4,229 research outputs found

    Community Detection in Networks using Bio-inspired Optimization: Latest Developments, New Results and Perspectives with a Selection of Recent Meta-Heuristics

    Get PDF
    Detecting groups within a set of interconnected nodes is a widely addressed prob- lem that can model a diversity of applications. Unfortunately, detecting the opti- mal partition of a network is a computationally demanding task, usually conducted by means of optimization methods. Among them, randomized search heuristics have been proven to be efficient approaches. This manuscript is devoted to pro- viding an overview of community detection problems from the perspective of bio-inspired computation. To this end, we first review the recent history of this research area, placing emphasis on milestone studies contributed in the last five years. Next, we present an extensive experimental study to assess the performance of a selection of modern heuristics over weighted directed network instances. Specifically, we combine seven global search heuristics based on two different similarity metrics and eight heterogeneous search operators designed ad-hoc. We compare our methods with six different community detection techniques over a benchmark of 17 Lancichinetti-Fortunato-Radicchi network instances. Ranking statistics of the tested algorithms reveal that the proposed methods perform com- petitively, but the high variability of the rankings leads to the main conclusion: no clear winner can be declared. This finding aligns with community detection tools available in the literature that hinge on a sequential application of different algorithms in search for the best performing counterpart. We end our research by sharing our envisioned status of this area, for which we identify challenges and opportunities which should stimulate research efforts in years to come

    Bat-Cluster: A Bat Algorithm-based Automated Graph Clustering Approach

    Get PDF
    Defining the correct number of clusters is one of the most fundamental tasks in graph clustering. When it comes to large graphs, this task becomes more challenging because of the lack of prior information. This paper presents an approach to solve this problem based on the Bat Algorithm, one of the most promising swarm intelligence based algorithms. We chose to call our solution, “Bat-Cluster (BC).” This approach allows an automation of graph clustering based on a balance between global and local search processes. The simulation of four benchmark graphs of different sizes shows that our proposed algorithm is efficient and can provide higher precision and exceed some best-known values

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    A Novel Local Community Detection Method Using Evolutionary Computation.

    Full text link
    The local community detection is a significant branch of the community detection problems. It aims at finding the local community to which a given starting node belongs. The local community detection plays an important role in analyzing the complex networks and recently has drawn much attention from the researchers. In the past few years, several local community detection algorithms have been proposed. However, the previous methods only make use of the limited local information of networks but overlook the other valuable information. In this article, we propose an evolutionary computation-based algorithm called evolutionary-based local community detection (ELCD) algorithm to detect local communities in the complex networks by taking advantages of the entire obtained information. The performance of the proposed algorithm is evaluated on both synthetic and real-world benchmark networks. The experimental results show that the proposed algorithm has a superior performance compared with the state-of-the-art local community detection methods. Furthermore, we test the proposed algorithm on incomplete real-world networks to show its effectiveness on the networks whose global information cannot be obtained

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Introductory Review of Swarm Intelligence Techniques

    Full text link
    With the rapid upliftment of technology, there has emerged a dire need to fine-tune or optimize certain processes, software, models or structures, with utmost accuracy and efficiency. Optimization algorithms are preferred over other methods of optimization through experimentation or simulation, for their generic problem-solving abilities and promising efficacy with the least human intervention. In recent times, the inducement of natural phenomena into algorithm design has immensely triggered the efficiency of optimization process for even complex multi-dimensional, non-continuous, non-differentiable and noisy problem search spaces. This chapter deals with the Swarm intelligence (SI) based algorithms or Swarm Optimization Algorithms, which are a subset of the greater Nature Inspired Optimization Algorithms (NIOAs). Swarm intelligence involves the collective study of individuals and their mutual interactions leading to intelligent behavior of the swarm. The chapter presents various population-based SI algorithms, their fundamental structures along with their mathematical models.Comment: Submitted to Springe
    • …
    corecore