figure 4.8.

100

4.3.4 Properties of Semantic Options

In this and the following section, we discuss the unmet properties by comparing match-

ing semantics and disposal semantics. Table 4.1 enumerates the properties violated for

various combinations of matching and disposal semantics.

Table 4.1: Table of semantic options specifying which properties are not met with
applicable theorems in parentheses. Shaded area indicates default semantics for
FAIDECS.

FR matching FRC matching MR matching MRC matching

I
di

sp
os

al

Type Total Order (6) Event Validity (5) Event Validity (1) Event Validity (1, 5)
Type FIFO Order (6) Conjunction Validity (5) Covering Agreement (2) Conjunction Validity (5)

Type Causal Order (6) Type Total Order (6) Type Total Order (6) Covering Agreement (2)
Type FIFO Order (6) Type FIFO Order (3, 6) Type Total Order (6)

Type Causal Order (6) Type Causal Order (4, 6) Type FIFO Order (3, 6)
Type Causal Order (4, 6)

P
I

di
sp

os
al

(T
um

bl
.w

.) (All properties met Event Validity (5) Event Validity (1) Event Validity (1)
as shown previously [82]) Conjunction Validity (5) Covering Agreement (2) Conjunction Validity (5)

Covering Agreement (2)

I
P

di
sp

os
al Event Validity (7) Event Validity (5, 7) Event Validity (1) Event Validity (1)

Covering Agreement (8) Conjunction Validity (5) Covering Agreement (2) Conjunction Validity (5)
Covering Agreement (8) Type FIFO Order (3) Covering Agreement (2)

Type Causal Order (4) Type FIFO Order (3)
Type Causal Order (4)

F
P

di
sp

os
al

(S
lid

in
g

w
.)

No Duplication (9) No Duplication (9) No Duplication (9) No Duplication (9)
Type FIFO Order (10) Event Validity (5) Event Validity (1) Event Validity (1)

Type Causal Order (10) Conjunction Validity (5) Covering Agreement (2) Conjunction Validity (5)
Type FIFO Order (3, 10) Covering Agreement (2)

Type Causal Order (4, 10) Type FIFO Order (3)
Type Causal Order (4)

First Received vs. Most-Recently Received

Since FAIDECS uses non-contiguous FR matching (with PI disposal) and all of the

above properties are met (as shown in the shaded box of Table 4.1), it is clear that taken

by itself, FR matching does not violate any properties. Only when non-contiguous FR

matching is paired with different disposal semantics are any properties violated. On the

contrary, with MR matching, there is no combination with disposal semantics that does not

violate some properties. Particularly, MR matching always violates MDM Event Validity

101

and MDM Covering Agreement. Further, aside from using PI disposal, MR matching

violates MDM Type FIFO Order and MDM Type Causal Order.

Most-Recently Received Matching The following Theorems 1–4 prove that MR match-

ing violates several properties.

Theorem 1 MR matching violates MDM Event Validity

Proof This proof will be by counter-example. Suppose a process pi has a subscription over

three event types T1, T2 and T3 such that � = T1.a1 = v ^ T2.a1 < T3.a1. Now suppose

that an event e11 such that e11.a1 = v is received, thus qualifying as an event to which MDM

Event Validity applies. However, due to the lack of other matching events of type T2 and T3,

this event e11 is not delivered as part of a relation. As more events are received, it is possible

that more events of type T1 that match the respective unary predicate are received than may

be delivered before matching events of types T2 and T3 are received. As matching events

of types T2 and T3 are received, they are then matched with the newer events of type T1. In

this case, e11 is essentially “buried” and is never again viewed for another possible match

since the newer events only are considered, thus MDM Event Validity may be violated.

As an example, consider the following subscription for some arbitrary value of the US

dollar of 1: �S = SQuote[0].time > EReport[0].time ^ SQuote[1].value >

SQuote[0].value ^ SQuote[2].value > SQuote[1].value ^ USDollar.value < 1

In this case, it is possible that an event of type USDollar could be received with value

0.74 and then placed in the buffer to await a match with three successive stock quotes of

increasing value. However, there may be many events received of type SQuote (which are

not successively increasing) along with many other events of type USDollar before the

first three conditions are met. Once three successively increasing events of type SQuote

are received, there may be a large number of events in the buffer of type USDollar that

are less than 1 which qualify first to be matched with the stock quote events since the most

recent events are desired here. If more events are being received than there are relations

being delivered, since MR is used, the first received event of type USDollar with value

0.74 may never be used in a match, and thus MDM Event Validity is not met.

102

Theorem 2 MR matching violates MDM Covering Agreement

Proof The following proof is by counter-example. Suppose a process pi has a conjunction

�i = T1.a1 < T2.a1 and another process pj has a conjunction �j = �i ^ T3.a1 < z. In this

example, now suppose that both pi and pj receive two events e11 and e

2
1 such that e11.a1 = v

and e

2
1.a1 = v

0 (s.t. v < v

0). In this case, both e

1
1 and e

2
1 match �i, thus process pi may

deliver the relation [e11, e
2
1]. However, process pj must wait for a matching event of type T 3

before it may deliver any relations. Now suppose that both pi and pj receive a third message

e

2
2 such that e22.a1 = u (s.t. u > v

0). Now, process pj could receive an event e31 such that

e

3
1.a1 = w (s.t. w < z). When process pj triggers a match, it will view the most recent

events by the most-recently received matching function, and thus the relation [e11, e
2
2, e

3
1] is

delivered which violates MDM Covering Agreement since process pi matched e

1
1 with e

2
1

but process pj matched e

1
1 with e

2
2.

When PI disposal is not used, MR matching may also violate a number of ordering

properties, namely MDM Type FIFO Order and MDM Type Causal Order.

As an example, consider the subscription �S above except that one process is only

looking for three successive stock quotes, and the second process has the same constraints

but also has the last constrain above where USDollar.value < 1. In this case, it is

possible that three successive stock quotes are published and the first process would deliver

them. However, if the second process has not received any events of type USDollar with

value less than 1, no relations may be delivered by the second process. If a fourth successive

stock quote is received, followed by an event of type USDollar with value 0.89, then the

last three stock quote events received (by MR) will be matched with this new USDollar

event. Thus, the two processes will not agree on the three stock quote events that are

delivered since the first process delivered the first three stock quote events received, while

the second delivered the last three of four received.

Theorem 3 MR matching with the absence of PI disposal violates MDM Type FIFO Order

Proof Since events are matched backwards in the queue, it is clear that if some later

message ekj is matched and delivered in a relation before an earlier event eki such that i < j,

103

and some event other than the type T (ekj), say e

m
l , is then later received, the earlier event

e

k
i such that i < j in the same queue as ekj might be matched with e

m
l thus violating MDM

Type FIFO Order since e

k
j is delivered before e

k
i and i < j.

Consider a more simple subscription: �T = SQuote[0].time > EReport[0].time ^

SQuote[0] ^ USDollar.value < 1 which is looking for any stock quote after an earn-

ings report when the US dollar drops below the value 1. In this case, if two events of type

USDollar are received, both with values less than 1, before any stock quotes are received

after an earnings report, it will be the case by MR that the second USDollar event will

eventually be delivered first. Without PI disposal, the first USDollar event remains in the

queue and can later be delivered, violating MDM Type FIFO Order.

Theorem 4 MR matching with the absence of PI disposal violates MDM Type Causal

Order

Proof Without FIFO order, there cannot be causal order in this instance. Thus, it follows

by Theorem 3 that MDM Type Causal Order is violated.

PI disposal rectifies the issues in Theorems 3–4 since if ekj were delivered, the event eki
such that i < j would be thus discarded and never delivered and FIFO order would still

hold.

The reason why MDM Type Total Order is violated for MR matching with I disposal

will be explained shortly when comparing disposal semantics in this setting.

Contiguous vs. Non-contiguous Matching

In addition to FR and MR matching, the added constraint that matched events must be

contiguous may cause the violation of validity.

Theorem 5 Contiguous matching violates MDM Event Validity and MDM Conjunction

Validity

104

Proof This proof will be by counter example. Suppose that a process pi has a subscription

on a type T1 such that � = T1[1].a1 = v ^ T1[2].a1 = v, which attempts to match two

events from the same stream each with a first attribute with a value of v. In this scenario,

it is possible that no two consecutive events have the same value for the first attribute.

Suppose that a process sends events such that a1 alternates between values v and some v

0

such that v0 6= v. Thus, with contiguous matching, no two consecutive events have the

value v, whereas with non-contiguous matching, a match is possible by considering every

other event. Thus both MDM Event Validity and MDM Conjunction Validity are violated.

Consider a simple subscription: �U = SQuote[0].value = 3.44 ^

SQuote[1].value = 3.44 which looks for two stock quote events to have the same value.

It is easy to see that if published events of type SQuote are consistently alternating between

different values between any two events, then with the requirement of contiguous matching,

there would never be a match for �U , thus violating MDM Event Validity and MDM

Conjunction Validity since no events would ever be delivered. This could be solved by

matching stock quote events in a non-contiguous manner.

Infix vs. Prefix+Infix vs. Infix+Postfix Event Consumption

Taken by itself, PI disposal does not violate any properties as shown by the left middle

portion of Table 4.1. The properties violated with PI disposal together with MR matching

are due to the matching semantics as shown in Section 4.3.4. In contrast though, I and IP

disposal cause the violation of a number of properties.

Properties of Infix Only Event Consumption I disposal causes the violation of the prop-

erties MDM Type Total Order, MDM Type FIFO Order and MDM Type Causal Order.

This is due to the fact of how different events may be correlated over time. The following

theorem demonstrates why I disposal can violate all three properties simultaneously.

105

Theorem 6 I disposal violates MDM Type Total Order, MDM Type FIFO Order and

MDM Type Causal Order

Proof By counter example, consider two processes pi and pj such that their subscriptions

are �i = T1.a1 < T2.a1 and �j = T1.a1 > T3.a1 respectively. Now suppose that both pi

and pj (starting with empty queues) receive the event e11 of type T1 such that e11.a1 = v.

Since this is the only event which either process has received, then both will queue e

1
1 for

later matching. Now, suppose that pj receives the event e31 of type T3 such that e31.a1 = w

(s.t. v > w). Now, process pj may trigger a match and deliver the relation [e11, e
3
1]. This

match would be triggered by either MR or FR matching. Next, suppose that both pi and pj

receive another event e12 of type T1 such that e12.a1 = v

0 and then pj receives an event e32 of

type T3 such that e32.a1 = w

0 (s.t. v0 > w

0). The process pj may now trigger another match

and deliver the relation [e12, e
3
2], which may be matched by either MR or FR matching. Since

pi has not yet received any events of type T2, it may not yet deliver any relations.

Note, at this point, no properties have yet been violated. Now suppose that process pi

receives an event e21 of type T2 such that e21.a1 = u (s.t. v

0
< u < v). By either MR or

FR matching, when pi attempts to trigger a match, e21 will only match with e

1
2 and thus pi

delivers the relation [e12, e
2
1]. By I disposal, pi discards only the events delivered, and thus

the event e11 remains in pi’s queue. Again, at this moment, no properties have yet been

violated. But if pi were to now receive an event e22 of type T2 such that e22.a1 = u

0 (s.t.

v < u

0), this event may be matched by pi with e

1
1 and pi would thus deliver the relation

[e11, e
2
2].

MDM Type Total Order has been violated since both pi and pj have different conjunc-

tions, but receive events over a common type, i.e., T1. Since pj delivers e11 before e

1
2 within

separate relations, but pi delivers e12 before e11 within separate relations, this total order over

the events of the same common type T1 is thus violated.

The above also shows the violation of MDM Type FIFO Order since the event e11 was

clearly sent before e

1
2 (it may be assumed that both were sent by the same process for the

sake of argument), but pi delivered those events in a conflicting order. Lastly, since causal

106

order requires FIFO order and FIFO order has here been violated, it follows that MDM

Type Causal Order may also be violated.

As an example, consider the two subscriptions (by processes p1 and p2 respectively)

that resemble the subscriptions in the counter example above:

�V1 = SQuote[0].value < Euro[0].value

�V2 = SQuote[0].value < USDollar[0].value

As in the counter example, consider the following events are received in the following order

(where Type(v) represents receiving an event of type Type with value v): {SQuote(3),

USDollar(1), SQuote(2), USDollar(0.98)} In this case, p2 may deliver the relations

[SQuote(3), USDollar(1)] and [SQuote(2), USDollar(0.98)] by �V2 but p1 has not yet

received any events of type Euro yet, so both SQuote(3) and SQuote(2) are queued in that

order. Now supposed the event Euro(2.5) is now received by p1. The only possible relation

that may be delivered by p1 (using any matching semantics for �V1) is thus [SQuote(2),

Euro(2.5)] while the event SQuote(3) remains in p1’s queue due to I disposal. However,

if the event Euro(3.1) were then received by p1, the relation [SQuote(3), Euro(3.1)] may

then be delivered by p1. In this case, it is clear that MDM Type FIFO Order is violated

since Euro(2.5) was sent and received before Euro(3.1) which also shows that MDM Type

Total Order is violated over the type SQuote since p1 and p2 delivered the events of type

SQuote in differing orders. Since MDM Type FIFO Order is violated, MDM Type Causal

Order is thus also violated.

Properties of Infix+Postfix Event Consumption Section 4.3.4 discussed violation of

MDM Event Validity and MDM Covering Agreement by IP disposal with MR matching.

These properties remain to be investigated in the context of FR matching.

Theorem 7 FR matching with IP disposal violates MDM Event Validity

Proof By counter example, consider a process pi that has a subscription such that all

predicates over a type Tx are unary predicates, i.e., only comparing attributes of the type to

scalar values. If pi were to start with an empty set of queues, and immediately received two

107

events of type Tx that both meet all the unary predicates over Tx and then received other

events which completed a match, the first event of type Tx would be matched in a relation

with the other received events and then the second would be discarded by IP disposal, thus

violating MDM Event Validity.

As an example, consider the subscription:

�W = SQuote[0].value < 3 ^ USDollar[0].value < 1

If a process with the subscription �W receives the two events SQuote(2.5) and SQuote(2)

respectively, no relations may yet be delivered. However, if an event USDollar(0.98) were

received, then by FR matching, the relation [SQuote(2.5), USDollar(0.98)] may then be

delivered. By using IP disposal, then the event SQuote(2) is discarded, which violates

MDM Event Validity.

Theorem 8 FR matching with IP disposal violates MDM Covering Agreement

Proof Consider, again by counter-example, two processes pi and pj with subscriptions

�i = T1.a1 < T2.a1 and �j = �i ^ T3.a1 < v respectively. If both pi and pj , starting

with empty queues, receive two events e11 and e

2
1 such that e11.a1 = u and e

2
1.a1 = u

0 (s.t.

u < u

0), then pi may deliver the relation [e11, e
2
1] whereas pj must wait for a matching event

of type T3. Next, if both pi and pj were to receive two more events e

1
2 and e

2
2 such that

e

1
2.a1 = u

00 and e

2
2.a1 = u

000 (s.t. u

00
< u

000), again pi may deliver another relation [e12, e
2
2],

but pj must wait for a matching event of type T3. Lastly, if pj were to then receive an event

e

3
1 such that e31.a1 = w (s.t. w < v), using FR matching, pj may now perform a match and

deliver the relation [e11, e
2
1, e

3
1]. However, due to IP disposal, pj will discard both e

1
2 and e

2
2

since these are in the same type queues as the delivered events of types T1 and T2. Thus,

MDM Covering Agreement is violated since pi delivered the two events e12 and e

2
2 whereas

pj discarded them.

Consider the subscriptions for processes p1 and p2 respectively:

�X1 = SQuote[0].value < USDollar[0].value

�X2 = SQuote[0].value < USDollar[0].value ^ USDollar[0].value < 1.9

108

If both p1 and p2 receive the events SQuote(1) and USDollar(1.1) respectively, then only

p1 can deliver these events as a relation, whereas p2 must place them in a queue to await

an event of type Euro. If now, both processes receive the two events SQuote(1.2) and

USDollar(1.3) respectively, then again, p1 may deliver these events in a relation but p2

cannot since there is still yet no event of type Euro with which to match these received

events (i.e., the queue for the type Euro for p2 is empty). If p2 were to then receive the event

Euro(1.8), then p2 may now perform a match on �X2 . By FR matching, p2 will deliver the

relation [SQuote(1), USDollar(1.1), USDollar(1.8)]. However, by IP disposal, p2 will

then discard the events SQuote(1.2) and USDollar(1.3) from its queue. Since p2 will thus

never deliver these discarded events, p1 and p2 will not agree on all sub-relations delivered

over the types SQuote and USDollar, and thus MDM Covering Agreement is violated.

Tumbling vs. Sliding Windows

Windows in this context are equivalent to replacing the disposal semantics. In partic-

ular, note that tumbling windows are equivalent to using PI disposal. Thus, what remains

to be discussed is the topic of sliding windows. Sliding windows may be implemented as

either a contiguous sliding window, i.e., all events matched within the same window must

be contiguous, or a non-contiguous sliding window where as long as all events matched

are currently in the window, they need not be contiguous. Note that for contiguous slid-

ing windows, the only additional property that is unmet, aside from those by the matching

semantics, is MDM No Duplication; however, MDM No Duplication0 may still be met.

Non-contiguous sliding windows also violate MDM No Duplication while maintaining

MDM No Duplication0.

Properties of Sliding Windows Sliding windows can violate MDM No Duplication as

shown below in demonstrating that FP violates this property.

109

Theorem 9 FP disposal violates MDM No Duplication.

Proof By counter-example, suppose that a process pi has a conjunction � = T1[1].a1 <

T1[2].a1. Now, suppose that pi receives three events e

1
1, e12 and e

1
3 of type T1 such that

e

1
1.a1 = v, e12.a1 = v

0 and e

1
3.a1 = v

00 (s.t. v < v

0
< v

00). Process pi will first deliver

the relation (here by FR) {e11, e12} and then discard e

1
1 by FP disposal. Process pi will then

deliver the relation {e12, e13} also by FR. Since e12 is delivered within more than one relation,

MDM No Duplication is violated. This same argument holds for MR matching, with the

relations delivered thus being

As a quick example, consider the subscription �Y = SQuote[0].value <

SQuote[1].value ^ USDollar[0].value < 1.1 Suppose that a process with subscription

�Y received (in the following order) the events SQuote(1), SQuote(1.1) and SQuote(1.2)

before receiving any events of type USDollar, thus no relations are yet able to be deliv-

ered. If an event USDollar(1) were then received, then the process will (by FR match-

ing) deliver the relation [SQuote(1), SQuote(1.1), USDollar(1)] and by FP disposal,

the only events to be discarded from each of the queues respectively are SQuote(1) and

USDollar(1). This leaves the queue for the SQuote with the two events SQuote(1.1)

(which has been delivered as part of a relation), and SQuote(1.2) respectfully with the

queue for USDollar now empty. Lastly, if an event USDollar(0.99) were received,

then another relation may be delivered. By FR matching, the relation delivered is thus

[SQuote(1.1), SQuote(1.2), USDollar(0.99)] with the only events discarded are thus

SQuote(1.1) and USDollar(0.99) (by FP, leaving SQuote(1.2) in the queue. Since be-

tween the two relations [SQuote(1), SQuote(1.1), USDollar(1)] and [SQuote(1.1),

SQuote(1.2), USDollar(0.99)], one can see that SQuote(1.1) was delivered in two sepa-

rate relations, which thus violates MDM No Duplication.

Note that in the proof above, since e

1
2 (in the counter-example) is delivered in different

positions between the two relations, MDM No Duplication0 is retained in both the proof

counter-example and the provided example following the proof.

Sliding windows with non-contiguous matching may cause the violation of a number of

the ordering properties. The following theorem demonstrates how non-contiguous match-

110

ing with a sliding window via FP disposal may cause the violation of the properties MDM

Type Total order, MDM Type FIFO Order, and MDM Type Causal Order.

Theorem 10 Both (non-contiguous) FR and MR matching with FP disposal violate MDM

Type FIFO Order, and MDM Type Causal Order

Proof The following is by counter-example. Consider a subscription by process pi, � =

T1[1].a1 = T1[2].a1 where this subscription denotes that an attribute of some event of type

T1 must be equal to the same attribute of a later received event. Again, in this semantic,

these are not guaranteed to be contiguous events. Consider if a current queue for process pi

were [e11, e12, e13, e14] where a1 for each of these events are respectively [v, v0, v, v0]. Consider

FR matching. The first relation to be delivered would thus be {e11, e13}. By FP disposal,

the event e11 would be discarded. The next delivered relation would then be {e12, e14}. In

this case, since e

1
2 is delivered after e

1
3, the aforementioned ordering properties are thus

violated. This same argument can be used for MR matching.

Consider a subscription �Z = SQuote[0].value = SQuote[1].value. Suppose that

the incoming quotes alternated values, such that a process with subscription �Z receives

the following events in order: SQuote(1.1), SQuote(1.2) and SQuote(1.1). By the sub-

scription, the process would deliver the relation [SQuote(1.1), SQuote(1.1)] (the first and

third received events). If using FP disposal, then only the first event would be discarded,

with the resulting queue being {SQuote(1.2), SQuote(1.1)}. Now suppose a fourth event

SQuote(1.2) were received. The relation [SQuote(1.2), SQuote(1.2)] may then be deliv-

ered. However, in this case, since the first instance of SQuote(1.2) was received before the

second instance of SQuote(1.1), but they were delivered such that the second instance of

SQuote(1.1) was delivered first, then MDM Type FIFO Order is violated.

111

4.4 Case Studies

In this section we investigate the properties obtained when substituting previously pro-

posed correlation engines/languages in the FAIDECS overlay network. We investigate how

their constructs relate to the properties previously introduced by mapping them to the se-

mantic options discussed. Tables 4.2 and 4.3 summarize our findings.

Table 4.2: Basic safety as well as liveness properties violated by various language
operators.

Basic Safety Liveness
No Duplication No Duplication0 No Creation Admission Conjunction Event

Validity Validity

TESLA each-within - - - -
first-within

last-within

not

StreamSQL select - - - select

select

create window

EQL select - - - select select

create window limit

CEL select - - - select select

Table 4.3: Agreement and ordering (safety) properties violated by various language
operators.

Agreement Order
Conjunction Covering TYPE TOTAL CONJUNCTION FIFO CAUSAL
Agreement Agreement ORDER TOTAL ORDER ORDER ORDER

TESLA - first-within each-within - each-within each-within

last-within consuming consuming consuming

StreamSQL - create window

select, union,
-

select, union select, union
merge create window create window

merge merge

EQL - create window

select, union,
-

select, union select, union
merge create window create window

merge merge

CEL - - select - select select

112

4.4.1 The TESLA Language

TESLA [21], a complex event specification language, provides a high degree of ex-

pressiveness and flexibility for event subscriptions with an intuitive and simple syntax. In

particular, the operators that TESLA provides are operators for event occurrence, event

composition, parameterization, timers, negation, event consumption, aggregates, event hi-

erarchies and iterations. The following represents a general TESLA query.

define subscription([att1:type1, . . ., attn:typen])

from event_source ([pattern]) [and interval_operation]

[where predicate] [consuming event_identifiers]

Replacing the matching logic (i.e., the matching and disposal semantics) of FAIDECS with

that of TESLA would thus allow for a much more expressive event correlation system.

The following describes each of the operators of TESLA, and how the addition of each to

FAIDECS affects the respective properties.

Event Occurrence/Selection

TESLA allows for a simple subscription, specifying constraints over singleton events

in both content and time. Because the properties of FAIDECS may be simplified for single

event delivery, all aforementioned properties still hold for these operators. The following is

in the syntax of TESLA using the semantics of FAIDECS to denote events and their types

and attributes:

define Subscription1() from SQuote (SQuote.val > 10)

The equivalent subscription in FAIDECS is � = SQuote[0].val > 10.

Event Composition

Event correlation is possible in TESLA through event composition operators. TESLA

provides three variants with specific matching and disposal rules associate with each. They

113

are, respectively, each-within, first-within and last-within. The idea regard-

ing these operators is that in specifying an event composition, it is possible that a single

event could be matched with one or more events to make composite events or relations.

In particular, when events are to be matched within a certain time interval of the occur-

rence of some singular event, these operators specify precisely how the single event is to

be correlated with the others.

The each-within operator provides the most composite events. This operator is

equivalent to FR matching with I disposal of Table 4.1. An example subscription in TESLA

follows:

define Subscription2() from EReport() and

each SQuote(SQuote.val > 10) within 5min from EReport

In this subscription, any occurrence of an event of type EReport would be saved for

five minutes to be matched with any of type SQuote where SQuote.val > 10. For events

of type EReport, the property MDM No Duplication is not met, but as discussed for win-

dows, MDM No Duplication0 may be met instead. For events of type SQuote, all events

are matched in a FR order and I disposal applies. Thus, by Table 4.1, the properties MDM

Type Total Order, MDM Type FIFO Order and MDM Type Causal Order are violated.

Thus, if an event eER of type EReport were received, any and all events of type SQuote

for which SQuote.val > 10, received within five minutes after having received e

ER, will

be delivered in separate relations with e

ER.

The first-within operator only allows for a single composite event or relation to

be delivered for a given subscription within the specified time interval. In the above sub-

scription of Section 4.4.1, if replacing the keyword each with first, then of all events

received of type T2 within five minutes of receiving an event e1 of type T1, only the first

event for which e

2
.a > 10 will be delivered.

Depending on when the matching is triggered, in the worst case, the first-within

operator is equivalent to FR matching with PI disposal for all events of type T2. Thus, by

Table 4.1, the properties that are violated are MDM Event Validity and MDM Covering

Agreement.

114

The last-within operator, similar to first-within, allows only for a single com-

posite event or relation to be delivered within a specific time interval. By replacing each

with last in the example subscription in Section 4.4.1, then of all events received of type

T2 within five minutes of receiving an event e1 of type T1, only the last event for which

e

2
.a > 10 will be delivered.

The properties which are violated again depend on when the matching is triggered,

but in the worst case, the last-within operator is equivalent to most-recently received

matching with PI disposal. By Table 4.1, this operator thus violates MDM Event Validity

and MDM Covering Agreement.

Parameterization

Parameterization in the context of TESLA is the composition of events when related

by some higher order function such as area. An example of a parameterized subscription,

in English, could thus be: Warn of an avalanche when 3 or more sensors detect movement

when these sensors are within the same area $x. Where area $x can be specified as a

parameter in the subscription. In this case, location, or whatever other parameters, may

be included within events as further attributes, which equates to nothing more than further

constraints on attributes of events. Parameterization does not cause the violation of any of

the above properties.

Timers

The TESLA language allows for events to be matched using timers. An example would

be to attempt to trigger a match every morning at 10 a.m. over all received events since the

last time the matching was triggered. Because this type of matching can use any matching

and disposal semantics, this operator will not suffer further violations of properties aside

from any that may be violated by the matching and disposal semantics themselves.

115

Note that the use of timers assumes at least a partially synchronous system, however,

which is opposed to the assumptions of FAIDECS. However, specialized solutions do exist,

which deal with such cases and are out of the scope of this paper.

Negations

The negation operator allows the control of when certain composite events should not

be matched. Since this operator only specifies that certain events should not be delivered,

only MDM Event Validity may be violated in this case.

Aggregates

Operators such as min, max, average, sum, etc., are examples of aggregate operators.

Aggregate operators take more than one event from a particular queue and yield a single

result. This is equivalent to consuming events in streams using a tumbling window, thus

aggregates do not violate any properties.

Event Consumption

TESLA provides the expressiveness to specify which events should be consumed or

discarded. Consider the following example:

define Subscription2() from EReport() and

each SQuote(SQuote.val > 10) within 5min from EReport

consuming SQuote

This subscription provides a specific disposal policy for all events of type SQuote. To

avoid the scenario where the same events of type SQuote may be matched with multiple

events of type EReport, the consuming keyword specifies that any events of that type

may only be matched once, and then discarded such that any new events of type EReport

must be matched with new events of type SQuote. This is equivalent to I disposal. Thus,

the properties which may be violated will be the intersection between those violated by

116

the composition operators (as specified in Section 4.4.1), and then the resulting matching

semantics of those operators together with I disposal. The unmet properties are thus shown

in Table 4.1.

Event Hierarchies

Certain single events may be matched together to form a composite event or relation,

which may be matched together to form further, more complex composite events comprised

of simple events and complex events. These subscriptions require levels (i.e., hierarchies)

of correlation. Hierarchies allow for more expressiveness while meeting all properties.

Iterations

Iterations specify constraints over a set of events of the same type over time. An ex-

ample would be to “capture” every iteration of events of type T1 such that the attribute a1

never decreases. Due to TESLA’s ability to define hierarchies of events and the ability to

specify different selection and consumption policies for different rules, no further opera-

tors are needed to allow for iterations. In this case, again, when an iteration is specified, the

violated properties are thus the intersection of the violated properties of the selection and

consumption policies.

117

4.4.2 The StreamSQL Language

StreamSQL [49] is a stream processing and querying language that extends SQL with

the ability to define and manipulate real time data streams. While SQL is primarily in-

tended for manipulating traditional database tables, which are finite bags of tuples (rows),

StreamSQL adds the ability to manipulate streams, which are infinite sequences of tuples

that are not all available at the same time. Because streams are infinite, operations over

streams must be monotonic. Queries over streams are generally “continuous,” executing

for long periods of time and returning incremental results. The StreamSQL language is

typically used in the context of a Data Stream Management System (DSMS) for appli-

cations including algorithmic trading, market data analytics, network monitoring, surveil-

lance, e-fraud detection and prevention, clickstream analytics and real-time compliance

(anti-money laundering).

Overview

Like SQL, StreamSQL consists of a DDL (Data Description Language) and a DML

(Data Manipulation Language). The DDL is straightforward – the schema of a stream is

the same as that of a table – a stream consists of a tuple of typed fields. Several new

operations are introduced in the DML to manipulate streams – (1) Selecting from a stream

– A standard select statement can be issued against a stream to calculate functions (using

the target list) or filter out unwanted tuples (using a where clause). The result will be a

new stream. (2) Stream-Relation Join – A stream can be joined with a relation to produce

a new stream. Each tuple on the stream is joined with the current value of the relation

based on a predicate to produce zero or more tuples. (3) Union and Merge – Two or more

streams can be combined by unioning or merging them. Unioning combines tuples in strict

FIFO order. Merging is more deterministic, combining streams according to a sort key. (4)

Windowing and Aggregation – A stream can be windowed to create finite sets of tuples.

For example, a window of size 5 minutes would contain all the tuples in a given 5 minute

period. Window definitions can allow complex selections of messages, based on tuple field

118

values. Once a finite batch of tuples is created, analytics such as count, average, max, etc.,

can be applied. (5) Windowing and Joining – A pair of streams can also be windowed and

then joined together. Tuples within the join windows will combine to create resulting tuples

if they fulfill the predicate.

Selection

select is used to retrieve events from an unwindowed stream, one or two windowed

streams, a materialized window, or a table. A select statement includes required sub-

clauses. There are two forms of the from clause: the first identifies the streams, material-

ized window or table from which the events are extracted. The optional where subclause

adds additional restrictions to the select result, such as a range of values or a limit to

the number of events received. A select statement can also include nested select state-

ments (also called subqueries).

select target_entry1, ..., target_entryn

from event_source1, ..., event_sourcen

within (interval_time | value_on_field)

[where predicate] [having predicate]

[group by field_identifier] [order by field_identifier]

[into stream_identifier]

An example query is below where the query looks for stocks where the price are greater

than some analyst report’s price for that same stock. The two events should have been

received within 2 minutes of each other.

select stockquote.id, analystreport.id

from stockquote, analystreport

within 120

where stockquote.firm = analystreport.firm

and stockquote.price > analystreport.price

group by analyst report.id

119

A target entry is a rule that expands to a value that will be included in each row of the

result set, and this can be used to select different sets of fields from each event source. An

entry can be extracted from an event present on a stream, from an event in a materialized

window, from a row in a table, or from the return from a StreamBase function or expres-

sion. The group by and order by clauses are similar to SQL. The select clause uses

I disposal of events, i.e., unmatched events remain in the queue to be matched to subse-

quent select or other join statements. Hence, the select statement causes a violation of

the properties MDM Type Total Order, MDM Type Total Order and MDM Type Causal

Order.

Windowing

A window specification describes how a stream of tuples will be subdivided prior to

analysis through an aggregate stream query or used within a tuple join statement. In a

StreamSQL application, windows are used within an aggregate stream or tuple join state-

ment. The window specification may be entered as a separate statement or included within

the aggregate stream or tuple join statement. The advantage of writing the specification as

a separate statement is that the definition may be reused in multiple aggregate stream or

tuple join statements.

create window window_identifier (

size natural advance increment

{time | tuples |on field_identifier_w});

A window specification embedded within an aggregate stream or tuple join statement is

only available to that statement, as shown below which creates a window advancing every

second.

create window squotewindow (size 100 advance 1s)

The advance keyword of StreamSQL’s windowing construct enables developers to

support both sliding windows and tumbling windows by modifying the time interval over

which a window is created as well as the number of tuples by which the window advances.

120

As discussed earlier in Table 4.1, tumbling windows have PI disposal semantics and meet

all properties, while sliding windows violate numerous properties as shown in Table 4.1.

Event Composition

Event composition is of two types:

• Stream and Stream-Relation Join: Joining two streams or joining a stream with a

traditional relation is accomplished by the select statement. The select statement

can be followed by a delete statement similar to vanilla SQL. This can be used to

support all four disposal schemes by using select and delete inside a transaction.

In the absence of transactions, Stream-Stream and Stream-Relation joins only exhibit

I disposal semantics.

• Windowing and Joining: Joining multiple windows, streams with windows and win-

dows with tables is also accomplished by the select statement. The select state-

ment can also be used to match contiguous events and non-contiguous events in a

window with events in a table or other streams. Along with the flexibility to place ar-

bitrary sets of statements inside a transaction, StreamSQL supports all event disposal

and matching semantics outlined in Table 4.1.

Union and Merge

union and merge statements take two or more input streams with compatible schemas

(structurally equivalent types following the traditional definition of structural equivalence)

and produces one output stream with all the tuples from the original streams. The difference

between the operators is that merge can be used to order the output based on some field of

the input. union and merge may thus violate MDM Type Total Order, MDM Type FIF

Order and MDM Type Causal Order.

121

4.4.3 The EQL Language

EQL (Event Query Language) is an object-oriented event stream query language for the

Esper engine4. EQL has a similar syntax to SQL, but adds further functionality for event

stream processing such as sliding and tumbling windows for continuous queries over event

streams. The full syntax for EQL is as follows:

[insert into insert_into_def]

select select_list from stream_def1

[as name1], ..., stream_defn [as namen]

[where search_conditions] [group by grouping_expression_list]

[having grouping_search_conditions] [output output_specification]

[order by order_by_expression_list] [limit num_rows]

Further operations include grouping, aggregation, sorting, filtering, merging, splitting

or duplicating of event streams, combining windows with intersection and union seman-

tics, inner and outer joins. As with CEL and StreamSQL, the select statement causes a

violation of the properties MDM Type Total Order, MDM Type FIFO Order and MDM

Type Causal Order since select uses I disposal. The use of the limit operator causes

the violation of MDM Event Validity since rows in this context are events, and limiting the

number of events in a relation may cause some matching events to be discarded. The use of

sliding windows causes the violation of MDM No Duplication. The use of the union and

merge semantics can violate MDM Type Total Order, MDM Type FIFO Order and MDM

Type Causal Order as described in Section 4.4.2 for StreamSQL.

4http://esper.codehaus.org/

122

4.4.4 The CEL Language

The Cayuga Event Language (CEL) [25] is the language used to specify event corre-

lation queries over event streams in the Cayuga complex event processing system. CEL

is similar to SQL, and adds three main operators for event correlation – filter, fold

and next. All three operators are part of the select statement, whose general syntax is:

select attributes from stream_expression publish output_stream. The

select clause in CEL is similar to the SQL select clause. Each event stream has a fixed

schema similar to that of an SQL table. The filter operator specifies predicates that

compare a single event schema to a constant, e.g., filter Company = ‘Google’ on a

stock quote stream when one of its fields is ‘Company.’ The next operator, on the other

hand is used for event correlation. The fold operator is used to specify tumbling windows.

The CEL select statement uses I disposal of events, i.e., unmatched events remain in the

queue to be matched to subsequent select or other join statements. Hence, the select

statement causes a violation of the properties MDM Type Total Order, MDM Type FIFO

Order and MDM Type Causal Order.

123

4.5 Evaluation

To demonstrate the scalability of our decentralized algorithms and explore overall per-

formance benefits and tradeoffs, we compare the performance of the FAICECS system

using two different matching engines implemented in Java — Esper (http://esper.

codehaus.org) and Jess (http://www.jessrules.com) — with three different

implementations of a global total order: two fault tolerant ones and a non-replicated se-

quencer (with Esper and Jess again) for event correlation at the subscribers. We have

included the non-replicated non-fault tolerant sequencer because that is the most efficient

sequencer.

4.5.1 Metrics and Setup

We used two metrics: (1) throughput measures the average number of events deliv-

ered per second by a subscriber; (2) latency measures the average delay between the

production time of an event and its delivery to a subscriber. We chose subscriptions

based on the default workload in the Marketcetera algorithmic trading system (http:

//marketcetera.org/). In this workload, the publisher is the Marketcetera stock ex-

change simulator, and the subscribers are algorithmic traders. The default workload has 23

event types, and several conjunctions. The maximum number of event types in any con-

junction is 6. The number of subscribers (traders) was increased from 10 to 500. We used

three nodes for Paxos and the token passing total order implementation, i.e., the state of

the replicated fault tolerant sequencer was replicated on three nodes. For both Paxos and

Token-passing total order, the publisher sent its events randomly to one of the three nodes.

We have three deployment scenarios. With FAIDECS, conjunctions are performed by

merger processes and predicates are evaluated at the subscribers by two popular event cor-

relation systems – Jess (originally used in [82]) and Esper. In Scenario A and Scenario B,

we used a setup for conjunctions similar to Figure 4.2. All filtering occurred at end nodes

rather than in mergers through the selectivity of binary predicates, which differed across

http://esper.codehaus.org
http://esper.codehaus.org
http://www.jessrules.com
http://marketcetera.org/
http://marketcetera.org/

124

conjunctions to achieve the same expected delivery rates at all subscribers in a respective

level. This scenario demonstrated the limits of the overlay. In Scenario B, events were

filtered at the mergers through unary predicates propagated upwards from subscriptions,

allowing higher aggregate multicast rates than in Scenario A. In Scenario C, we statisti-

cally generated subscriptions uniformly over all event types in the system with all possible

conjunction combinations. This allowed us to explore the potential of traffic separation.

Subscribers were uniformly distributed across all merger processes and throughput/latency

values were averaged for each group of subscribers for a given level. We expect that the

bottleneck in our decentralized algorithms would occur at the merger process(es), which

would merge all involved types, limiting throughput consistently for all overlay depths from

either the publisher or subscriber.

(a) Throughput – Scenario A and Scenario B (b) Throughput – Scenario C

(c) Latency – Scenario A and Scenario B (d) Latency – Scenario C

Figure 4.9.: Empirical evaluation of FAIDECS

125

4.5.2 Results

Figure 4.9 illustrates our results, both for throughput and latency. We observe from all

four figures that the results for the sequencer are better than possibly expected. This is be-

cause the sequencer we used was a non-fault tolerant counter. Regardless, both versions of

FAIDECS easily outperform the corresponding sequencer implementations. This demon-

strates how correlation-specific ordering enables strong guarantees even with support for

fault tolerance. Both Jess and Esper are current state of the art correlation languages, but

in some scenarios, as seen above, Esper is more efficient than Jess since Esper uses a more

optimized event correlation algorithm. In either case however, the benefits of the FAIDECS

overlay are preserved – in fact, a more efficient matching engine further amplifies its ben-

efits. For Scenario A and Scenario B, the throughput of FAIDECS is at least 84%-4.82⇥

higher than that of the sequencer. The corresponding numbers for Scenario C are 59% to

4.12⇥ higher than that of the sequencer. The difference in latency is yet more pronounced,

because lower throughput typically has a cascading effect on latency when the number of

subscribers is high. The latency of FAIDECS is up to 3.7⇥ lower than the sequencer, and

scales much better than the sequencer. The throughput of the implementations with Paxos

and Token-passing total order are lower than Sequencer, though sometimes the differences

are less pronounced due to the processing in Esper and Jess at the subscribers.

126

4.6 Related Work

Event correlation has been vigorously investigated in the context of content-based pub-

lish/subscribe systems. Most such systems rely on a broker network for routing events to

the subscribers (e.g., SIENA [15] and Gryphon [4]). Advertisements are typically used to

form routing trees in order to avoid propagating subscriptions by flooding the broker net-

work. Upon receiving an event e, a broker determines the subset of parties (subscribers and

brokers) with matching interests and forwards e to them. Subscription subsumption [15] is

used to summarize subscriptions and avoid redundant matching on brokers and redundant

traffic among them. If any event e that matches a first subscription also matches a second

one, then the latter subscription subsumes the former one.

A broker network can be used to gather all publications for the elementary subscrip-

tions and perform correlation matching. A successful match yields a composite event

which is delivered to interested subscribers, where no guarantees are typically provided

on correlation. If the events matching a composite subscription shared by two subscribers

are produced by several publishers, then unless the subscribers are connected to a same

edge broker, they may receive the events through different routes. This leads to different

orders among the events and consequently to different composite events for the two sub-

scribers. PADRES [60] performs composite event detection for each subscription at the

first broker that accumulates all the individual subscriptions, providing no global proper-

ties. Hermes [66] proposes complex event detectors using an interval timestamp model as

a generic extension for existing middleware architectures. Hermes uses a DHT to deter-

mine rendezvous nodes for publishers and subscribers; however, these are not replicated

for fault-tolerance.

Recent work [84], motivated by solving agreed correlation, further demonstrates the

need for stronger guarantees on correlated deliveries. However the approach proposes a

more generic primitive for publish/subscribe systems which is opportunistically layered on

top of an existing overlay network, leading to high overhead.

127

Hummer et al. [45] propose a unified fault taxonomy for general event-based systems.

This work generically categorizes faults into separate classes as well as the sources for

these faults to better detect and predict faults in future systems.

The work of Lumezanu et al. [61] proposes a decentralized network of sequencers and

uses a DHT for load balancing. However, this work only provides total order among mes-

sages of the same type/topic, and not for conjunctions, and thus differs from FAIDECS,

which performs decentralized merging for conjunctions of types. One could implement

FAIDECS-style mergers on top of Lumezanu et al.’s work [61] by mapping conjunctions

as types in the DHT and routing messages from the node responsible for a type to a node

responsible for a conjunction. (The merging additionally would take predicates into ac-

count.) A similar approach could be used to deal with disjunctions (omitted from this

paper for simplicity). The work of Baldoni et al. [9] establishes an ordering among topics,

and totally orders events within topics and to some degree across, however without dis-

tinguishing (guarantees) across conjunctions and disjunctions. Their system is devised to

work on top of an arbitrary basic publish/subscribe system (which improves its portability

but adversely affects latency), but then still allows messages to be explicitly delivered out

of order to the application with a corresponding specific notification.

TimeStream [68] is a recent fault-tolerant stream processing architecture, which is sim-

ilar to Apache Storm, except for additional reconfiguration and re-starting guarantees pro-

vided to stream processing elements. However, TimeStream does not provide ordering

guarantees because it is targeted at generic stream processing, where each processing el-

ement contains arbitrary code, and is not targeted at events or tuples of data. Aurora [3]

and its successor Borealis [8] are seminal stream processing systems, where Borealis uses

replication for fault tolerance. Each replica processes events in the same order, and Borealis

provides TYPE TOTAL ORDER, but does not provide CONJUNCTION TOTAL ORDER,

i.e., in Borealis, it is possible to obtain total order among subscribers for all messages

delivered on a given type, e.g., “StockQuote”, but not a total order among messages deliv-

ered to subscribers on a join or a conjunction, e.g., “StockQuote and AnalystReport”. The

guarantees provided by System S [48] are similar to Borealis, but the mechanisms (E.g.

128

checkpointing techniques and orchestration) differ. Cayuga [24] is a generic correlation

engine supporting correlation across streams and is based on a very expressive language

but is centralized.

129

4.7 Conclusions

FAIDECS presents a powerful event correlation model for trading between (a) strong

guarantees in the face of failures and (b) performance; its implementation hinges on an

overlay network for deterministic type-wise merging of event flows with replication of

merger nodes. We have presented semantic options for several modules of the FAIDECS

matching engine. We have shown for each of these alternatives which of the proposed

properties are maintained and which are violated. We have investigated four correlation

languages – StreamSQL, EQL, CEL and TESLA – and have mapped their features to the

semantic options introduced. This then determines which properties are withheld when re-

placing the matching engine of FAIDECS with that of the respective correlation languages.

To demonstrate that the benefits of the FAIDECS overlay in terms of performance (be-

sides fault tolerance) are not dependent on any specific matching engine (while its specific

properties do depend on the corresponding correlation language) we substituted the default

engine of FAIDECS (Jess) by the more efficient Esper engine. As we have illustrated,

Esper in fact amplifies the benefits of the FAIDECS overlay.

Besides investigating further semantic options and properties especially in the con-

text of disjunctions, we are currently in the process of investigating security features for

FAIDECS.

LIST OF REFERENCES

130

LIST OF REFERENCES

[1] OpenFlow. http://www.openflow.org.
[2] SPECjms 2007. http://www.spec.org/jms2007/.
[3] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-

braker, N. Tatbul, and S. Zdonik. Aurora: A New Model and Architecture for Data
Stream Management. The International Journal on Very Large Data Bases, 2003.

[4] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra. Matching
Events in a Content-based Subscription System. In ACM Symposium on Principles of
Distributed Computing, 1999.

[5] M.K. Aguilera and S. Toueg. Randomization and Failure Detection: A Hybrid Ap-
proach to Solve Consensus. Distributed Algorithms, Volume 1151, 1996.

[6] H.S. Alavi, S. Gilbert, and R. Guerraoui. Extensible Encoding of Type Hierarchies.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2008.

[7] J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[8] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-tolerance in
the Borealis Distributed Stream Processing System. In ACM SIGMOD International
Conference on Management of Data, 2005.

[9] R. Baldoni, S. Bonomi, M. Platania and L. Querzoni. Dynamic Message Ordering
for Topic-based Publish/Subscribe Systems. In IEEE International Parallel and Dis-
tributed Processing Symposium, 2012.

[10] R. Baldoni, S. Cimmino, and C. Marchetti. Total Order Communications: A Practical
Analysis. In European Dependable Computing Conference, 2005.

[11] A. Basu, B. Charron-Bost, and S. Toueg. Simulating Reliable Links with Unreliable
Links in the Presence of Failures. In Workshop on Distributed Algorithms on Graphs,
1996.

[12] N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for C#.
ACM Transactions on Programming Languages and Systems, 26(5):769–804, 2004.

[13] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
Multicast. ACM Transactions on Computer Systems, 1999.

[14] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient Filtering in Publish-
Subscribe Systems using Binary Decision Diagrams. In International Conference on
Software Engineering, 2001.

[15] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on Compututer Systems, 19(3):332–
383, 2001.

http://www.openflow.org
http://www.spec.org/jms2007/

131

[16] A. Carzaniga and A.L. Wolf. Forwarding in a Content-Based Network. In Special
Interest Group on Data Communication, 2003.

[17] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.K. Kim. Composite Events for
Active Databases: Semantics, Contexts and Detection. In Very Large Data Bases,
1994.

[18] C.Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML
Documents with XPath Expressions. The International Journal on Very Large Data
Bases, 11:354–379, 2002.

[19] T.D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for Solving
Consensus. Journal of the ACM, 1996.

[20] T.D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 1996.

[21] G. Cugola and A. Margara. Tesla: A Formally Defined Event Specification Language.
In ACM International Conference on Distributed Event-Based Systems, 2010.

[22] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. Ambient-
Oriented Programming in AmbientTalk. In European Conference on Object-Oriented
Programming, 2005.

[23] X. Défago, A. Schiper, and P. Urbán. Total Order Broadcast and Multicast Algo-
rithms: Taxonomy and Survey. ACM Computing Surveys, 2004.

[24] A.J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W.M. White. Towards Expres-
sive Publish/Subscribe Systems. In International Conference on Extending Database
Technology, 2006.

[25] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma and W. White Cayuga:
A General Purpose Event Monitoring System. In Conference on Innovative Data
Systems Research, 2007.

[26] O. Etzion and P. Niblett. Event Processing in Action. Manning Publishing Company,
2010.

[27] P. Eugster and K.R. Jayaram. EventJava: An Extension of Java for Event Correlation.
In European Conference on Object-Oriented Programming, 2009.

[28] F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, and D. Shasha. Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe Systems. In ACM
SIGMOD International Conference on Management of Data, 2001.

[29] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 1985.

[30] C.L. Forgy. On the efficient implementation of production systems. PhD thesis,
Carnegie Mellon University, 1979.

[31] N. Fotiou, P. Nikander, D. Trossen and G.C. Polyzos. Developing Information Net-
working Further: From PSIRP to PURSUIT. In International Conference on Broad-
band Communications, Networks, and Systems, 2010.

[32] N. Fotiou, D. Trossen and G. Polyzos. Illustrating a Publish-Subscribe Internet Ar-
chitecture. Springer Journal on Telecommunication Systems, 2011.

[33] H. Garcia-Molina and A. Spauster. Message Ordering in a Multicast Environment. In
International Conference on Distributed Computing Systems, 1989.

132

[34] S. Gatziu and K.R. Dittrich. Detecting Composite Events in Active Database Systems
using Petri Nets. In International Workshop on Research Issues in Data Engineering,
1994.

[35] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Composite Event Specification in Ac-
tive Databases: Model and Implementation. In Very Large Data Bases, 1992.

[36] J. Gil and Y. Zibin. Efficient Subtyping Tests with PQ-Encoding. ACM Transactions
on Programming Languages and Systems, 27(5):819–856, 2005.

[37] L. Greenemeier. Content Is King: Can Researchers Design an
Information-Centric Internet? Scientific American, December 2012.
http://www.scientificamerican.com/article.cfm?id=

internet-infrastructure-information-redesign

[38] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T.E. Anderson, B.N. Ber-
shad, G. Borriello, S.D. Gribble, and D. Wetherall. System Support for Pervasive
Applications. ACM Transations on Computer Systems, 2004.

[39] R. Guerraoui and A. Schiper. Genuine Atomic Multicast in Asynchronous Distributed
Systems. Journal of Theoretical Computer Science, 2001

[40] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez. Streamcloud:
A Large Scale Data Streaming System. In International Conference on Distributed
Computing Systems, 2010.

[41] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Filtering and Scalability in the
ECO Distributed Event Model. In Symposium on Software Engineering for Parallel
and Distributed Systems, 2000.

[42] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. Dis-
tributed Systems, 2nd edition, 1993.

[43] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,
A. Akella, D.G. Anderson, J.W. Byers, S. Seshan and P. Steenkiste XIA: Efficient
Support for Evolvable Internetworking. In Symposium on Networked Systems Design
and Implementation, 2012.

[44] M. Hennessy and J. Rathke. Bisimulations for a Calculus of Broadcasting Systems.
Journal of Theoretical Computer Science, 200(1-2):225–260, 1998.

[45] W. Hummer, C. Inzinger, P. Leitner, B. Satzger and S. Dustdar Dreiving a Unified
Fault Taxonomy for Distribute Event-Based Systems. In ACM International Confer-
ence on Distributed Event-Based Systems, 2012.

[46] B. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R. Braynard.
Networking Named Content. In International Conference on Emerging Networking
Experiments and Technologies, 2009.

[47] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N. Briggs and R. Braynard.
Networking Named Content. In Communications of the ACM 2012.

[48] G. Jacques-Silva, J. Challenger, L. Degenero, J. Giles and R. Wagle. Towards Au-
tonomic Fault Recovery in System-S. In International Conference on Autonomic
Computing, 2007.

[49] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H.Balakrishnan,
U. Cetintemel, M. Cherniack, R. Tibbetts and S. Zdonik. Towards a Streaming SQL
Standard. In Very Large Data Bases, 2008.

http://www.scientificamerican.com/article.cfm?id=internet-infrastructure-information-redesign
http://www.scientificamerican.com/article.cfm?id=internet-infrastructure-information-redesign

133

[50] K. Jayaram and P. Eugster. Scalable Efficient Composite Event Detection. In Inter-
national Conference on Coordination Models and Languages, 2010.

[51] K.R. Jayaram, C. Jayalath, and P. Eugster. Parametric Subscriptions for Content-
Based Publish/Subscribe Networks. In Middleware, 2010.

[52] Z. Jerzak and C. Fetzer. Bloom Filter based Routing for Content-based Publish/Sub-
scribe. In ACM International Conference on Distributed Event-Based Systems, 2008.

[53] G.G. Koch, B. Koldehofe, and K. Rothermel. Cordies: Expressive Event Correlation
in Distributed Systems. In ACM International Conference on Distributed Event-Based
Systems, 2010.

[54] R.R. Kompella, J. Yates, A.G. Greenberg, and A.C. Snoeren. IP Fault Localization
Via Risk Modeling. In Symposium on Networked Systems Design and Implementa-
tion, 2005.

[55] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinkiy, K.H. Kim, S. Shenker and I. Sto-
ica. A Data-Orented (and Beyond) Network Architecture. In Special Interest Group
on Data Communication, 2007.

[56] C. Krugel, T. Toth, and C. Kerer. Decentralized Event Correlation for Intrusion De-
tection. In International Conference on Information Security and Cryptology, 2002.

[57] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
munications of the ACM, 1978.

[58] K. Lee, A. LaMarca, and C. Chambers. HydroJ: Object-Oriented Pattern Matching
for Evolvable Distributed Systems. In International Conference on Object Oriented
Programming, Systems, Languages and Applications, 2003.

[59] G. Li, S. Hou, and H.A. Jacobsen. A Unified Approach to Routing, Covering and
Merging in Publish/Subscribe Systems based on Modified Binary Decision Diagrams.
In International Conference on Distributed Computing Systems, 2005.

[60] G. Li and H. Jacobsen. Composite Subscriptions in Content-Based Publish/Subscribe
Systems. In Middleware, 2005.

[61] C. Lumezanu, N. Spring and B. Bhattacharjee. Decentralized Message Ordering for
Publish/Subscribe Systems. In Middleware, 2006.

[62] T.D. Millstein, C. Frost, J. Ryder, and A. Warth. Expressive and Modular Predicate
Dispatch for Java. ACM Transactions on Programming Languages and Systems, 2009.

[63] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S.Y. Ko, J. Rexford and
M.J. Freedman. An End-Host Stack for Service-Centric Networking. In Symposium
on Networked Systems Design and Implementation, 2012.

[64] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus - An Architecture
for Extensible Distributed Systems. In Symposium on Operating Systems Principles,
1993.

[65] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving Agreement Problems with
Weak Ordering Oracles. In European Dependable Computing Conference, 2002.

[66] P.R. Pietzuch, B. Shand, and J. Bacon. A Framework for Event Composition in Dis-
tributed Systems. In Middleware, 2003.

[67] K.V.S. Prasad. A Calculus of Broadcasting Systems. Science of Computer Program-
ming, 25(2-3):285–327, 1995.

134

[68] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu and Z. Zhang.
TimeStream: Reliable Stream Computation in the Cloud. In European Conference on
Computer Systems, 2013.

[69] E. Rabinovich, O. Etzion, S. Ruah, and S. Archushin. Analyzing the Behavior of
Event Processing Applications. In ACM International Conference on Distributed
Event-Based Systems, 2010.

[70] S.P. Reiss. Connecting Tools Using Message Passing in the Field Environment. IEEE
Software, 7(4):57–66, 1990.

[71] M. Sadoghi and H.A. Jacobsen. BE-Tree: an Index Structure to Efficiently Match
Boolean Expressions over High-dimensional Discrete Space. In ACM SIGMOD In-
ternational Conference on Management of Data, 2011.

[72] C. Sanchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. Dill, and Z. Manna. Event
Correlation: Language and Semantics. In International Conference on Embedded
Software, 2003.

[73] P. Sewell, J.J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-Williams,
P. Habouzit, and V. Vafeiadis. Acute: High-level Programming Language Design
for Distributed Computation. Journal of Functional Programming, 17(4-5):547–612,
2007.

[74] H. Sturzrehm, P. Felber, and C. Fetzer. TM-Stream: An STM Framework for Dis-
tributed Event Stream Processing. In IEEE International Parallel Distributed Pro-
cessing Symposium, 2009.

[75] K.J. Sullivan and D. Notkin. Reconciling Environment Integration and Software
Evolution. ACM Transactions on Software Engineering Methodology, 1(3):229–268,
1992.

[76] N. Tatbul, U. Çetintemel, and S.B. Zdonik. Staying FIT: Efficient Load Shedding
Techniques for Distributed Stream Processing. In Very Large Data Bases, 2007.

[77] P. Triantafillou and A.A. Economides. Subscription Summarization: A New Paradigm
for Efficient Publish/Subscribe Systems. In International Conference on Distributed
Computing Systems, 2004.

[78] A.J. Turon and C.V. Russo. Scalable Join Patterns. In International Conference on
Object Oriented Programming Systems Languages and Applications, 2011.

[79] A. Ulbrich, G. Mühl, T. Weis, and K. Geihs. Programming Abstractions for Content-
Based Publish/Subscribe in Object-Oriented Languages. In On the Move -OTM- to
Meaningful Internet Systems and Ubiquitous Computing, 2004.

[80] G.A. Wilkin and P. Eugster. Multicast with Aggregated Deliveries. Journal on Paral-
lel and Distributed Computing, 2012.

[81] G.A. Wilkin and P. Eugster. Multicasting in the Presence of Aggregated Deliver-
ies. Journal on Parallel and Distributed Computing, 2013 (pre-version in AlMoDEP,
2011).

[82] G.A. Wilkin, K.R. Jayaram, P. Eugster, and A. Khetrapal. FAIDECS: Fair Decentral-
ized Event Correlation. In Middleware, 2011.

[83] T.W. Yan and H. Garcı́a-Molina. Index Structures for Selective Dissemination of
Information under the Boolean Model. ACM Transactions on Database Systems,
19:332–364, 1994.

135

[84] K. Zhang, V. Muthusamy and H.A. Jacobsen. Total Order in Content-Based Publish/-
Subscribe Systems. In International Conference on Distributed Computing Systems,
2012

[85] Y. Zhao and R.E. Strom. Exploiting Event Stream Interpretation in Publish-Subscribe
Systems. In ACM Symposium on Principles of Distributed Computing, 2001.

VITA

136

VITA

Gregory Aaron Wilkin was born in Rogers Arkansas. After completing his school-

work in 1998 at the age of fourteen, Aaron was able to begin his Bachelor of Science

in Computer Science degree in 2000 at Arkansas State University on scholarship. Upon

completion, Aaron further pursued a Master of Science in Computer Science at Arkansas

State University. After being accepted to the Purdue University Graduate School program

in 2008, Aaron pursued his PhD in Computer Science there. In 2012, Aaron began doing

research in absentia to accept a tenure track Assistant Professor position at Rose-Hulman

Institute of Technology where he is currently employed.

	Purdue University
	Purdue e-Pubs
	January 2015

	Efficient Aggregated Deliveries with Strong Guarantees in an Event-based Distributed System
	Gregory Aaron Wilkin
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	INTRODUCTION
	Request-reply Interaction
	Event-based Distributed Systems
	Engineering of Event-based Distributed Software
	Engineering of Event-based Middleware

	Thesis Statement
	Contributions
	Roadmap

	MULTICASTING IN THE PRESENCE OF AGGREGATED DELIVERIES Published in JPDC 2012 Authors: G. A. Wilkin and P. Eugster
	Preliminaries
	System Model
	Properties and Total Order Broadcast

	Conjunction Multi-Delivery Multicast (C-MDMcast)
	Predicate Grammar
	Predicate Types and Evaluation
	Properties
	Basic Safety Properties
	Liveness
	Agreement

	Comparison of C-MDMcast with Total Order Broadcast
	C-MDMcast Using TOBcast
	Algorithm
	Correctness of FRIP with Respect to C-MDMcast

	Total Order Broadcast Using Conjunction Multi-Delivery Multicast
	Algorithm
	Correctness of TC-MDMcastTOBcast (Alg. 2.2) with Respect to TOBcast

	Subsumption
	Motivation
	Property
	Correctness of FRIP with Respect to MDM Covering Conjunction Agreement

	Disjunction Multi-delivery Multicast (D-MDMcast)
	Predicate Grammar
	Algorithm
	Correctness of D-FRIP with Respect to D-MDMcast

	Total Order
	Properties
	Correctness of FRIP and D-FRIP with Respect to Total Order Properties

	FIFO and Causal Order
	FIFO Order
	Causal Order

	Related Work
	Conclusions

	FAIDECS: FAIR DECENTRALIZED EVENT CORRELATION Published in MIDDLEWARE 2011 Authors: G. A. Wilkin, K. R. Jayaram, P. Eugster and A. Khetrapal
	Related Work
	Preliminaries
	FAIDECS Model
	Predicate Grammar
	Predicate Types and Evaluation
	Properties
	Basic safety properties
	Liveness
	Agreement

	Total Order

	Algorithms
	Total Order Broadcast Black Box
	Conjunctions
	Disjunctions

	FAIDECS Decentralized Ordered Merging
	Conjunctions
	Disjunctions
	Joining
	Fault tolerance

	Evaluation
	Metrics and Experimental Setup
	Conjunctions
	Disjunctions

	Conclusions

	FAULT TOLERANT EVENT CORRELATION Published in ToIT 2013 Authors: G. A. Wilkin, K. R. Jayaram and P. Eugster
	FAIDECS
	Contributions

	FAIDECS Model and System Overview
	System Model and Notation
	Properties
	Predicate Grammar
	Predicate Types and Evaluation
	Properties
	Basic Safety Properties
	Liveness
	Agreement
	Ordering

	Decentralized System
	Mergers
	Clients

	Semantic Options
	Event Matching Semantics
	Event Consumption Semantics
	Windows
	Properties of Semantic Options
	First Received vs. Most-Recently Received
	Contiguous vs. Non-contiguous Matching
	Infix vs. Prefix+Infix vs. Infix+Postfix Event Consumption
	Tumbling vs. Sliding Windows

	Case Studies
	The TESLA Language
	Event Occurrence/Selection
	Event Composition
	Parameterization
	Timers
	Negations
	Aggregates
	Event Consumption
	Event Hierarchies
	Iterations

	The StreamSQL Language
	Overview
	Selection
	Windowing
	Event Composition
	Union and Merge

	The EQL Language
	The CEL Language

	Evaluation
	Metrics and Setup
	Results

	Related Work
	Conclusions

	LIST OF REFERENCES
	VITA

